1
|
Park YS, Kang JS, Park JY, Shim H, Yang HO, Kang JH, Yang TJ. Analysis of the complete plastomes and nuclear ribosomal DNAs from Euonymus hamiltonianus and its relatives sheds light on their diversity and evolution. PLoS One 2022; 17:e0275590. [PMID: 36197898 PMCID: PMC9534445 DOI: 10.1371/journal.pone.0275590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Euonymus hamiltonianus and its relatives (Celastraceae family) are used for ornamental and medicinal purposes. However, species identification in Euonymus is difficult due to their morphological diversity. Using plastid genome (plastome) data, we attempt to reveal phylogenetic relationship among Euonymus species and develop useful markers for molecular identification. We assembled the plastome and nuclear ribosomal DNA (nrDNA) sequences from five Euonymus lines collected from South Korea: three Euonymus hamiltonianus accessions, E. europaeus, and E. japonicus. We conducted an in-depth comparative analysis using ten plastomes, including other publicly available plastome data for this genus. The genome structures, gene contents, and gene orders were similar in all Euonymus plastomes in this study. Analysis of nucleotide diversity revealed six divergence hotspots in their plastomes. We identified 339 single nucleotide polymorphisms and 293 insertion or deletions among the four E. hamiltonianus plastomes, pointing to abundant diversity even within the same species. Among 77 commonly shared genes, 9 and 33 were identified as conserved genes in the genus Euonymus and E. hamiltonianus, respectively. Phylogenetic analysis based on plastome and nrDNA sequences revealed the overall consensus and relationships between plastomes and nrDNAs. Finally, we developed six barcoding markers and successfully applied them to 31 E. hamiltonianus lines collected from South Korea. Our findings provide the molecular basis for the classification and molecular taxonomic criteria for the genus Euonymus (at least in Korea), which should aid in more objective classification within this genus. Moreover, the newly developed markers will be useful for understanding the species delimitation of E. hamiltonianus and closely related species.
Collapse
Affiliation(s)
- Young Sang Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Jee Young Park
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | | | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, College of Agriculture & Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
2
|
Zhou J, Zhang S, Wang J, Shen H, Ai B, Gao W, Zhang C, Fei Q, Yuan D, Wu Z, Tembrock LR, Li S, Gu C, Liao X. Chloroplast genomes in Populus (Salicaceae): comparisons from an intensively sampled genus reveal dynamic patterns of evolution. Sci Rep 2021; 11:9471. [PMID: 33947883 PMCID: PMC8096831 DOI: 10.1038/s41598-021-88160-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
The chloroplast is one of two organelles containing a separate genome that codes for essential and distinct cellular functions such as photosynthesis. Given the importance of chloroplasts in plant metabolism, the genomic architecture and gene content have been strongly conserved through long periods of time and as such are useful molecular tools for evolutionary inferences. At present, complete chloroplast genomes from over 4000 species have been deposited into publicly accessible databases. Despite the large number of complete chloroplast genomes, comprehensive analyses regarding genome architecture and gene content have not been conducted for many lineages with complete species sampling. In this study, we employed the genus Populus to assess how more comprehensively sampled chloroplast genome analyses can be used in understanding chloroplast evolution in a broadly studied lineage of angiosperms. We conducted comparative analyses across Populus in order to elucidate variation in key genome features such as genome size, gene number, gene content, repeat type and number, SSR (Simple Sequence Repeat) abundance, and boundary positioning between the four main units of the genome. We found that some genome annotations were variable across the genus owing in part from errors in assembly or data checking and from this provided corrected annotations. We also employed complete chloroplast genomes for phylogenetic analyses including the dating of divergence times throughout the genus. Lastly, we utilized re-sequencing data to describe the variations of pan-chloroplast genomes at the population level for P. euphratica. The analyses used in this paper provide a blueprint for the types of analyses that can be conducted with publicly available chloroplast genomes as well as methods for building upon existing datasets to improve evolutionary inference.
Collapse
Affiliation(s)
- Jiawei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shuo Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- School of Landscape and Architecture, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China
| | - Hongmei Shen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- The Second Peoples's Hospital of Nantong, Nantong, 226000, Jiangsu, China
| | - Bin Ai
- Foshan Green Development Innovation Research Institute, Foshan, 528000, Guangdong, China
| | - Wei Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qili Fei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhiqiang Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- The College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Sen Li
- The College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Cuihua Gu
- School of Landscape and Architecture, Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
3
|
Del Cortona A, Jackson CJ, Bucchini F, Van Bel M, D'hondt S, Škaloud P, Delwiche CF, Knoll AH, Raven JA, Verbruggen H, Vandepoele K, De Clerck O, Leliaert F. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proc Natl Acad Sci U S A 2020; 117:2551-2559. [PMID: 31911467 PMCID: PMC7007542 DOI: 10.1073/pnas.1910060117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.
Collapse
Affiliation(s)
- Andrea Del Cortona
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium
| | | | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
| | - Sofie D'hondt
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
- School of Biological Sciences, University of Western Australia, WA 6009, Australia
- Climate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium;
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
| | - Frederik Leliaert
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
- Meise Botanic Garden, 1860 Meise, Belgium
| |
Collapse
|
4
|
Del Cortona A, Leliaert F, Bogaert KA, Turmel M, Boedeker C, Janouškovec J, Lopez-Bautista JM, Verbruggen H, Vandepoele K, De Clerck O. The Plastid Genome in Cladophorales Green Algae Is Encoded by Hairpin Chromosomes. Curr Biol 2017; 27:3771-3782.e6. [PMID: 29199074 DOI: 10.1016/j.cub.2017.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022]
Abstract
Virtually all plastid (chloroplast) genomes are circular double-stranded DNA molecules, typically between 100 and 200 kb in size and encoding circa 80-250 genes. Exceptions to this universal plastid genome architecture are very few and include the dinoflagellates, where genes are located on DNA minicircles. Here we report on the highly deviant chloroplast genome of Cladophorales green algae, which is entirely fragmented into hairpin chromosomes. Short- and long-read high-throughput sequencing of DNA and RNA demonstrated that the chloroplast genes of Boodlea composita are encoded on 1- to 7-kb DNA contigs with an exceptionally high GC content, each containing a long inverted repeat with one or two protein-coding genes and conserved non-coding regions putatively involved in replication and/or expression. We propose that these contigs correspond to linear single-stranded DNA molecules that fold onto themselves to form hairpin chromosomes. The Boodlea chloroplast genes are highly divergent from their corresponding orthologs, and display an alternative genetic code. The origin of this highly deviant chloroplast genome most likely occurred before the emergence of the Cladophorales, and coincided with an elevated transfer of chloroplast genes to the nucleus. A chloroplast genome that is composed only of linear DNA molecules is unprecedented among eukaryotes, and highlights unexpected variation in plastid genome architecture.
Collapse
Affiliation(s)
- Andrea Del Cortona
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Zwijnaarde, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Frederik Leliaert
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium; Botanic Garden Meise, Nieuwelaan 38, 1860 Meise, Belgium
| | - Kenny A Bogaert
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Monique Turmel
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Pavillon Charles-Eugène-Marchand 1030, Avenue de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Christian Boedeker
- School of Biological Sciences, Victoria University of Wellington, New Kirk Building, Kelburn Parade, P.O. Box 600, Wellington 6012, New Zealand
| | - Jan Janouškovec
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Juan M Lopez-Bautista
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35484-0345, USA
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Professors Walk, Melbourne, VIC 3010, Australia
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Zwijnaarde, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| |
Collapse
|
5
|
Rieseberg LH, Soltis DE, Palmer JD. A MOLECULAR REEXAMINATION OF INTROGRESSION BETWEEN HELIANTHUS ANNUUS AND H. BOLANDERI (COMPOSITAE). Evolution 2017; 42:227-238. [PMID: 28567846 DOI: 10.1111/j.1558-5646.1988.tb04127.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1987] [Accepted: 10/27/1987] [Indexed: 11/28/2022]
Abstract
Heiser (1949) hypothesized that a weedy race of Helianthus bolanderi had originated by the introgression of genes from H. annum into a serpentine race of H. bolanderi. Although Heiser's investigation of these species is frequently cited as one of the best examples of introgression in plants, definitive evidence of gene exchange is lacking (Heiser, 1973). To determine whether the weedy race of H. bolanderi actually originated via introgression, we analyzed allozyme, chloroplast-DNA (cpDNA), and nuclear-ribosomal-DNA (rDNA) variation. Evidence from enzyme electrophoresis did not support the proposed introgressive origin of weedy H. bolanderi. We detected a total of 37 low-frequency alleles distinguishing the serpentine race of H. bolanderi from H. annuus. Weedy H. bolanderi possessed only four of the 37 marker alleles. Further analysis demonstrated that serpentine H. bolanderi combined seven of the 35 alleles distinguishing H. annuus from weedy H. bolanderi, indicating that serpentine H. bolanderi shares three more marker alleles with H. annuus than does weedy H. bolanderi. These results are similar to expectations for race divergence from a single common ancestor and suggest that, if introgression occurred, the majority of marker alleles were rapidly lost following the initial hybridization event. Even more compelling evidence opposing Heiser's (1949) hypothesis, however, was from restriction-fragment analysis of cpDNA and nuclear rDNA. We detected a total of 17 cpDNA and five rDNA restriction-site mutations among the 19 populations examined. No parallel or back mutations were observed in phylogenetic trees constructed using either cpDNA or rDNA mutations, and both phylogenies were completely congruent regarding the alignment of all three taxa. In addition, the weedy race of H. bolanderi possessed a unique cpDNA, which was outside the range of variation observed among populations of either of the presumed parental species. Mean sequence divergences between the cpDNAs of weedy H. bolanderi and those of serpentine H. bolanderi and H. annuus were 0.30% and 0.35%, respectively. These estimates are comparable to sequence-divergence values observed between closely related species in other plant groups. Given the lack of parallel or convergent mutations in the cpDNA and rDNA phylogenetic trees, the complete congruence of these trees with flavonoid- and allozyme-variation patterns, and the presence of a unique and divergent chloroplast genome in the weedy race of H. bolanderi, we suggest that the weedy race of H. bolanderi was not derived recently through introgression, as hypothesized, but is relatively ancient in origin.
Collapse
Affiliation(s)
- Loren H Rieseberg
- Department of Botany, Washington State University, Pullman, WA, 99164
| | - Douglas E Soltis
- Department of Botany, Washington State University, Pullman, WA, 99164
| | - Jeffrey D Palmer
- Department of Biology, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
6
|
Chloroplast DNA from the fern Osmunda cinnamomea: physical organization, gene localization and comparison to angiosperm. Curr Genet 2013; 5:165-70. [PMID: 24186290 DOI: 10.1007/bf00391801] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/1982] [Indexed: 02/05/2023]
Abstract
Chloroplast DNA from the fern Osmunda einnamomea was isolated by a sucrose gradient procedure utilizing PEG to stabilize chloroplasts. Analysis with the restriction endonucleases PvuII, Sacl and BstEII indicates a chloroplast genome size of 144 kb. A physical map of the fragments produced by these three enzymes was constructed by filter hybridizations using purified PvuII fragments as hybridization probes. The Osmunda chloroplast genome is circular and contains an inverted repeat 8-13 kb in size.Gene probes from tobacco, corn and spinach were used to map the positions of six genes on the Osmunda chloroplast chromosome. The 16S and 23S ribosomal RNAs are encoded by duplicate genes which lie within the inverted repeat. Genes for the large subunit of ribulose-1,5-bisphosphate carboxylase, a photosystem II polypeptide, and the alpha and beta subunits of chloroplast coupling factor are located in three different segments of the large single copy region.The Osmunda chloroplast genome is remarkably similar in size, conformation, physical organization, and map positions of known genes, to chloroplast DNA from a number of angiosperms. The major difference between chloroplast DNA from this fern and angiosperms is that the inverted repeat is smaller in Osmunda (8-13 kb) than in angiosperms (22-25 kb).
Collapse
|
7
|
Abstract
Isolated chloroplasts from broad bean and common bean were found to contain a minimum of 31 and 32 tRNA species, respectively. These individual chloroplast tRNAs were (32)P-labeled in vitro and hybridized to DNA fragments obtained upon digestion of broad bean and common bean chloroplast DNAs with various restriction endonucleases. At least 30 tRNA genes were localized on the physical maps of the two chloroplast genomes. Comparison of the broad bean tRNA gene map to that of common bean revealed DNA sequence rearrangements, such as inversions, insertions/ deletions and duplications, within these two members of the Legu minosae family.
Collapse
|
8
|
Ko K, Straus NA, Wfliams JP. The localization and orientation of specific genes in the chloroplast chromosome of Vicia faba. Curr Genet 2013; 8:359-67. [PMID: 24177816 DOI: 10.1007/bf00419825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1984] [Indexed: 10/26/2022]
Abstract
The genes for six chloroplast polypeptides have been localized on the map of Vicia faba chloroplast DNA using heterologous probes. These include the three subunits (α, β, ε) of CF1 of ATP synthase, subunit III of CF0 from ATP synthase, the 32 kilodalton thylakoidal membrane protein of photosystem II and cytochrome f of the electron transport chain. The direction of transcription has been determined for the three subunits of CF1 and the 32 kilodalton thylakoidal protein. The physical map of the chloroplast DNA has also been expanded to include Sma1 sites in addition to previously mapped restriction enzyme sites. Finally, the genetic arrangement of Vicia faba chloroplast DNA was compared to other known genetic maps.
Collapse
Affiliation(s)
- K Ko
- Department of Botany, University of Toronto, MSS 1A1, Toronto, Ontario, Canada
| | | | | |
Collapse
|
9
|
de Heij HT, Lustig H, Moeskops DJ, Bovenberg WA, Bisanz C, Groot GS. Chloroplast DNAs of Spinacia, Petunia and Spirodela have a similar gene organization. Curr Genet 2013; 7:1-6. [PMID: 24173111 DOI: 10.1007/bf00365673] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/1982] [Indexed: 11/25/2022]
Abstract
We have located the positions of the genes coding for the α, β and ε subunits of the ATPase complex on Spirodela oligorhiza chloroplast DNA by means of heterologous hybridization with Spinacia cpDNA fragments.The overall cpDNA sequence organization of Petunia hybrida and Spirodela was compared. We hybridized well-characterized, cloned Spirodela cpDNA fragments with size fractionated Petunia cpDNA digested by Sall. It appears that the monocotyledonous Spirodela and the dicotyledonous Petunia cpDNA share a common sequence organization around their entire circumference. These observations, together with data reported in the literature, indicate a strikingly similar genetic organization of the chloroplast genome in widely divergent plants.
Collapse
Affiliation(s)
- H T de Heij
- Biochemical Laboratory, Free University, de Boelelaan 1083, 1081, HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
A complete clone bank representing the chloroplast DNA from Vicia faba has been constructed. A total of 15 fragments (10 Pst1, 1 Pst1-EcoR1 and 4 Sal1 fragments) were inserted into the vector pBR322 and transformed into the E. coli strain HB101. The cloned fragments were used as the main tools in constructing the physical map of Vicia faba for the restriction endonucleases Pst1, Kpn1 and Xho1. The identity of the cloned fragments was demonstrated by restriction analysis and blot hybridization. The information generated was used to construct the map. The 16S and 23S rRNA genes and the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase have been positioned on the map using heterologous probes. The orientation of the gene for the large subunit of RuBP carboxylase has also been determined.
Collapse
|
11
|
Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, McCauley DE, Palmer JD, Taylor DR. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol 2012; 10:e1001241. [PMID: 22272183 PMCID: PMC3260318 DOI: 10.1371/journal.pbio.1001241] [Citation(s) in RCA: 423] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 11/30/2011] [Indexed: 11/28/2022] Open
Abstract
A pair of species within the genus Silene have evolved the largest known mitochondrial genomes, coinciding with extreme changes in mutation rate, recombination activity, and genome structure. Genome size and complexity vary tremendously among eukaryotic species and their organelles. Comparisons across deeply divergent eukaryotic lineages have suggested that variation in mutation rates may explain this diversity, with increased mutational burdens favoring reduced genome size and complexity. The discovery that mitochondrial mutation rates can differ by orders of magnitude among closely related angiosperm species presents a unique opportunity to test this hypothesis. We sequenced the mitochondrial genomes from two species in the angiosperm genus Silene with recent and dramatic accelerations in their mitochondrial mutation rates. Contrary to theoretical predictions, these genomes have experienced a massive proliferation of noncoding content. At 6.7 and 11.3 Mb, they are by far the largest known mitochondrial genomes, larger than most bacterial genomes and even some nuclear genomes. In contrast, two slowly evolving Silene mitochondrial genomes are smaller than average for angiosperms. Consequently, this genus captures approximately 98% of known variation in organelle genome size. The expanded genomes reveal several architectural changes, including the evolution of complex multichromosomal structures (with 59 and 128 circular-mapping chromosomes, ranging in size from 44 to 192 kb). They also exhibit a substantial reduction in recombination and gene conversion activity as measured by the relative frequency of alternative genome conformations and the level of sequence divergence between repeat copies. The evolution of mutation rate, genome size, and chromosome structure can therefore be extremely rapid and interrelated in ways not predicted by current evolutionary theories. Our results raise the hypothesis that changes in recombinational processes, including gene conversion, may be a central force driving the evolution of both mutation rate and genome structure. A fundamental challenge in evolutionary biology is to explain why organisms exhibit dramatic variation in genome size and complexity. One hypothesis predicts that high rates of mutation in DNA sequence create selection against large and complex genomes, which are more susceptible to mutational disruption. Species of flowering plants in the genus Silene vary by approximately 100-fold in the rates of mutation in their mitochondrial DNA, providing an excellent opportunity to test the predicted effects of high mutation rates on genome evolution. Contrary to expectation, Silene species with elevated mutation rates have experienced dramatic expansions in mitochondrial genome size compared to their slowly evolving relatives, resulting in the largest known mitochondrial genomes. In addition to the increases in size and mutation rate, these genomes also reveal a history of rapid change in genome structure. They have been fragmented into dozens of chromosomes and appear to have experienced major reductions in recombination activity. All of these changes have occurred in just the past few million years. This mitochondrial genome diversity within the genus Silene provides a striking example of rapid genomic change and raises new hypotheses regarding the relationship between mutation rate and genome evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America.
| | | | | | | | | | | | | |
Collapse
|
12
|
Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD. Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. THE PLANT CELL 2011; 23:2499-513. [PMID: 21742987 PMCID: PMC3226218 DOI: 10.1105/tpc.111.087189] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/16/2011] [Accepted: 06/24/2011] [Indexed: 05/18/2023]
Abstract
Members of the flowering plant family Cucurbitaceae harbor the largest known mitochondrial genomes. Here, we report the 1685-kb mitochondrial genome of cucumber (Cucumis sativus). We help solve a 30-year mystery about the origins of its large size by showing that it mainly reflects the proliferation of dispersed repeats, expansions of existing introns, and the acquisition of sequences from diverse sources, including the cucumber nuclear and chloroplast genomes, viruses, and bacteria. The cucumber genome has a novel structure for plant mitochondria, mapping as three entirely or largely autonomous circular chromosomes (lengths 1556, 84, and 45 kb) that vary in relative abundance over a twofold range. These properties suggest that the three chromosomes replicate independently of one another. The two smaller chromosomes are devoid of known functional genes but nonetheless contain diagnostic mitochondrial features. Paired-end sequencing conflicts reveal differences in recombination dynamics among chromosomes, for which an explanatory model is developed, as well as a large pool of low-frequency genome conformations, many of which may result from asymmetric recombination across intermediate-sized and sometimes highly divergent repeats. These findings highlight the promise of genome sequencing for elucidating the recombinational dynamics of plant mitochondrial genomes.
Collapse
MESH Headings
- Base Sequence
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Chromosomes, Plant/ultrastructure
- Cucumis sativus/genetics
- DNA, Mitochondrial/analysis
- DNA, Mitochondrial/genetics
- DNA, Plant/analysis
- DNA, Plant/genetics
- Gene Transfer, Horizontal
- Genes, Plant
- Genome, Mitochondrial
- Genome, Plant
- Introns/genetics
- Molecular Sequence Data
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
Collapse
Affiliation(s)
- Andrew J Alverson
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Danny W Rice
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | | | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
13
|
Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One 2011; 6:e16404. [PMID: 21283772 PMCID: PMC3024419 DOI: 10.1371/journal.pone.0016404] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/18/2010] [Indexed: 11/26/2022] Open
Abstract
The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38–297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.
Collapse
Affiliation(s)
- Andrew J Alverson
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America.
| | | | | | | | | |
Collapse
|
14
|
Sloan DB, Alverson AJ, Storchová H, Palmer JD, Taylor DR. Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 2010; 10:274. [PMID: 20831793 PMCID: PMC2942850 DOI: 10.1186/1471-2148-10-274] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/10/2010] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial gene loss and functional transfer to the nucleus is an ongoing process in many lineages of plants, resulting in substantial variation across species in mitochondrial gene content. The Caryophyllaceae represents one lineage that has experienced a particularly high rate of mitochondrial gene loss relative to other angiosperms. Results In this study, we report the first complete mitochondrial genome sequence from a member of this family, Silene latifolia. The genome can be mapped as a 253,413 bp circle, but its structure is complicated by a large repeated region that is present in 6 copies. Active recombination among these copies produces a suite of alternative genome configurations that appear to be at or near "recombinational equilibrium". The genome contains the fewest genes of any angiosperm mitochondrial genome sequenced to date, with intact copies of only 25 of the 41 protein genes inferred to be present in the common ancestor of angiosperms. As observed more broadly in angiosperms, ribosomal proteins have been especially prone to gene loss in the S. latifolia lineage. The genome has also experienced a major reduction in tRNA gene content, including loss of functional tRNAs of both native and chloroplast origin. Even assuming expanded wobble-pairing rules, the mitochondrial genome can support translation of only 17 of the 61 sense codons, which code for only 9 of the 20 amino acids. In addition, genes encoding 18S and, especially, 5S rRNA exhibit exceptional sequence divergence relative to other plants. Divergence in one region of 18S rRNA appears to be the result of a gene conversion event, in which recombination with a homologous gene of chloroplast origin led to the complete replacement of a helix in this ribosomal RNA. Conclusions These findings suggest a markedly expanded role for nuclear gene products in the translation of mitochondrial genes in S. latifolia and raise the possibility of altered selective constraints operating on the mitochondrial translational apparatus in this lineage.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
15
|
Newton KJ, Coe EH. Mitochondrial DNA changes in abnormal growth (nonchromosomal stripe) mutants of maize. Proc Natl Acad Sci U S A 2010; 83:7363-6. [PMID: 16593766 PMCID: PMC386717 DOI: 10.1073/pnas.83.19.7363] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic analysis of higher plant mitochondria has been limited by a scarcity of identified mutations with known progenitors. Correspondingly, few molecular studies have been directed at types of plant mitochondrial variation other than cytoplasmic male sterility. The maternally inherited nonchromosomal stripe (NCS) mutants of maize have profound deleterious effects on plant growth and yield. We report specific alterations in mitochondrial DNA (mtDNA) for two independent, phenotypically distinct NCS mutants. NCS2 plants have a distinctive 21-kilobase Xho I mtDNA band and very reduced amounts of DNA in an 8-kilobase band that is present in the progenitor. NCS3 plants have a distinctive 20-kilobase Xho I band and a reduction in a 16-kilobase band. Our studies confirm that the affected organelle in NCS plants is the mitochondrion. Because NCS-type plants appear with a certain frequency in a particular line (WF9), this line is a potential source of additional mutations for functional and molecular analyses of maize mitochondrial genes.
Collapse
Affiliation(s)
- K J Newton
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | | |
Collapse
|
16
|
Palmer JD, Zamir D. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci U S A 2010; 79:5006-10. [PMID: 16593219 PMCID: PMC346815 DOI: 10.1073/pnas.79.16.5006] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplast DNA was purified from 12 accessions that represent most of the species diversity in the genus Lycopersicon (family Solanaceae) and from 3 closely related species in the genus Solanum. Fragment patterns produced by digestion of these DNAs with 25 different restriction endonucleases were analyzed by agarose gel electrophoresis. In all 15 DNAs, a total of only 39 restriction site mutations were detected among 484 restriction sites surveyed, representing 2,800 base pairs of sequence information. This low rate of base sequence change is paralleled by an extremely low rate of convergent change in restriction sites; only 1 of the 39 mutations appears to have occurred independently in two different lineages. Parsimony analysis of shared mutations has allowed the construction of a maternal phylogeny for the 15 accessions. This phylogeny is generally consistent with relationships based on morphology and crossability but provides more detailed resolution at several places. All accessions within Lycopersicon form a coherent group, with two of the three species of Solanum as outside reference points. Chloroplast DNA analysis places S. pennellii firmly within Lycopersicon, confirming recent studies that have removed it from Solanum. Red-orange fruit color is shown to be a monophyletic trait in three species of Lycopersicon, including the cultivated tomato, L. esculentum. Analysis of six accessions within L. peruvianum reveals a limited amount of intraspecific polymorphism which, however, encompasses all the variation observed in L. chilense and L. chmielewskii. It is suggested that these latter two accessions be relegated to positions within the L. peruvianum complex.
Collapse
Affiliation(s)
- J D Palmer
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305
| | | |
Collapse
|
17
|
Zurawski G, Bohnert HJ, Whitfeld PR, Bottomley W. Nucleotide sequence of the gene for the M(r) 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of M(r) 38,950. Proc Natl Acad Sci U S A 2010; 79:7699-703. [PMID: 16593262 PMCID: PMC347415 DOI: 10.1073/pnas.79.24.7699] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene for the so-called M(r) 32,000 rapidly labeled photosystem II thylakoid membrane protein (here designated psbA) of spinach (Spinacia oleracea) chloroplasts is located on the chloroplast DNA in the large single-copy region immediately adjacent to one of the inverted repeat sequences. In this paper we show that the size of the mRNA for this protein is approximately 1.25 kilobases and that the direction of transcription is towards the inverted repeat unit. The nucleotide sequence of the gene and its flanking regions is presented. The only large open reading frame in the sequence codes for a protein of M(r) 38,950. The nucleotide sequence of psbA from Nicotiana debneyi also has been determined, and comparison of the sequences from the two species shows them to be highly conserved (>95% homology) throughout the entire reading frame. Conservation of the amino acid sequence is absolute, there being no changes in a total of 353 residues. This leads us to conclude that the primary translation product of psbA must be a protein of M(r) 38,950. The protein is characterized by the complete absence of lysine residues and is relatively rich in hydrophobic amino acids, which tend to be clustered. Transcription of spinach psbA starts about 86 base pairs before the first ATG codon. Immediately upstream from this point there is a sequence typical of that found in E. coli promoters. An almost identical sequence occurs in the equivalent region of N. debneyi DNA.
Collapse
Affiliation(s)
- G Zurawski
- Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization, P.O. Box 1600, Canberra City, Australian Capital Territory 2601, Australia
| | | | | | | |
Collapse
|
18
|
Stern DB, Palmer JD. Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc Natl Acad Sci U S A 2010; 81:1946-50. [PMID: 16593442 PMCID: PMC345413 DOI: 10.1073/pnas.81.7.1946] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used hybridization techniques to demonstrate that numerous sequence homologies exist between cloned mung bean and spinach chloroplast DNA (ctDNA) restriction fragments and mtDNAs from corn, mung bean, spinach, and pea. The strongest cross-homologies are between clones derived from the ctDNA inverted repeat and mtDNA from corn and pea, although all the ctDNA clones tested hybridized to at least one mtDNA restriction fragment. Known chloroplast genes showing strong mtDNA homologies include those for the large subunit of ribulosebisphosphate carboxylase, which hybridizes to corn mtDNA, and the beta subunit of the chloroplast ATPase, which hybridizes to mung bean mtDNA. Certain of these homologies were confirmed by using cloned spinach mtDNA restriction fragments as probes in reciprocal hybridizations to ctDNA. Several of these ctDNA-homologous mtDNA sequences were shown to be much more closely related to ctDNA from the same species than to that of a distantly related species. We interpret these differential homologies as evidence for relatively recent DNA sequence transfer events, suggesting that transpostion between the two genomes is an ongoing evolutionary process.
Collapse
Affiliation(s)
- D B Stern
- Carnegie Institution of Washington, Department of Plant Biology, 290 Panama Street, Stanford, CA 94305
| | | |
Collapse
|
19
|
Reith M, Cattolico RA. Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1,5-bisphosphate carboxylase and the 32,000-dalton Q(B) protein: Phylogenetic implications. Proc Natl Acad Sci U S A 2010; 83:8599-603. [PMID: 16578794 PMCID: PMC386978 DOI: 10.1073/pnas.83.22.8599] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chloroplast DNA of the chromophytic alga Olisthodiscus luteus has been physically mapped with four restriction enzymes. An inverted repeat of 22 kilobase pairs is present in this 150-kilobase-pair plastid genome. The inverted repeat contains the genes for the large and small subunit polypeptides of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and also codes for the 32,000-dalton Q(B) protein. These observations demonstrate that significant differences exist in chloroplast genome structure and organization among major plant taxa.
Collapse
Affiliation(s)
- M Reith
- Botany Department, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
20
|
Yatskievych G, Stein DB, Gastony GJ. Chloroplast DNA evolution and systematics of Phanerophlebia (Dryopteridaceae) and related fern genera. Proc Natl Acad Sci U S A 2010; 85:2589-93. [PMID: 16593923 PMCID: PMC280043 DOI: 10.1073/pnas.85.8.2589] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Restriction site variation in chloroplast DNA was examined in the neotropical fern genus Phanerophlebia and in selected species of the related Asiatic genus Cyrtomium and the cosmopolitan progenitor of these two, Polystichum. A total of 103 restriction site mutations was identified; these were used to construct phylogenetic networks and trees based on Wagner and Dollo parsimony and Fitch-Margoliash distance algorithms. The analyses provided evidence that Phanerophlebia did not arise from Cyrtomium. Both genera are convergent descendants from different progenitor groups in Polystichum, and Asiatic Cyrtomium is more closely related to temperate New World Polystichum than it is to neotropical Phanerophlebia. Reticulate venation, previously considered an important taxonomic character for infrageneric classification in Phanerophlebia, most likely evolved independently twice within the genus. Diploid maternal progenitors are suggested for two of four tetraploid species analyzed, and species-level distinctions for two closely related taxa of Phanerophlebia are questioned.
Collapse
Affiliation(s)
- G Yatskievych
- Department of Biology, Indiana University, Bloomington, IN 47405
| | | | | |
Collapse
|
21
|
Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 2010; 27:1436-48. [PMID: 20118192 DOI: 10.1093/molbev/msq029] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.
Collapse
|
22
|
Plader W, Yukawa Y, Sugiura M, Malepszy S. The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: its composition and comparative analysis. Cell Mol Biol Lett 2007; 12:584-94. [PMID: 17607527 PMCID: PMC6275786 DOI: 10.2478/s11658-007-0029-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 04/30/2007] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence of the cucumber (C. sativus L. var. Borszczagowski) chloroplast genome has been determined. The genome is composed of 155,293 bp containing a pair of inverted repeats of 25,191 bp, which are separated by two single-copy regions, a small 18,222-bp one and a large 86,688-bp one. The chloroplast genome of cucumber contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes (4 rRNA species), and 37 tRNA genes (30 tRNA species), with 18 of them located in the inverted repeat region. Of these genes, 16 contain one intron, and two genes and one ycf contain 2 introns. Twenty-one small inversions that form stem-loop structures, ranging from 18 to 49 bp, have been identified. Eight of them show similarity to those of other species, while eight seem to be cucumber specific. Detailed comparisons of ycf2 and ycf15, and the overall structure to other chloroplast genomes were performed.
Collapse
Affiliation(s)
- Wojciech Plader
- Faculty of Horticulture and Landscape Architecture, Department of Plant Genetics, Breeding and Biotechnology, Warsaw Agricultural University, Nowoursynowska 159, 02-776, Warsaw, Poland.
| | | | | | | |
Collapse
|
23
|
Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, Choi DW, Liu JR, Cho KY. Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. PLANT CELL REPORTS 2006; 25:334-40. [PMID: 16362300 DOI: 10.1007/s00299-005-0097-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 11/13/2005] [Accepted: 11/19/2005] [Indexed: 05/05/2023]
Abstract
The nucleotide sequence of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome was completed. The circular double-stranded DNA, consisting of 155,527 bp, contained a pair of inverted repeat regions (IRa and IRb) of 25,187 bp each, which were separated by small and large single copy regions of 86,879 and 18,274 bp, respectively. The presence and relative positions of 113 genes (76 peptide-encoding genes, 30 tRNA genes, four rRNA genes, and three conserved open reading frames) were identified. The major portion (55.76%) of the C. sativus chloroplast genome consisted of gene-coding regions (49.13% protein coding and 6.63% RNA regions; 27.81% LSC, 9.46% SSC and 18.49% IR regions), while intergenic spacers (including 20 introns) made up 44.24%. The overall G-C content of C. sativus chloroplast genome was 36.95%. Sixteen genes contained one intron, while two genes had two introns. The expansion/contraction manner of IR at IRb/LSC and IR/SSC border in Cucumis was similar to that of Lotus and Arabidopsis, and the manner at IRa/LSC was similar to Lotus and Nicotiana. In total, 56 simple sequence repeats (more than 10 bases) were identified in the C. sativus chloroplast genome.
Collapse
Affiliation(s)
- Jin-Seog Kim
- Biological Function Research Team, Korea Research Institute of Chemical Technology, P.O Box 107, Yuseong, Daejeon 305-600, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dane F, Lang P, Bakhtiyarova R. Comparative analysis of chloroplast DNA variability in wild and cultivated Citrullus species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:958-966. [PMID: 14634729 DOI: 10.1007/s00122-003-1512-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 09/25/2003] [Indexed: 05/24/2023]
Abstract
PCR amplification and restriction site analysis of chloroplast (cp) DNA regions was used to detect inter- and intraspecific differences in the genus Citrullus. More than 55 C. lanatus and 15 C. colocynthis accessions collected from diverse geographical areas, C. ecirrhosus and C. rehmii were used. Most of the cpDNA variation within Citrullus was the result of large indels and transitions and transversions. Indels at the ndhA, trnS- trnfM and trnC- trnD regions and several substitutions at restriction enzyme sites can be used to separate C. colocynthis from the other Citrullus species. A nucleotide substitution at a restriction enzyme site at the 3' flanking region of ndhF provided a diagnostic haplotype for C. lanatus var. lanatus, the cultivated watermelon. Similarly, a nucleotide substitution at an intergenic spacer region of the trnC- trnD region resulted in a diagnostic haplotype for citron, C. lanatus var. citroides. Several C. lanatus var. citroides accessions showed the var. lanatus haplotype. C. rehmii showed almost the same haplotype as C. lanatus var. citroides with the exception of a unique insertion at a cpSSR site. Since C. ecirrhosus lacks the derived diagnostic nucleotide substitutions of C. lanatus, it is probably the progenitor of the cultivated watermelon. Intraspecific haplotypes detected within C. colocynthis were associated with geographic origin.
Collapse
Affiliation(s)
- F Dane
- Department of Horticulture, Auburn University, Auburn, AL, USA.
| | | | | |
Collapse
|
25
|
Lilly JW, Havey MJ. Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics 2001; 159:317-28. [PMID: 11560907 PMCID: PMC1461790 DOI: 10.1093/genetics/159.1.317] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Closely related cucurbit species possess eightfold differences in the sizes of their mitochondrial genomes. We cloned mitochondrial DNA (mtDNA) fragments showing strong hybridization signals to cucumber mtDNA and little or no signal to watermelon mtDNA. The cucumber mtDNA clones carried short (30-53 bp), repetitive DNA motifs that were often degenerate, overlapping, and showed no homology to any sequences currently in the databases. On the basis of dot-blot hybridizations, seven repetitive DNA motifs accounted for >13% (194 kb) of the cucumber mitochondrial genome, equaling >50% of the size of the Arabidopsis mitochondrial genome. Sequence analysis of 136 kb of cucumber mtDNA revealed only 11.2% with significant homology to previously characterized mitochondrial sequences, 2.4% to chloroplast DNA, and 15% to the seven repetitive DNA motifs. The remaining 71.4% of the sequence was unique to the cucumber mitochondrial genome. There was <4% sequence colinearity surrounding the watermelon and cucumber atp9 coding regions, and the much smaller watermelon mitochondrial genome possessed no significant amounts of cucumber repetitive DNAs. Our results demonstrate that the expanded cucumber mitochondrial genome is in part due to extensive duplication of short repetitive sequences, possibly by recombination and/or replication slippage.
Collapse
Affiliation(s)
- J W Lilly
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
26
|
Levy F, Antonovics J, Boynton JE, Gillham NW. A population genetic analysis of chloroplast DNA in Phacelia. Heredity (Edinb) 1996; 76 ( Pt 2):143-55. [PMID: 8617614 DOI: 10.1038/hdy.1996.22] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hierarchical sampling from populations, incipient and recognized varieties within Phacelia dubia and P. maculata has revealed high levels of intraspecific polymorphism in chloroplast DNA. Much of the variation is partitioned between populations as evidenced by population-specific variants at fixation in all three populations of P. dubia var. interior and in both populations of P. maculata. Nine of 16 populations were polymorphic for cpDNA haplotypes. A total of 16 haplotypes was found in a sample of 106 individuals; the most common occurred in eight of the 16 populations and in 31 per cent of the individuals in the entire sample. A phylogenetic analysis revealed four basic plastome types. The two major groups of plastomes were separated by four independent base-pair mutations which suggests an ancient split in the evolution of plastid genomes. Representatives from each major plastome division were found in each of five populations spanning two allopatric varieties of P. dubia. The geographical distribution of haplotypes and lack of evidence for recent admixture argue against migration as a source of the polymorphism. It is more likely that the current taxonomic varieties are descendants of a polymorphic common ancestor.
Collapse
Affiliation(s)
- F Levy
- Department of Biological Sciences, East Tennessee State University, Johnson City 37614, USA
| | | | | | | |
Collapse
|
27
|
Chiu WL, Sears BB. Electron microscopic localization of replication origins in Oenothera chloroplast DNA. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:33-9. [PMID: 1552900 DOI: 10.1007/bf00299134] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The origins of chloroplast DNA (cpDNA) replication were mapped in two plastome types of Oenothera in order to determine whether variation in the origin of cpDNA replication could account for the different transmission abilities associated with these plastomes. Two pairs of displacement loop (D-loop) initiation sites were observed on closed circular cpDNA molecules by electron microscopy. Each pair of D-loops was mapped to the inverted repeats of the Oenothera cpDNA by the analysis of restriction fragments. The starting points of the two adjacent D-loops are approximately 4 kb apart, bracketing the 16S rRNA gene. Although there are small DNA length variations near one of the D-loop initiation sites, no apparent differences in the number and the location of replication origins were observed between plastomes with the highest (type I) and lowest (type IV) transmission efficiencies.
Collapse
Affiliation(s)
- W L Chiu
- Department of Botany and Plant Pathology, Michigan State University, East Lansing 48824
| | | |
Collapse
|
28
|
Wong VW, Fones AM, Lowrey TK. Electroelution and purification of chloroplast DNA suitable for restriction analyses. Anal Biochem 1991; 194:378-80. [PMID: 1650540 DOI: 10.1016/0003-2697(91)90244-n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- V W Wong
- Department of Zoology, National University of Singapore, Kent Ridge
| | | | | |
Collapse
|
29
|
Sundberg SD, Denton MF, Rehner SA. Structural map of Sedum oreganum (Crassulaceae) chloroplast DNA. BIOCHEM SYST ECOL 1990. [DOI: 10.1016/0305-1978(90)90085-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Floyd RA, West MS, Hogsett WE, Tingey DT. Increased 8-hydroxyguanine content of chloroplast DNA from ozone-treated plants. PLANT PHYSIOLOGY 1989; 91:644-7. [PMID: 16667081 PMCID: PMC1062049 DOI: 10.1104/pp.91.2.644] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The mechanism of ozone-mediated plant injury is not known but has been postulated to involve oxygen free radicals. Hydroxyl free radicals react with DNA causing formation of many products, one of which is 8-hydroxyguanine. By using high performance liquid chromatography with electrochemical detection, the 8-hydroxy-2'-deoxyguanosine (8-OHdG) content of a DNA enzymatic digest can be sensitively quantitated. Beans (Phaseolus vulgaris L.) and peas (Pisum sativum L.) were treated with an ozone regime that caused acute injury. Chloroplast DNA was obtained from plants harvested either immediately after ozone treatment or 24 hours later. Ozone-exposed plants in general had nearly two-fold higher levels of 8-OHdG as compared to control plants. In vitro treatment of DNA in buffer solution with ozone did not cause formation of 8-OHdG in DNA, even though ozone did react directly with the macromolecule per se. Exposure of isolated, illuminated chloroplasts to ozone caused nearly a seven-fold increase in the amount of 8-OHdG in the chloroplast DNA as compared to none-ozone-exposed chloroplasts. These results suggest that ozone exposure to plants causes formation of enhanced levels of oxygen free radicals, thus mediating formation of 8-OHdG in chloroplast DNA. The reaction of ozone with DNA per se did not cause formation of 8-OHdG. Therefore, it is the interaction of ozone with plant cells and isolated chloroplasts which mediates oxygen free radical formation.
Collapse
Affiliation(s)
- R A Floyd
- Molecular Toxicology Research Group, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | | | | |
Collapse
|
31
|
Leon P, Walbot V, Bedinger P. Molecular analysis of the linear 2.3 kb plasmid of maize mitochondria: apparent capture of tRNA genes. Nucleic Acids Res 1989; 17:4089-99. [PMID: 2472603 PMCID: PMC317921 DOI: 10.1093/nar/17.11.4089] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The nucleotide sequence and transcription pattern of the linear 2.3 kb plasmid of maize mitochondria was analyzed in order to elucidate its possible function in the organelle. The plasmid has 170 bp inverted repeats at its termini composed, in turn, of shorter repetitive sequences. An open reading frame within the plasmid is transcribed and can potentially specify a 33 kD product. In addition the plasmid contains two tRNA genes homologous to chloroplast sequences; the tRNApro(CAA) and the tRNAtrp(UGG). Both of the tRNA genes of the plasmid are transcribed, but apparently only the tRNAtrp is processed to the correct size. These tRNA sequences are found in the main mitochondrial genome of all higher plants tested, and in most maize relatives. An exception is the close maize relative Northern teosinte in which the tRNAtrp gene is also carried on a plasmid. These results suggest that the 2.3 kb plasmid has acquired the tRNA sequences from the main mitochondrial DNA. It is possible that the plasmid-encoded tRNAtrp gene is essential for organelle function thereby ensuring the maintenance of the plasmid in the mitochondrion.
Collapse
Affiliation(s)
- P Leon
- Department of Biological Sciences, Stanford University, CA 94305-5020
| | | | | |
Collapse
|
32
|
Siemeister G, Hachtel W. A circular 73 kb DNA from the colourless flagellate Astasia longa that resembles the chloroplast DNA of Euglena: restriction and gene map. Curr Genet 1989. [DOI: 10.1007/bf00376801] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Manhart JR, Kelly K, Dudock BS, Palmer JD. Unusual characteristics of Codium fragile chloroplast DNA revealed by physical and gene mapping. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:417-21. [PMID: 2747622 DOI: 10.1007/bf00334385] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A complete physical map of the Codium fragile chloroplast genome was constructed and the locations of a number of chloroplast genes were determined. Several features of this circular genome are unusual. At 89 kb in size, it is the smallest chloroplast genome known. Unlike most chloroplast genomes it lacks any large repeat elements. The 8 kb spacer region between the 16S and 23S rRNA genes is the largest such spacer characterized to date in chloroplast DNA. This spacer region is also unusual in that it contains the rps12 gene or at least a portion thereof. Three regions polymorphic for size are present in the Codium chloroplast genome. The psbA and psbC genes map closely to one of these regions, another region is in the spacer between the 16S and 23S rRNA genes and the third is very close to or possibly within the 16S rRNA gene. The gene order in the Codium genome bears no marked resemblance to either the "consensus" vascular plant order or to that of any green algal or bryophyte genome.
Collapse
Affiliation(s)
- J R Manhart
- Department of Biology, University of Michigan, Ann Arbor 48109-1048
| | | | | | | |
Collapse
|
34
|
Sandbrink J, Vellekoop P, Van Ham R, Van Brederode J. A method for evolutionary studies on RFLP of chloroplast DNA, applicable to a range of plant species. BIOCHEM SYST ECOL 1989. [DOI: 10.1016/0305-1978(89)90041-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Aldrich J, Cherney BW, Merlin E, Christopherson L. The role of insertions/deletions in the evolution of the intergenic region between psbA and trnH in the chloroplast genome. Curr Genet 1988; 14:137-46. [PMID: 3180272 DOI: 10.1007/bf00569337] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TrnH and the intergenic region between trnH and psbA of the chloroplast genomes of alfalfa (Medicago sativa), Fabaceae, and petunia (Petunia hybrida), Solanaceae, were sequenced and compared to published sequences of that region from other members of those families. A striking feature of these comparisons is the occurrence of insertions/deletions between short, nearly perfect AT-rich direct repeats. The directionality of these mutations in the petunia, tobacco and Nicotiana debneyi lineages within the Solanaceae cannot be discerned. However, we present several alternative hypotheses that are consistent with Goodspeed's 1954 evolutionary treatment of the genus Nicotiana and family Solanaceae. Within the Fabaceae, the major size differences in the intergenic region between alfalfa, pea and soybean are due to insertions/deletions between direct repeats. The alfalfa intergenic region has an inverted repeat stem-loop structure of 210 bases directly 5' to trnH. This structure is an insert relative to the liver-wort. Marchantia polymorpha. Portions of the insert are found also in pea and soybean as well as in published sequences from other dicots representing diverse orders: petunia, tobacco, N. debneyi (Scrophulariales), spinach (Caryophyllales), and Brassica napus (Capparales). Some of the regions of the insert that are missing in these plants appear to have resulted from deletions of sequences between different imperfect direct repeats within, or 5' to and within the insert. Other deletions are not flanked by repeated sequences. A short insert flanked by imperfect direct repeats in B. napus occurs just within the longer alfalfa insert suggesting that both alfalfa and B. napus have remnants of an even longer insert relative to M. polymorpha. From these analyses we hypothesize the insertion of a stem-loop structure into an M. polymorpha-like ancestral land plant, followed by deletions of sequences, often between different imperfect direct repeats within and upstream of the insert, leading to the psbA-trnH intergenic sequences represented by the present-day plants examined.
Collapse
Affiliation(s)
- J Aldrich
- BP America, Research and Development, Cleveland, OH 44128
| | | | | | | |
Collapse
|
36
|
Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol 1988. [PMID: 2837643 DOI: 10.1128/mcb.8.4.1474] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maternally inherited mutations, such as cytoplasmic male sterility, provide useful systems in which to study the function of plant mitochondrial genomes and also their interaction with nuclear genes. We have studied the organization and expression of the organelle genomes of the male-sterile cytoplasm of Ogura radish and compared them with those of normal radish to identify alterations that might be involved in cytoplasmic male sterility. The chloroplast DNAs of Ogura and normal radish are virtually indistinguishable, whereas their mitochondrial DNAs are highly rearranged. Alignment of a restriction map constructed for the 257-kilobase Ogura mitochondrial genome with that published for the 242-kilobase genome of normal radish reveals that the two mitochondrial DNAs differ in arrangement by at least 10 inversions. The transcriptional patterns of several known mitochondrial genes and of rearranged mitochondrial sequences were examined in three nuclear backgrounds. Altered transcripts were observed for three mitochondrial genes, atpA, atp6, and coxI. Rearrangements map near each of these genes and therefore may be responsible for their transcriptional alterations. Radish nuclear genes that restore fertility to the Ogura cytoplasm have no effect on the atp6 and coxI transcripts, but do influence the atpA transcriptional pattern.
Collapse
|
37
|
Makaroff CA, Palmer JD. Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol 1988; 8:1474-80. [PMID: 2837643 PMCID: PMC363305 DOI: 10.1128/mcb.8.4.1474-1480.1988] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Maternally inherited mutations, such as cytoplasmic male sterility, provide useful systems in which to study the function of plant mitochondrial genomes and also their interaction with nuclear genes. We have studied the organization and expression of the organelle genomes of the male-sterile cytoplasm of Ogura radish and compared them with those of normal radish to identify alterations that might be involved in cytoplasmic male sterility. The chloroplast DNAs of Ogura and normal radish are virtually indistinguishable, whereas their mitochondrial DNAs are highly rearranged. Alignment of a restriction map constructed for the 257-kilobase Ogura mitochondrial genome with that published for the 242-kilobase genome of normal radish reveals that the two mitochondrial DNAs differ in arrangement by at least 10 inversions. The transcriptional patterns of several known mitochondrial genes and of rearranged mitochondrial sequences were examined in three nuclear backgrounds. Altered transcripts were observed for three mitochondrial genes, atpA, atp6, and coxI. Rearrangements map near each of these genes and therefore may be responsible for their transcriptional alterations. Radish nuclear genes that restore fertility to the Ogura cytoplasm have no effect on the atp6 and coxI transcripts, but do influence the atpA transcriptional pattern.
Collapse
Affiliation(s)
- C A Makaroff
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|
38
|
Hudson KR, Gardner RC. Organisation of the chloroplast genome of kiwifruit (Actinidia deliciosa). Curr Genet 1988. [DOI: 10.1007/bf00424429] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Fritzsche K, Metzlaff M, Melzer R, Hagemann R. Comparative restriction endonuclease analysis and molecular cloning of plastid DNAs from wild species and cultivated varieties of the genus Beta (L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1987; 74:589-594. [PMID: 24240214 DOI: 10.1007/bf00288857] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/1987] [Accepted: 04/16/1987] [Indexed: 06/02/2023]
Abstract
A phyletic tree of the genus Beta has been constructed based on EcoRI and PstI plastid DNA restriction patterns of eight species from three sections of the genus. In contrast to the remarkable morphological variability of the varieties of B. vulgaris the restriction patterns of the plastid DNA of this species were found to be almost identical. The comparison of plastic DNAs of B. vulgaris crassa fertile and sterile lines with 13 different restriction enzymes revealed only a single fragment polymorphism in the HindIII patterns. Hybridization analyses in the plastidal rDNA region revealed an interesting loss of an EcoRI restriction site in all cultivated B. vulgaris varieties in contrast to wild species. The results of the construction of clone banks for SalI and BamHI fragments of plastid DNA from fertile B. vulgaris crassa are reported and difficulties in the cloning of specific fragments are discussed.
Collapse
Affiliation(s)
- K Fritzsche
- Wissenschaftsbereich Genetik der Sektion Biowissenschaften, Martin-Luther-Universität Halle-Wittenberg, Domplatz 1, DDR-4020, Halle, Saale, German Democratic Republic
| | | | | | | |
Collapse
|
40
|
Bettini P, McNally S, Sevignac M, Darmency H, Gasquez J, Dron M. Atrazine Resistance in Chenopodium album: Low and High Levels of Resistance to the Herbicide Are Related to the Same Chloroplast PSBA Gene Mutation. PLANT PHYSIOLOGY 1987; 84:1442-6. [PMID: 16665624 PMCID: PMC1056793 DOI: 10.1104/pp.84.4.1442] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In Chenopodium album two different levels of atrazine resistance have been found according to following criteria: lethal dose and leaf fluorescence curve. The intermediate (I) phenotype is represented by a low level of resistance and a typical I fluorescence curve. It arose at high frequency, within one generation, after self-pollination of particular plants displaying a susceptible (S) phenotype. The resistance phenotype (Ri) has a high level of resistance and presents a typical resistant fluorescence curve. It appeared after self-pollination of chemically treated I plants. The I, Ri, and also R (resistant plants found in atrazine treated fields) phenotypes contain a serine to glycine mutation at amino acid position 264 in the chloroplast psbA gene product. The steady state level of the psbA gene transcript is not modified between S, I, Ri, and R phenotypes.
Collapse
Affiliation(s)
- P Bettini
- Laboratory of Plant Molecular Biology, UA 1128 CNRS, University of Paris Sud, Bat430, 91405 Orsay, France
| | | | | | | | | | | |
Collapse
|
41
|
Makaroff CA, Palmer JD. Extensive mitochondrial specific transcription of the Brassica campestris mitochondrial genome. Nucleic Acids Res 1987; 15:5141-56. [PMID: 3601669 PMCID: PMC305952 DOI: 10.1093/nar/15.13.5141] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We constructed a complete transcriptional map of the 218 kb Brassica campestris (turnip) mitochondrial genome. Twenty-four abundant and positionally distinct transcripts larger than 500 nucleotides were identified by Northern analyses. Approximately 30% (61 kb) of the genome is highly transcribed. In addition, a number of less abundant transcripts, many of which overlap with each other and with the major transcripts, were also detected. If each abundant transcript represents a distinct rRNA or protein species, then plant mitochondria would appear to encode a significantly larger number of proteins than do animal mitochondria. Although B. campestris mitochondrial DNA contains a number of chloroplast DNA-derived sequences, none of these chloroplast sequences appear to be transcribed within the mitochondrion. We determined the positions of 12 genes in the B. campestris mitochondrial genome. The order of these genes in B. campestris is completely different than in maize (1) and spinach (2).
Collapse
|
42
|
Hosaka K, Hanneman RE. A rapid and simple method for determination of potato chloroplast DNA type. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf02853596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Deng XW, Stern DB, Tonkyn JC, Gruissem W. Plastid run-on transcription. Application to determine the transcriptional regulation of spinach plastid genes. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47982-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Robertson D, Palmer JD, Earle ED, Mutschler MA. Analysis of organelle genomes in a somatic hybrid derived from cytoplasmic male-sterile Brassica oleracea and atrazine-resistant B. campestris. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1987; 74:303-309. [PMID: 24241666 DOI: 10.1007/bf00274711] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/1986] [Accepted: 03/27/1987] [Indexed: 06/02/2023]
Abstract
An atrazine-resistant, male-fertile Brassica napus plant was synthesized by fusion of protoplasts from the diploid species B. oleracea and B. campestris. Leaf protoplasts from B. oleracea var. italica carrying the Ogura male-sterile cytoplasm derived from Raphanus sativus were fused with etiolated hypocotyl protoplasts of atrazine-resistant B. campestris. The selection procedure was based on the inability of B. campestris protoplasts to regenerate in the media used, and the reduction of light-induced growth of B. oleracea tissue by atrazine. A somatic hybrid plant that differed in morphology from both B. oleracea and B. campestris was regenerated on medium containing 50 μM atrazine. Its chromosome number was 36-38, approximately that of B. napus. Furthermore, nuclear ribosomal DNA from this hybrid was a mixture of both parental rDNAs. Southern blot analyses of chloroplast DNA and an assay involving tetrazolium blue indicated that the hybrid contained atrazine-resistant B. campestris chloroplasts. The hybrid's mitochondrial genome was recombinant, containing fragments unique to each parent, as well as novel fragments carrying putative crossover points. Although the plant was female-sterile, it was successfully used to pollinate B. napus.
Collapse
Affiliation(s)
- D Robertson
- Department of Plant Breeding, Cornell University, 14853-1902, Ithaca, NY, USA
| | | | | | | |
Collapse
|
45
|
The consensus land plant chloroplast gene order is present, with two alterations, in the moss Physcomitrella patens. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00330462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Chloroplast DNA from lettuce and Barnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion. Curr Genet 1987. [DOI: 10.1007/bf00384619] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Abstract
Restriction mapping studies reveal that the mitochondrial genome of white mustard (Brassica hirta) exists in the form of a single circular 208 kb chromosome. The B. hirta genome has only one copy of the two sequences which, in several related Brassica species, are duplicated and undergo intramolecular recombination. This first report of a plant mitochondrial DNA that does not exist in a multipartite structure indicates that high frequency intramolecular recombination is not an obligatory feature of plant mitochondrial genomes. Heterologous filter hybridizations reveal that the mitochondrial genomes of B. hirta and B. campestris have diverged radically in sequence arrangement, as the result of approximately 10 large inversions. At the same time, however, the two genomes are similar in size, sequence content, and primary sequence.
Collapse
Affiliation(s)
- J D Palmer
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|
48
|
Kemble RJ. A rapid, single leaf, nucleic acid assay for determining the cytoplasmic organelle complement of rapeseed and related Brassica species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1987; 73:364-370. [PMID: 24240996 DOI: 10.1007/bf00262502] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/1986] [Accepted: 08/25/1986] [Indexed: 06/02/2023]
Abstract
An assay is described whereby Eco RI restriction fragment length polymorphisms of mitochondrial and chloroplast DNAs can definitively identify cytoplasms of interest in Brassica crop development. Restrictable mitochondrial and chloroplast DNA is extracted from as little as 2-3 g and 0.5 g leaf tissue, respectively, and the donor plants are able to continue to develop in a normal manner. An unknown cytoplasm can be identified in three days, which is a considerable saving in time and labor compared to the several years required by traditional methods. The assay is very inexpensive and should be established as a routine procedure in laboratories involved in sexual or somatic Brassica hybrid production.
Collapse
Affiliation(s)
- R J Kemble
- Department of Plant Biology, Allelix Inc., 6850 Goreway Drive, L4V 1P1, Mississauga, Ontario, Canada
| |
Collapse
|
49
|
Palmer JD, Osorio B, Aldrich J, Thompson WF. Chloroplast DNA evolution among legumes: Loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 1987. [DOI: 10.1007/bf00355401] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Palmer JD, Herbon LA. Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion. Nucleic Acids Res 1986; 14:9755-64. [PMID: 3027662 PMCID: PMC341333 DOI: 10.1093/nar/14.24.9755] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We constructed complete physical maps of the tripartite mitochondrial genomes of two Crucifers, Brassica nigra (black mustard) and Raphanus sativa (radish). Both genomes contain two copies of a direct repeat engaged in intragenomic recombination. The outcome of this recombination in black mustard is to interconvert a 231 kb master chromosome with two subgenomic circles of 135 kb and 96 kb. In radish, a 242 kb master chromosome interconverts with subgenomic circles of 139 kb and 103 kb. The recombination repeats are 7 kb in size in black mustard and 10 kb in radish, and are nearly identical except for two insertions in the radish repeat relative to the black mustard one. The two repeat configurations present on the master chromosome of black mustard are located on the subgenomes of radish and vice-versa. To explain this, we postulate the existence of an evolutionarily intermediate mitochondrial genome in which the recombination repeats were (are) present in an inverted orientation. The recombination repeats described for these two species are completely different from those previously found in the closely related species B. campestris, implying that such repeats are created and lost frequently in plant mitochondrial DNAs and making it less than likely that recombination occurs in a site-specific manner.
Collapse
|