1
|
O'Flaherty DK, Wilds CJ. O
6
-Alkylguanine DNA Alkyltransferase Repair Activity Towards Intrastrand Cross-Linked DNA is Influenced by the Internucleotide Linkage. Chem Asian J 2016; 11:576-83. [PMID: 26692563 DOI: 10.1002/asia.201501253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Derek K. O'Flaherty
- Department of Chemistry&Biochemistry; Concordia University; 7141 Sherbrooke St. West Montréal Québec (Canada
| | - Christopher J. Wilds
- Department of Chemistry&Biochemistry; Concordia University; 7141 Sherbrooke St. West Montréal Québec (Canada
| |
Collapse
|
2
|
O'Flaherty DK, Wilds CJ. Synthesis, Characterization, and Repair of a Flexible O(6) -2'-Deoxyguanosine-alkylene-O(6) -2'-deoxyguanosine Intrastrand Cross-Link. Chemistry 2015; 21:10522-9. [PMID: 26075346 DOI: 10.1002/chem.201501103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Indexed: 12/19/2022]
Abstract
Oligonucleotides tethered by an alkylene linkage between the O(6) -atoms of two consecutive 2'-deoxyguanosines, which lack a phosphodiester linkage between these residues, have been synthesized as a model system of intrastrand cross-linked (IaCL) DNA. UV thermal denaturation studies of duplexes formed between these butylene- and heptylene-linked oligonucleotides with their complementary DNA sequences revealed about 20 °C reduction in stability relative to the unmodified duplex. Circular dichroism spectra of the model IaCL duplexes displayed a signature characteristic of B-form DNA, suggesting minimal global perturbations are induced by the lesion. The model IaCL containing duplexes were investigated as substrates of O(6) -alkylguanine DNA alkyltransferase (AGT) proteins from human and E. coli (Ada-C and OGT). Human AGT was found to repair both model IaCL duplexes with greater efficiency towards the heptylene versus butylene analog adding to our knowledge of substrates this protein can repair.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec (Canada)
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, Québec (Canada).
| |
Collapse
|
3
|
McManus FP, Fang Q, Booth JDM, Noronha AM, Pegg AE, Wilds CJ. Synthesis and characterization of an O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand cross-link in a 5'-GNC motif and repair by human O(6)-alkylguanine-DNA alkyltransferase. Org Biomol Chem 2010; 8:4414-26. [PMID: 20714665 DOI: 10.1039/c0ob00093k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
O(6)-2'-Deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-links (ICLs) with a four and seven methylene linkage in a 5'-GNC- motif have been synthesized and their repair by human O6-alkylguanine-DNA alkyltransferase (hAGT) investigated. Duplexes containing 11 base-pairs with the ICLs in the center were assembled by automated DNA solid-phase synthesis using a cross-linked 2'-deoxyguanosine dimer phosphoramidite, prepared via a seven step synthesis which employed the Mitsunobu reaction to introduce the alkyl lesion at the O(6) atom of guanine. Introduction of the four and seven carbon ICLs resulted in no change in duplex stability based on UV thermal denaturation experiments compared to a non-cross-linked control. Circular dichroism spectra of these ICL duplexes exhibited features of a B-form duplex, similar to the control, suggesting that these lesions induce little overall change in structure. The efficiency of repair by hAGT was examined and it was shown that hAGT repairs both ICL containing duplexes, with the heptyl ICL repaired more efficiently relative to the butyl cross-link. These results were reproducible with various hAGT mutants including one that contains a novel V148L mutation. The ICL duplexes displayed similar binding affinities to a C145S hAGT mutant compared to the unmodified duplex with the seven carbon containing ICLs displaying slightly higher binding. Experiments with CHO cells to investigate the sensitivity of these cells to busulfan and hepsulfam demonstrate that hAGT reduces the cytotoxicity of hepsulfam suggesting that the O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-link may account for at least part of the cytotoxicity of this agent.
Collapse
Affiliation(s)
- Francis P McManus
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, QC, CanadaH4B 1R6
| | | | | | | | | | | |
Collapse
|
4
|
Zhachkina A, Liu M, Sun X, Amegayibor FS, Lee JK. Gas-Phase Thermochemical Properties of the Damaged Base O6-Methylguanine versus Adenine and Guanine. J Org Chem 2009; 74:7429-40. [DOI: 10.1021/jo901479m] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anna Zhachkina
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Min Liu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Xuejun Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - F. Sedinam Amegayibor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Jeehiun K. Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| |
Collapse
|
5
|
Abstract
We review the effect of sequence on the structure of left-handed Z-DNA in single crystals. The various substituent groups that define a nucleotide base as guanine, cytosine,thymine, or adenine affect both the DNA conformation and the organization of solvent around the duplex. These are discussed in terms of their effect on the ability of sequences to adopt the unusual Z-DNA structure. In addition, the experimental and theoretical methods used to treat DNA hydration are discussed as they relate to the stability of Z-DNA . Finally, we argue that Z-DNA , as defined by the crystal conformation, is sufficient in itself to account for the physical properties of left-handed conformations observed in polymers and in genomic sequences
Collapse
Affiliation(s)
- P S Ho
- Department of Biochemistry and Biophysics Oregon State University, ALSB 2011, Corvallis, OR, USA
| | | |
Collapse
|
6
|
Seela F, Driller H. 7-Deaza-2′-Deoxy-O6-Methylguanosine: Selective N2-Formylation Via a Formamidine, Phosphoramidite Synthesis and Properties of Oligonucleotides. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328318908054154] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Pan S, Sun X, Lee JK. DNA stability in the gas versus solution phases: a systematic study of thirty-one duplexes with varying length, sequence, and charge level. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1383-1395. [PMID: 16914323 DOI: 10.1016/j.jasms.2006.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 07/21/2006] [Accepted: 07/21/2006] [Indexed: 05/11/2023]
Abstract
We report herein a systematic mass spectrometric study of a series of thirty-one non-self-complementary, matched, DNA duplexes ranging in size from 5- to 12-mers. The purpose of this work is threefold: (1) to establish the viability of using mass spectrometry as a tool for examining solution phase stabilities of DNA duplexes; (2) to systematically assess gas-phase stabilities of DNA duplexes; and (3) to compare gas and solution phase stabilities in an effort to understand how media affects DNA stability. These fundamental issues are of importance both on their own, and also for harnessing the potential of mass spectrometry for biological applications. We have found that ion abundances do not always track with solution phase stability; GC content must be taken into account. Two duplexes with the same Tm yet with differing GC content can yield different ion abundances. That is, if two duplexes have the exact same melting temperature, yet one has a higher GC content, the duplex with the higher GC content yields a higher ion abundance. It thus appears that not only is a GC base pair stronger than an AT base pair, but the relative strengths of each differ in the gas phase versus in solution, such that the electrospray process can differentiate between them. We also characterize the gas-phase stabilities of the duplexes, using collision-induced dissociation (CID) as a method to assess stability. We focus on two aspects of this CID experiment. One, we examine what factors appear to control whether the duplexes dissociate into single strands or covalently fragment; we are able to utilize a charge state normalization we coin "charge level" to compare our results with others' and establish generalities regarding dissociation versus fragmentation patterns. Two, we examine those duplexes that primarily dissociate and use CID to assess the gas-phase stabilities. We find that correlation of gas-phase to solution-phase stabilities is more likely to occur when duplexes of varying GC content are examined. Duplexes with the same GC content tend to have stabilities that do not parallel those in solution. We discuss these results in light of the different roles that hydrogen bonding and base stacking play in solution versus the gas phase. Ultimately, we apply what we learn to lend insight into the biological problem of how the carcinogenic, damaged nucleobase O6-methylguanine causes mutations.
Collapse
Affiliation(s)
- Su Pan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA
| | - Xuejun Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA
| | - Jeehiun K Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 08854, Piscataway, NJ, USA.
| |
Collapse
|
8
|
Kung PP, Casper MD, Cook KL, Wilson-Lingardo L, Risen LM, Vickers TA, Ranken R, Blyn LB, Wyatt JR, Cook PD, Ecker DJ. Structure-activity relationships of novel 2-substituted quinazoline antibacterial agents. J Med Chem 1999; 42:4705-13. [PMID: 10579832 DOI: 10.1021/jm9903500] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-throughput screening of in-house compound libraries led to the discovery of a novel antibacterial agent, compound 1 (MIC: 12-25 microM against S. pyogenes). In an effort to improve the activity of this active compound, a series of 2-substituted quinazolines was synthesized and evaluated in several antibacterial assays. One such compound (22) displayed improved broad-spectrum antibacterial activity against a variety of bacterial strains. This molecule also inhibited transcription/translation of bacterial RNA, suggesting a mechanism for its antibiotic effects. Structure-activity relationship studies of 22 led to the synthesis of another 24 compounds. Although some of these molecules were found to be active in bacterial growth assays, none were as potent as 22. Compound 22 was tested for its ability to cure a systemic K. pneumonia infection in the mouse and displayed moderate effects compared with a control antibiotic, gentamycin.
Collapse
Affiliation(s)
- P P Kung
- Ibis Therapeutics, a Division of Isis Pharmaceuticals, Isis Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, California 92008, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Oesch F, Weiss CM, Klein S. Use of oligonucleotides containing ethenoadenine to study the repair of this DNA lesion. Determination of individual and collective repair activities. Arch Toxicol 1994; 68:358-63. [PMID: 8092927 DOI: 10.1007/s002040050082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oligonucleotide duplexes of a defined sequence containing one 1,N6-ethenoadenosine (EA) were synthesized and used as substrates to study the repair of this DNA lesion in cell homogenates of peripheral mononuclear blood cells of 39 male and female workers, exposed to vinyl chloride. These data were compared to data from 39 employees of the same company working in other production plants and to data from a control group of 39 persons, living in an area without vinyl chloride production. After incubation of the 5'- and 3'-labeled oligonucleotide duplex with cell homogenate, a specific nicking activity, releasing the deoxyribosyl phosphate originally carrying the EA, was found. This activity was used to determine the individual and collective repair activities for ethenoadenine. The exposed group showed a mean of 158.5 +/- 39.9 (SD) fmol product fragment and did not differ significantly from the mean value of the two control groups with 156.5 +/- 42.9 fmol and 161.2 +/- 53.6 fmol, respectively. Large interindividual variations were found, ranging from 4.9-fold in the exposed to 8.2- and 7.2-fold in the control groups. The development of an assay for ethenoadenine repair is significant for understanding the role of EA repair in eukaryotic cells.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, University of Mainz, Germany
| | | | | |
Collapse
|
10
|
Xodo LE, Alunni-Fabbroni M, Manzini G. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides. J Biomol Struct Dyn 1994; 11:703-20. [PMID: 8204209 DOI: 10.1080/07391102.1994.10508027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A triple helix can be formed upon binding of a pyrimidine oligonucleotide to the major groove of a homopurine-homopyrimidine (R.Y) double-stranded DNA target site. Here, we report that this reaction can be influenced by base methylation. The pyrimidine strand 5'-TmCTmCTmCTmCTTmCT (mY12), whose cytosine residues are methylated at C5, does not bind the duplex 5'-AGAGAGAGAAGA.3'-TCTCTCTCTTCT (R12.Y12) to yield a 12-triad triplex, as would be expected from these DNA sequences. Rather, a complex of overlapping oligonucleotides, which we define concatenamer, is formed. The concatenamer is clearly evidenced by polyacrylamide gel electrophoresis (PAGE) since it migrates with a smeared band of very low mobility. The stoichiometry of the concatenamer, determined by both UV mixing curves and electrophoresis, is surprisingly found to be (R12.2mY12)n, thus showing that the unmethylated Y12 strand is excluded from the complex. Denaturation experiments performed by ultraviolet absorbance (UV) and differential scanning calorimetry (DSC) show that the concatenamers melt with a single and highly cooperative transition whose Tm strongly depends on pH. Overall, the data point to the conclusion that the concatenamers are in triple helix, where the methylated mY12 strand is engaged in both Watson-Crick and Hoogsteen base pairings, thus displacing the Y12 strand from the R12.Y12 duplex. A possible mechanism of concatenamer formation is proposed. The results presented in this paper show that 5-methylcytosine brings about a strong stabilizing effect on both double and triple DNA helices, and that pyrimidine oligonucleotides containing 5-methylcytosine can displace from R.Y duplexes the analogous non-methylated strand. The advantage of using methylated oligonucleotides in antisense technology is discussed.
Collapse
Affiliation(s)
- L E Xodo
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Italy
| | | | | |
Collapse
|
11
|
Affiliation(s)
- E Sonveaux
- Laboratoire de Biochimie Physique et des Biopolymères, Louvain-La-Neuve, Belgium
| |
Collapse
|
12
|
Wong CW, Tan NW, Li BF. Structure-related properties of the mutagenic lesion 6-O-methylguanine in DNA. J Mol Biol 1992; 228:1137-46. [PMID: 1474583 DOI: 10.1016/0022-2836(92)90321-a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chemical probing of the structures of a few very similar 30 base-pair duplexes containing a 6-O-methylguanine (meG) residue at the 16th position reveals that the modified base simultaneously perturbs the helical structure in two ways; it preferentially unstacks the 3' neighbouring base residue (thymine in this study) on the same strand and it unstacks the pyrimidine to which it is base-paired. Depending on its neighbouring 5' base residue and the base-pairing pyrimidine, this perturbation can extend to a few base-pairs in both 3' and 5' directions from the abnormal base-pair. These perturbations can be detected by cleavage at the site for the restriction enzyme MaeII. The unstaking of the C in the meG.C and A.C base-pairs may explain the de novo methylation of these helices by the human DNA-(cytosine-5-)methyltransferase. Interestingly, the kinetics of repair of the 6-O-methylguanine-containing dinucleotides by the cloned human methylguanine methyltransferase appears to be largely determined by the strength of the stacking interaction between the 6-O-methylguanine and the 5' neighbouring base.
Collapse
Affiliation(s)
- C W Wong
- Chemical Carcinogenesis Laboratory, National University of Singapore
| | | | | |
Collapse
|
13
|
Klein S, Oesch F. Assay for O6-alkylguanine-DNA-alkyltransferase using oligonucleotides containing O6-methylguanine in a BamHI recognition site as substrate. Anal Biochem 1992; 205:294-9. [PMID: 1443576 DOI: 10.1016/0003-2697(92)90438-d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Double-stranded oligonucleotides, 40 bases in length containing an O6-methylguanine in a BamHI restriction site, were developed as substrates for the determination of human O6-alkylguanine-DNA-alkyltransferase (AGT). The assay proved highly sensitive and quantitative. After incubation of the 5'-end-labeled oligonucleotides with cell homogenates of peripheral blood lymphocytes, the DNA was digested with BamHI. Cleavage with this restriction enzyme did not occur in the O6-methylguanine-containing oligonucleotide unless the fragment was repaired. The cleaved oligonucleotide was separated from the intact parent oligonucleotide by reverse-phase high-performance liquid chromatography. Calculation of the AGT content was achieved by integrating the radioactivity of the peak corresponding to the digested fragment, which is equal to the molar amount of repaired oligonucleotide and corresponds directly to the molar AGT content in the lymphocyte homogenate.
Collapse
Affiliation(s)
- S Klein
- Institute of Toxicology, University of Mainz, Germany
| | | |
Collapse
|
14
|
Sassanfar M, Dosanjh MK, Essigmann JM, Samson L. Relative efficiencies of the bacterial, yeast, and human DNA methyltransferases for the repair of O6-methylguanine and O4-methylthymine. Suggestive evidence for O4-methylthymine repair by eukaryotic methyltransferases. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)49912-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Leonard GA, Thomson J, Watson WP, Brown T. High-resolution structure of a mutagenic lesion in DNA. Proc Natl Acad Sci U S A 1990; 87:9573-6. [PMID: 2263612 PMCID: PMC55214 DOI: 10.1073/pnas.87.24.9573] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The self-complementary dodecanucleotide d[CGC(m6G)AATTTGCG]2 (where m6G is O6-methylguanine), which contains two m6G.T base pairs, has been analyzed by x-ray diffraction methods and the structure has been refined to a residual error of R = 0.185 at 2.0-A resolution. The m6G.T mispair closely resembles a Watson-Crick base pair and there are very few structural differences between the m6G.T duplex and the native analogue. The similarity between the m6G.T base pair and a normal G.C base pair explains the failure of mismatch repair enzymes to recognize and remove this mutagenic lesion. A series of ultraviolet melting studies over a wide pH range on a related dodecamer indicate that the m6G.C mispair can exist in two conformations; one is a wobble pair and the other is a protonated Watson-Crick pair. The former, which predominates at physiological pH, will be removed by normal proofreading and repair enzymes, whereas the latter is likely to escape detection. Hence, the occasional occurrence of the protonated m6G.C base pair may explain why the presence of m6G in genomic DNA does not always give rise to a mutation.
Collapse
Affiliation(s)
- G A Leonard
- Department of Chemistry, Edinburgh University, Scotland, United Kingdom
| | | | | | | |
Collapse
|
16
|
Basu AK, Essigmann JM. Site-specifically alkylated oligodeoxynucleotides: probes for mutagenesis, DNA repair and the structural effects of DNA damage. Mutat Res 1990; 233:189-201. [PMID: 2233800 DOI: 10.1016/0027-5107(90)90162-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A K Basu
- Department of Chemistry, Whitaker College of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
17
|
|
18
|
Singer B, Chavez F, Goodman MF, Essigmann JM, Dosanjh MK. Effect of 3' flanking neighbors on kinetics of pairing of dCTP or dTTP opposite O6-methylguanine in a defined primed oligonucleotide when Escherichia coli DNA polymerase I is used. Proc Natl Acad Sci U S A 1989; 86:8271-4. [PMID: 2682644 PMCID: PMC298262 DOI: 10.1073/pnas.86.21.8271] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
O6-Methylguanine (m6G) was incorporated site-specifically into two 25-base oligonucleotides differing only in the nucleotide on the 3' side of the modified base. Templates were primed with oligonucleotides terminating one or two bases prior to the site at which incorporation kinetics were to be investigated. Escherichia coli DNA polymerase I (Klenow fragment) was used to determine the apparent Km and relative Vmax of incorporation of either dCTP or dTTP opposite m6G or G. These data were used to calculate the relative frequency of incorporation opposite the m6G or the unmodified G. When the sequence was 3'-Cm6G-5', there was a 6- to 7-fold preference for formation of a m6G.T pair compared with m6G.C. The m6G.T frequency, based on Vmax/Km, was at least 50-fold greater than that of a G.T pair at the same site. Changing the sequence to 3'-Tm6G-5' had a marked effect on both Km and Vmax of pairs containing m6G and on the incorporation frequency of T opposite m6G, which was then only slightly favored over m6G.C. When replication was started directly opposite m6G, the kinetics appeared unaffected. These data indicate that the frequency of incorporation of C or T opposite m6G in a DNA template is dependent on the flanking neighbors and that a change of even a single base at the 3' position can have a major effect on mutagenic efficiency. Replication using Drosophila Pol alpha gave the same values for relative frequencies. Pairing of either C or T with m6G on the primer terminus did not significantly inhibit extension of the next normal base pair, in contrast to terminal mismatches of unmodified bases. It is concluded that, in the absence of repair, m6G can exhibit widely differing mutation frequencies which, in these experiments, can be as high as 85% of the replicated base. This variation in frequency of changed pairing could contribute to the occurrence of mutational "'hot spots" after replication of damaged DNA.
Collapse
Affiliation(s)
- B Singer
- Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
19
|
Borowy-Borowski H, Chambers RW. Solid-phase synthesis and side reactions of oligonucleotides containing O-alkylthymine residues. Biochemistry 1989; 28:1471-7. [PMID: 2719910 DOI: 10.1021/bi00430a007] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As part of our studies on the molecular mechanism of mutation [Chambers, R. W. (1982) in Molecular and Cellular Mechanisms of Mutagenesis (Lemontt, J. F., & Generoso, W. M., Eds.) pp 121-145, Plenum, New York and London], we wanted to prepare specific oligonucleotides carrying O2- or O4-alkylthymidine residues. Since O-alkylthymine moieties are known to be alkali labile, side reactions were expected during the deprotection procedures used for synthesis of oligonucleotides on a solid support by the classical phosphoramidite method. We have studied these side reactions in detail. Kinetic data show the deprotection procedures displace most O-alkyl groups at rates that make these procedures inappropriate for synthesis of most oligonucleotides carrying O-alkylthymine moieties. We describe alternative deprotection procedures, using readily accessible reagents, that we have used successfully to synthesize a series of oligonucleotides carrying several different O-alkylthymine moieties. The oligonucleotides synthesized are d(A-A-A-A-G-T-alkT-T-A-A-A-A-C-A-T), where alk = O2-methyl, O2-isopropyl, O4-methyl, O4-isopropyl, and O4-n-butyl. This work extends the previously described procedure for the chemical synthesis of oligonucleotides carrying an O4-methylthymine moiety [Li, B. F., Reese, C. B., & Swann, P. F. (1987) Biochemistry 26, 1086-1093] and reports the first chemical synthesis of an oligonucleotide carrying an O2-alkylthymine. The oligonucleotides synthesized have a sequence corresponding to the minus strand that is complementary to the viral strand at the start of gene G in bacteriophage phi X174 replicative form DNA where the normal third codon has been replaced with the ocher codon, TAA.
Collapse
Affiliation(s)
- H Borowy-Borowski
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
20
|
Chambers RW, Sledziewska-Gojska E, Hirani-Hojatti S. In vivo effect of DNA repair on the transition frequency produced from a single O6-methyl- or O6-n-butyl-guanine in a T:G base pair. MOLECULAR & GENERAL GENETICS : MGG 1988; 213:325-31. [PMID: 2972907 DOI: 10.1007/bf00339598] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously reported some effects of DNA repair on the transition frequencies produced by an O6-methyl-guanine (MeG) or an O6-n-butyl-guanine (BuG) paired with C at the first position of the third codon in gene G of bacteriophage phi X174 form I' DNA (Chambers et al. 1985). We now report experiments in which the transition is produced from T:MeG or T:BuG, instead of C:MeG or C:BuG, located at this site. The site-modified DNAs were transfected into cells with normal DNA repair as well as into cells with repair defects (uvrA, uvrB, uvrC, recA, uvrArecA). The lysates were screened for phage carrying the expected transition using a characteristic change in phenotype. The data demonstrate that the transition frequency from T:BuG is low (0.3% of total phage progeny) in cells with normal repair (Escherichia coli AB1157) and increases 7-fold in uvrA cells (E. coli AB1886). A similar increase is seen in uvrB and uvrC cells (AB1885, AB1884). These data, like our previous data, indicate BuG is repaired primarily by excision. In contrast to this, the transition frequency from T:MeG is high (5 +/- 2%) in cells with normal repair. After induction of alkyl transfer repair in E. coli AB1157, the transition frequency goes up 5-fold. Compared with cells with normal repair, the transition frequency goes up 2-fold in uvrA, uvrB and uvrC cells; it goes up 1.5-fold in recA cells (E. coli AB2463). The data reinforce our earlier conclusion that MeG is repaired primarily by alkyl transfer, but the ABC excinuclease as well as RecA protein inhibit this repair process.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R W Chambers
- Department of Biochemistry, Dalhousie University, Nova Scotia, Canada
| | | | | |
Collapse
|
21
|
Abstract
Base modification during solid-phase phosphoramidite synthesis of oligodeoxynucleotides has been investigated. We have discovered chemical modification that converts dG and dG-containing oligomers to a fluorescent form. This modification has been linked to N,N-dimethylaminopyridine (DMAP), an acylation catalyst, which can displace phosphate triester adducts at the 6-position of guanine. Further, we have found that this fluorescent intermediate can be converted in ammonium hydroxide solution to 2,6 diaminopurine deoxyribonucleoside (2,6 DAP), a potentially mutagenic nucleoside analog. We have shown that N-methylimidazole (NMI) in place of DMAP eliminates the fluorescent species and reduces 2,6 DAP contamination.
Collapse
Affiliation(s)
- J S Eadie
- Applied Biosystems, Inc., Foster City, CA 94404
| | | |
Collapse
|
22
|
Basu AK, Niedernhofer LJ, Essigmann JM. Deoxyhexanucleotide containing a vinyl chloride induced DNA lesion, 1,N6-ethenoadenine: synthesis, physical characterization, and incorporation into a duplex bacteriophage M13 genome as part of an amber codon. Biochemistry 1987; 26:5626-35. [PMID: 3314993 DOI: 10.1021/bi00392a007] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Organic synthesis and recombinant DNA techniques have been used to situate a single 1,N6-ethenoadenine (epsilon Ade) DNA adduct at an amber codon in the genome of an M13mp19 phage derivative. The deoxyhexanucleotide d[GCT(epsilon A)GC] was chemically synthesized by the phosphotriester method. Mild nonaqueous conditions were employed for deprotection because of the unstable nature of the epsilon Ade adduct in aqueous basic milieu. Physical studies involving fluorescence, circular dichroism, and 1H NMR indicated epsilon Ade to be very efficiently stacked in the hexamer, especially with the 5'-thymine. Melting profile and circular dichroism studies provided evidence of the loss of base-pairing capabilities attendant with formation of the etheno ring. The modified hexanucleotide was incorporated into a six-base gap formed in the genome of an M13mp19 insertion mutant; the latter was constructed by blunt-end ligation of d(GCTAGC) in the center of the unique SmaI site of M13mp19. Phage of the insertion mutant, M13mp19-NheI, produced light blue plaques on SupE strains because of the introduced amber codon. Formation of a hybrid between the single-strand DNA (plus strand) of M13mp19-NheI with SmaI-linearized M13mp19 replicative form produced a heteroduplex with a six-base gap in the minus strand. The modified hexamer [5'-32P]d-[GCT(epsilon A)GC], after 5'-phosphorylation, was ligated into this gap by using bacteriophage T4 DNA ligase to generate a singly adducted genome with epsilon Ade at minus strand position 6274. Introduction of the radiolabel provided a useful marker for characterization of the singly adducted genome, and indeed the label appeared in the anticipated fragments when digested by several restriction endonucleases. Evidence that ligation occurred on both 5' and 3' sides of the oligonucleotide also was obtained. The adduct was introduced into a unique NheI site, and it was observed that this restriction endonuclease was able to cleave the adducted genome, albeit at a lower rate compared to unmodified DNA. The M13mp19-NheI genome containing epsilon Ade will be used as a probe for studying mutagenesis and repair of this DNA adduct in Escherichia coli.
Collapse
Affiliation(s)
- A K Basu
- Department of Applied Biological Sciences, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
23
|
Affiliation(s)
- A E Pegg
- Department of Physiology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | |
Collapse
|
24
|
|
25
|
Callahan L, Han FS, Watt W, Duchamp D, Kézdy FJ, Agarwal K. B- to Z-DNA transition probed by oligonucleotides containing methylphosphonates. Proc Natl Acad Sci U S A 1986; 83:1617-21. [PMID: 3456606 PMCID: PMC323134 DOI: 10.1073/pnas.83.6.1617] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The simulation of the B--Z-DNA transition by using space-filling models of the dimer d(C-G) shows the possibility of hydrogen-bond formation between the N-2 amino group of the partially rotated guanine and one of the 5'-phosphate oxygens of deoxyguanylic acid. To probe the importance of this postulated interaction, analogs of the hexamer d(C-G)3 were synthesized. These analogs contained a methylphosphonate linkage, of distinct stereochemistry, which replaced the first 5'-phosphate linkage of deoxyguanosine. The CD spectra in high salt concentration showed that the hexamer containing a methylphosphonate linkage with the RP stereochemistry formed Z-DNA to the same extent as d(C-G)3, whereas the hexamer containing a methylphosphonate linkage with the SP stereochemistry did not form Z-DNA. These results are consistent with a mechanism in which an interaction between the N-2 amino group of guanine and the prochiral SP oxygen of deoxyguanosine 5'-phosphate kinetically controls the formation of Z-DNA. A water bridge between the N-2 amino group of guanine and the 3'-phosphate oxygen of deoxyguanylic acid has been implicated in the stabilization of Z-DNA. To probe the importance of this water bridge, two additional analogs of the hexamer d(C-G)3 were synthesized. These analogs contained a methylphosphonate linkage, of distinct stereochemistry, that replaced the first deoxyguanosine 3'-phosphate. The CD spectra showed that the hexamer containing a methylphosphonate linkage of the RP stereochemistry underwent the transition to Z-DNA to the same extent as d(C-G)3, whereas the hexamer containing a methylphosphonate linkage of the SP stereochemistry underwent the transition to Z-DNA to a 35% lesser extent. Thus the water bridge involving the prochiral SP oxygen provides modest stabilization energy for Z-DNA. These studies, therefore, suggest that the B--Z-DNA transition is regulated both thermodynamically and kinetically through hydrogen-bond interactions involving phosphate oxygens and the N-2 amino group of guanine.
Collapse
|
26
|
Chambers RW, Sledziewska-Gojska E, Hirani-Hojatti S, Borowy-Borowski H. uvrA and recA mutations inhibit a site-specific transition produced by a single O6-methylguanine in gene G of bacteriophage phi X174. Proc Natl Acad Sci U S A 1985; 82:7173-7. [PMID: 2997776 PMCID: PMC390811 DOI: 10.1073/pnas.82.21.7173] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Using site-specific mutagenesis, we have examined the mutagenic activity in vivo of O6-methylguanine or O6-n-butylguanine located at a preselected site in gene G of bacteriophage phi X174. The experiments were designed so that the phage mutant produced by a targeted transition from either of these alkylated derivatives would be recognizable by a simple plaque assay. Spheroplasts derived from normal and repair-deficient cells were transfected, and the lysates were screened for mutant virus. In cells with normal repair, DNA carrying the methylguanine produced the expected transition in 15% of the total phage; DNA carrying the butylguanine produced the same mutation in 0.3% of the phage. In cells deficient in excision repair (uvrA) the transition frequency went up by a factor of 8 for O6-butylguanine and down by a factor of 40 for O6-methylguanine. In cells deficient in recombination (recA), the transition frequency increased 1.5-fold for butylguanine and decreased by a factor of 8 for methylguanine. The data show that both methyl- and butylguanine produce site-directed transitions in phi X174; the transition occurs in recA cells; the frequency of the transition is influenced by both recA and uvrA mutations; the recA and uvrA mutations alter the transition frequency for methylguanine and butylguanine in opposite directions.
Collapse
|
27
|
Caldwell JW, Kollman PA. The effect of methylation of the 6 oxygen of guanine on the structure and stability of double helical DNA. J Biomol Struct Dyn 1985; 3:57-66. [PMID: 3917018 DOI: 10.1080/07391102.1985.10508398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of methylation of the O-6 position of guanine in short segments of double helical DNA has been investigated by molecular mechanical simulations on the sequences d(CGCGCG)2, d(CGC[OMG]CG)2, d(CGT[OMG]CG)2, d(CGC[OMC]CG/(CGCGCG), d(CGC[OMG]CG/d(CGTGCG), d(CGCGAATTCGCG)2 and d(CGCGAATTC[OMG]CG)2. Guanines methylated at the O-6 position are found to form hydrogen bonds of roughly equal strength to cytosine and thymine. The optimum structure of these modified base pairs are not dramatically different from normal GC pairs, but both involve some bifurcation of the proton donors of cytosine (4NH2) or thymine (3NH) between the guanine N3 and O6 groups.
Collapse
Affiliation(s)
- J W Caldwell
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143
| | | |
Collapse
|
28
|
Chandrasecaran S, Kan LS. Preparation of Three Decadeoxyribonucleotides Containing an Uncommon or Modified Base. J CHIN CHEM SOC-TAIP 1985. [DOI: 10.1002/jccs.198500027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Gaffney BL, Marky LA, Jones RA. Synthesis and characterization of a set of four dodecadeoxyribonucleoside undecaphosphates containing O6-methylguanine opposite adenine, cytosine, guanine, and thymine. Biochemistry 1984; 23:5686-91. [PMID: 6525333 DOI: 10.1021/bi00319a004] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A set of four self-complementary dodecanucleoside undecaphosphates, d[CGNGAATTC(O6Me)GCG], where N = A, C, G, or T, has been synthesized by a phosphoramidite procedure. A single large-scale preparation of the nonamer d[DMT-GpApApTpTpCp(O6Me)GpCpG] was divided into four portions for synthesis of the dodecamers. The synthesis, purification (high-performance liquid chromatography), and characterization of each of these molecules are described. Each sequence forms a stable duplex, with a Tm between 19 and 26 degrees C lower than the Tm of the "parent" molecule d-(CGCGAATTCGCG). The lowest melting sequence is the N = T molecule; the overall order is N = C greater than A greater than G greater than T. Thus O6-methylation of guanine creates a region of localized instability in DNA regardless of the base opposite the lesion. This instability, which could disrupt some regulatory process or event, may be as significant as or more significant than is the mutation itself to the oncogenic process initiated by alkylating agents.
Collapse
|
30
|
Demidov V, Potaman V. High-performance liquid chromatography of the photo-products of nucleic acid components. J Chromatogr A 1984. [DOI: 10.1016/s0021-9673(01)87743-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Rosenthal A, Cech D, Veiko V, Orezkaja T, Romanova E, Elov A, Metelev V, Gromova E, Shabarova Z. Chemische synthese von nonadesoxyribonucleotiden mit den abgewandelten basen uracil, 5-bromuracil und 5-methylcytosin nach dem triester-verfahren. Tetrahedron Lett 1984. [DOI: 10.1016/s0040-4039(01)81436-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Gaffney BL, Marky LA, Jones RA. The influence of the purine 2-amino group on DNA conformation and stability-II. Tetrahedron 1984. [DOI: 10.1016/0040-4020(84)85098-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|