1
|
Dowling DK, Wolff JN. Evolutionary genetics of the mitochondrial genome: insights from Drosophila. Genetics 2023; 224:iyad036. [PMID: 37171259 PMCID: PMC10324950 DOI: 10.1093/genetics/iyad036] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/05/2023] [Indexed: 05/13/2023] Open
Abstract
Mitochondria are key to energy conversion in virtually all eukaryotes. Intriguingly, despite billions of years of evolution inside the eukaryote, mitochondria have retained their own small set of genes involved in the regulation of oxidative phosphorylation (OXPHOS) and protein translation. Although there was a long-standing assumption that the genetic variation found within the mitochondria would be selectively neutral, research over the past 3 decades has challenged this assumption. This research has provided novel insight into the genetic and evolutionary forces that shape mitochondrial evolution and broader implications for evolutionary ecological processes. Many of the seminal studies in this field, from the inception of the research field to current studies, have been conducted using Drosophila flies, thus establishing the species as a model system for studies in mitochondrial evolutionary biology. In this review, we comprehensively review these studies, from those focusing on genetic processes shaping evolution within the mitochondrial genome, to those examining the evolutionary implications of interactions between genes spanning mitochondrial and nuclear genomes, and to those investigating the dynamics of mitochondrial heteroplasmy. We synthesize the contribution of these studies to shaping our understanding of the evolutionary and ecological implications of mitochondrial genetic variation.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Jonci N Wolff
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
2
|
Crews SC, Esposito LA. Towards a synthesis of the Caribbean biogeography of terrestrial arthropods. BMC Evol Biol 2020; 20:12. [PMID: 31980017 PMCID: PMC6979080 DOI: 10.1186/s12862-019-1576-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/30/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The immense geologic and ecological complexity of the Caribbean has created a natural laboratory for interpreting when and how organisms disperse through time and space. However, competing hypotheses compounded with this complexity have resulted in a lack of unifying principles of biogeography for the region. Though new data concerning the timing of geologic events and dispersal events are emerging, powerful new analytical tools now allow for explicit hypothesis testing. Arthropods, with varying dispersal ability and high levels of endemism in the Caribbean, are an important, albeit understudied, biogeographic model system. Herein, we include a comprehensive analysis of every publicly available genetic dataset (at the time of writing) of terrestrial Caribbean arthropod groups using a statistically robust pipeline to explicitly test the current extent of biogeographic hypotheses for the region. RESULTS Our findings indicate several important biogeographic generalizations for the region: the South American continent is the predominant origin of Caribbean arthropod fauna; GAARlandia played a role for some taxa in aiding dispersal from South America to the Greater Antilles; founder event dispersal explains the majority of dispersal events by terrestrial arthropods, and distance between landmasses is important for dispersal; most dispersal events occurred via island hopping; there is evidence of 'reverse' dispersal from islands to the mainland; dispersal across the present-day Isthmus of Panama generally occurred prior to 3 mya; the Greater Antilles harbor more lineage diversity than the Lesser Antilles, and the larger Greater Antilles typically have greater lineage diversity than the smaller islands; basal Caribbean taxa are primarily distributed in the Greater Antilles, the basal-most being from Cuba, and derived taxa are mostly distributed in the Lesser Antilles; Jamaican taxa are usually endemic and monophyletic. CONCLUSIONS Given the diversity and deep history of terrestrial arthropods, incongruence of biogeographic patterns is expected, but focusing on both similarities and differences among divergent taxa with disparate life histories emphasizes the importance of particular qualities responsible for resulting diversification patterns. Furthermore, this study provides an analytical toolkit that can be used to guide researchers interested in answering questions pertaining to Caribbean biogeography using explicit hypothesis testing.
Collapse
Affiliation(s)
- Sarah C Crews
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Lauren A Esposito
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA.
| |
Collapse
|
3
|
Chen K, Wang Y, Li XY, Peng H, Ma YJ. Sequencing and analysis of the complete mitochondrial genome in Anopheles sinensis (Diptera: Culicidae). Infect Dis Poverty 2017; 6:149. [PMID: 28969698 PMCID: PMC5625653 DOI: 10.1186/s40249-017-0362-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/16/2017] [Indexed: 11/12/2022] Open
Abstract
Background Anopheles sinensis (Diptera: Culicidae) is a primary vector of Plasmodium vivax and Brugia malayi in most regions of China. In addition, its phylogenetic relationship with the cryptic species of the Hyrcanus Group is complex and remains unresolved. Mitochondrial genome sequences are widely used as molecular markers for phylogenetic studies of mosquito species complexes, of which mitochondrial genome data of An. sinensis is not available. Methods An. sinensis samples was collected from Shandong, China, and identified by molecular marker. Genomic DNA was extracted, followed by the Illumina sequencing. Two complete mitochondrial genomes were assembled and annotated using the mitochondrial genome of An. gambiae as reference. The mitochondrial genomes sequences of the 28 known Anopheles species were aligned and reconstructed phylogenetic tree by Maximum Likelihood (ML) method. Findings The length of complete mitochondrial genomes of An. sinensis was 15,076 bp and 15,138 bp, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and an AT-rich control region. As in other insects, most mitochondrial genes are encoded on the J strand, except for ND5, ND4, ND4L, ND1, two rRNA and eight tRNA genes, which are encoded on the N strand. The bootstrap value was set as 1000 in ML analyses. The topologies restored phylogenetic affinity within subfamily Anophelinae. The ML tree showed four major clades, corresponding to the subgenera Cellia, Anopheles, Nyssorhynchus and Kerteszia of the genus Anopheles. Conclusions The complete mitochondrial genomes of An. sinensis were obtained. The number, order and transcription direction of An. sinensis mitochondrial genes were the same as in other species of family Culicidae. Electronic supplementary material The online version of this article (10.1186/s40249-017-0362-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kai Chen
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, 200433, China.,Team ten Cadet Brigade, Second Military Medical University, Shanghai, 200433, China
| | - Yan Wang
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, 200433, China
| | - Xiang-Yu Li
- Department of Medical Microbiology and Parasitology, Second Military Medical University, Shanghai, 200433, China
| | - Heng Peng
- Department of Medical Microbiology and Parasitology, Second Military Medical University, Shanghai, 200433, China.
| | - Ya-Jun Ma
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Pu DQ, Liu HL, Gong YY, Ji PC, Li YJ, Mou FS, Wei SJ. Mitochondrial genomes of the hoverflies Episyrphus balteatus and Eupeodes corollae (Diptera: Syrphidae), with a phylogenetic analysis of Muscomorpha. Sci Rep 2017; 7:44300. [PMID: 28276531 PMCID: PMC5343577 DOI: 10.1038/srep44300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
The hoverflies Episyrphus balteatus and Eupeodes corollae (Diptera: Muscomorpha: Syrphidae) are important natural aphid predators. We obtained mitochondrial genome sequences from these two species using methods of PCR amplification and sequencing. The complete Episyrphus mitochondrial genome is 16,175 bp long while the incomplete one of Eupeodes is 15,326 bp long. All 37 typical mitochondrial genes are present in both species and arranged in ancestral positions and directions. The two mitochondrial genomes showed a biased A/T usage versus G/C. The cox1, cox2, cox3, cob and nad1 showed relatively low level of nucleotide diversity among protein-coding genes, while the trnM was the most conserved one without any nucleotide variation in stem regions within Muscomorpha. Phylogenetic relationships among the major lineages of Muscomorpha were reconstructed using a complete set of mitochondrial genes. Bayesian and maximum likelihood analyses generated congruent topologies. Our results supported the monophyly of five species within the Syrphidae (Syrphoidea). The Platypezoidea was sister to all other species of Muscomorpha in our phylogeny. Our study demonstrated the power of the complete mitochondrial gene set for phylogenetic analysis in Muscomorpha.
Collapse
Affiliation(s)
- De-qiang Pu
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Hong-ling Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yi-yun Gong
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Pei-cheng Ji
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Yue-jian Li
- Institute of Horticulture Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fang-sheng Mou
- Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China
| | - Shu-jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
5
|
Wang YZ, Jin GH, Zhu JY, Wei SJ. The mitochondrial genome of the garden pea leafminer Chromatomyia horticola (Goureau, 1851) (Diptera: Agromyzidae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:2653-5. [PMID: 26066024 DOI: 10.3109/19401736.2015.1043531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Here we report the mitochondrial genome sequence of the garden pea leafminer Chromatomyia horticola (Goureau, 1851) (Diptera: Agromyzidae) (GenBank accession no. KR047789). This is the first species with sequenced mitochondrial genome from the genus Chromatomyia. The current length with partial A + T-rich region of this mitochondrial genome is 15,320 bp with an A + T content of 77.54%. All the 13 protein-coding, two rRNA, and 22 tRNA genes were sequenced, except for the A + T-rich region. As in most other sequenced mitochondrial genomes of Diptera, there is no rearrangement compared with the pupative ancestral arrangement of insects. All protein-coding genes start with the ATN start codon except for the gene cox1, which uses abnormal TTG. The A + T-rich region is located between rrnS and trnI with a sequenced length of 503 bp. Phylogenetic analysis using the Bayesian method based on the first and second codon positions of the 13 protein-coding genes recovered the monophyly of Agromyzidae with one species of Chromatomyia and four species of Liriomyza in our study. The superfamily Oestroidea (with Agromyzidae in analysis) is sister to the Opomyzoidea.
Collapse
Affiliation(s)
- You-Zhu Wang
- a Key Laboratory of Forest Disaster Warning and Control of Yunnan Province , College of Forestry, Southwest Forestry University , Kunming , China and.,b Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences , Beijing , China
| | - Gui-Hua Jin
- b Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences , Beijing , China
| | - Jia-Ying Zhu
- a Key Laboratory of Forest Disaster Warning and Control of Yunnan Province , College of Forestry, Southwest Forestry University , Kunming , China and
| | - Shu-Jun Wei
- b Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences , Beijing , China
| |
Collapse
|
6
|
Farkaš R, Ďatková Z, Mentelová L, Löw P, Beňová-Liszeková D, Beňo M, Sass M, Řehulka P, Řehulková H, Raška O, Kováčik L, Šmigová J, Raška I, Mechler BM. Apocrine secretion in Drosophila salivary glands: subcellular origin, dynamics, and identification of secretory proteins. PLoS One 2014; 9:e94383. [PMID: 24732043 PMCID: PMC3986406 DOI: 10.1371/journal.pone.0094383] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/14/2014] [Indexed: 01/29/2023] Open
Abstract
In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal β-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity.
Collapse
Affiliation(s)
- Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Zuzana Ďatková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
- Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
- Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Péter Löw
- Department of Anatomy and Cell Biology, Lorand Eötvös University, Budapest, Hungary
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia,
| | - Miklós Sass
- Department of Anatomy and Cell Biology, Lorand Eötvös University, Budapest, Hungary
| | - Pavel Řehulka
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Helena Řehulková
- 1st Department of Internal Medicine - Cardioangiology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Otakar Raška
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lubomír Kováčik
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Šmigová
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Bernard M. Mechler
- Institute of Cellular Biology and Pathology, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| |
Collapse
|
7
|
Characteristics of mitochondrial DNA of unionid bivalves (Mollusca: Bivalvia: Unionidae). I. Detection and characteristics of doubly uniparental inheritance (DUI) of unionid mitochondrial DNA. FOLIA MALACOLOGICA 2011. [DOI: 10.2478/v10125-010-0015-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Segura MD, Callejas C, Fernández MP, Ochando MD. New contributions towards the understanding of the phylogenetic relationships among economically important fruit flies (Diptera: Tephritidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2006; 96:279-88. [PMID: 16768816 DOI: 10.1079/ber2006425] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fruit flies (Diptera: Tephritidae) are a species-rich and economically important group. The phylogenetic relationships among the many taxa are still to be fully resolved and the monophyly of several groups is still to be confirmed. This paper reports a study of the phylogenetic relationships among 23 economically important tephritid species (representing several major lineages of the family) which examines the sequence of a region of mitochondrial DNA encompassing the cytb, tRNA(Ser) and ND1 genes. Substitutions characteristic of particular taxa were found that could help classify members of the family at any developmental stage. The trees obtained by the maximum parsimony, neighbour joining and maximum likelihood methods were generally compatible with present morphological classification patterns. However, the data reveal some characteristics of the phylogenetic relationships of this family that do not agree with present classifications. The results support the probable non-monophyletic nature of the subfamily Trypetinae and suggest that Bactrocera cucurbitae (Coquillet) is more closely related to the genus Dacus than to other species of Bactrocera.
Collapse
Affiliation(s)
- M D Segura
- Centro Nacional de Biotecnologia, Campus de la Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
9
|
Lavrov DV, Boore JL, Brown WM. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol 2002; 19:163-9. [PMID: 11801744 DOI: 10.1093/oxfordjournals.molbev.a004068] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We determined the complete mitochondrial DNA (mtDNA) sequences of the millipedes Narceus annularus and Thyropygus sp. (Arthropoda: Diplopoda) and identified, in both genomes, all 37 genes typical for metazoan mtDNA. The arrangement of these genes is identical in the two millipedes, but differs from others found in arthropod mtDNAs in the location of at least four genes or gene blocks. This novel gene arrangement is unusual for animal mtDNA in that genes with identical transcriptional polarities are clustered in the genome, and the two clusters are separated by two noncoding regions. The only exception to this pattern is the gene for cysteine tRNA, which is located in the part of the genome that otherwise contains all genes with the opposite transcriptional polarity. We suggest that a mechanism involving complete mtDNA duplication followed by the loss of genes, predetermined by their transcriptional polarity and location in the genome, could generate this gene arrangement from the one ancestral for arthropods. The proposed mechanism has important implications for phylogenetic inferences that are drawn on the basis of gene arrangement comparisons.
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Biology, University of Michigan, Ann Arbor, USA.
| | | | | |
Collapse
|
10
|
Messina A, Neri M, Perosa F, Caggese C, Marino M, Caizzi R, De Pinto V. Cloning and chromosomal localization of a cDNA encoding a mitochondrial porin from Drosophila melanogaster. FEBS Lett 1996; 384:9-13. [PMID: 8797793 DOI: 10.1016/0014-5793(96)00268-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have raised polyclonal antibodies against purified the Drosphila melanogaster mitochondrial porin. They showed high titre and specificity and were thus used as a tool for screening an expression library. The isolated clone 1T1 showed 74% sequence identity in the last 19 residues at the C-terminus of human porin. A subclone of 1T1, containing the porin-like sequence, was thus used as a probe for re-screening a cDNA library and several positive clones were plaque-purified. We present here the sequence of a 1363 bp cDNA encoding a protein of 279 amino acids. Its identity with porin was also confirmed by N-terminal Edman degradation of the purified protein. The D. melanogaster porin shows an overall 51.8% identity with human porin isoform 1 (porin 31HL or HVDAC1) and an overall 55.7% identity with human porin isoform 2 (HVDAC2). Hydrophobicity plots and secondary structure predictions showed a very high similarity with data obtained from known porin sequences. The D. melanogaster porin cDNA was used as a probe for in situ hybridization to polytenic salivar gland chromosomes. It hybridizes with different intensities in two sites, in chromosome 2L, at region 31E and in chromosome 3L at region 79D. Thus, also in Drosophila melanogaster porin polypeptide(s) belong(s) to a multigene family.
Collapse
Affiliation(s)
- A Messina
- Istituto di Scienze Biochimiche e Farmacologiche, Facoltà di Scienze M.F.N., Università di Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Flook PK, Rowell CH, Gellissen G. The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome. J Mol Evol 1995; 41:928-41. [PMID: 8587138 DOI: 10.1007/bf00173173] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sequencing of the cloned Locusta migratoria mitochondrial genome has been completed. The sequence is 15,722 bp in length and contains 75.3% A+T, the lowest value in any of the five insect mitochondrial sequences so far determined. The protein coding genes have a similar A+T content (74.1%) but are distinguished by a high cytosine content at the third codon position. The gene content and organization are the same as in Drosophila yakuba except for a rearrangement of the two tRNA genes tRNAlys and tRNAasp. The A+T-rich region has a lower A+T nucleotide content than in other insects, and this is largely due to the presence of two G+C-rich 155-bp repetitive sequences at the 5'end of this section and the beginning of the adjacent small rRNA gene. The sizes of the large and small rRNA genes are 1,314 and 827 bp, respectively, and both sequences can be folded to form secondary structures similar to those previously predicted for Drosophila. The tRNA genes have also been modeled and these show a strong resemblance to the dipteran tRNAs, all anticodons apparently being conserved between the two species. A comparison of the protein coding nucleotide sequences of the locust DNA with the homologous sequences of five other arthropods (Drosophila yakuba, Anopheles quadrimaculatus, Anopheles gambiae, Apis mellifera, and Artemia franciscana) was performed. The amino acid composition of the encoded proteins in Locusta is similar to that of Drosophila, with a Dayhoff distance twice that of the distance between the fruit fly and the mosquitoes. A phylogenetic analysis revealed the locust genes to be more similar to those of the Dipterans than to those of the honeybee at both the nucleotide and amino acid levels. A comparative analysis of tRNA orders, using crustacean mtDNAs as outgroups, supported this. This high level of divergence in the Apis genome has been noted elsewhere and is possibly an effect of directional mutation pressure having resulted in an accelerated pattern of sequence evolution. If the general assumption that the Holometabola are monophyletic holds, then these results emphasize the difficulties of reconstructing phylogenies that include lineages with variable substitution rates and base composition biases. The need to exercise caution in using information about tRNA gene orders in phylogenetic analysis is also illustrated. However, if the honeybee sequence is excluded, the correspondence between the other five arthropod sequences supports the findings of previous studies which have endorsed the use of mtDNA sequences for studies of phylogeny at deep levels of taxonomy when mutation rates are equivalent.
Collapse
Affiliation(s)
- P K Flook
- Zoologisches Institut, Universität Basel, Switzerland
| | | | | |
Collapse
|
12
|
Lewis DL, Farr CL, Kaguni LS. Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. INSECT MOLECULAR BIOLOGY 1995; 4:263-278. [PMID: 8825764 DOI: 10.1111/j.1365-2583.1995.tb00032.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nucleotide sequence of the regions flanking the A+T region of Drosophila melanogaster mitochondrial DNA (mtDNA) has been determined. Included are the genes encoding the transfer RNAs for valine, isoleucine, glutamine and methionine, the small ribosomal RNA and the 5'-coding sequences of the large ribosomal RNA and NADH dehydrogenase subunit II. This completes the nucleotide sequence of the D. melanogaster mitochondrial genome. The circular mtDNA of D. melanogaster varies in size among different populations largely due to length differences in the control region (Fauron & Wolstenholme, 1976; Fauron & Wolstenholme, 1980a, b); the mtDNA region we have sequenced, combined with those sequenced by others, yields a composite genome that is 19,517 bp in length as compared to 16,019 bp for the mtDNA of D. yakuba. D. melanogaster mtDNA exhibits an extreme bias in base composition; it comprises 82.2% deoxyadenylate and thymidylate residues as compared to 78.6% in D. yakuba mtDNA. All genes encoded in the mtDNA of both species are in identical locations and orientations. Nucleotide substitution analysis reveals that tRNA and rRNA genes evolve at less than half the rate of protein coding genes.
Collapse
Affiliation(s)
- D L Lewis
- Department of Biochemistry, Michigan State University, East Lansing, USA
| | | | | |
Collapse
|
13
|
Okimoto R, Macfarlane JL, Wolstenholme DR. The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis. J Mol Evol 1994; 39:598-613. [PMID: 7528811 DOI: 10.1007/bf00160405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The small- and large-subunit mitochondrial ribosomal RNA genes (mt-s-rRNA and mt-l-rRNA) of the nematode worms Caenorhabditis elegans and Ascaris suum encode the smallest rRNAs so far reported for metazoa. These size reductions correlate with the previously described, smaller, structurally anomalous mt-tRNAs of C. elegans and A. suum. Using primer extension analysis, the 5' end nucleotides of the mt-s-rRNA and mt-l-rRNA genes were determined to be adjacent to the 3' end nucleotides of the tRNA(Glu) and tRNA(His) genes, respectively. Detailed, consensus secondary-structure models were constructed for the mt-s-rRNA genes and the 3' 64% of mt-l-rRNA genes of the two nematodes. The mt-s-rRNA secondary-structure model bears a remarkable resemblance to the previously defined universal core structure of E. coli 16S rRNA: most of the nucleotides that have been classified as variable or semiconserved in the E. coli model appear to have been eliminated from the C. elegans and A. suum sequences. Also, the secondary structure model constructed for the 3' 64% of the mt-l-rRNA is similar to the corresponding portion of the previously defined E. coli 23S rRNA core secondary structure. The proposed C. elegans/A. suum mt-s-rRNA and mt-l-rRNA models include all of the secondary-structure element-forming sequences that in E. coli rRNAs contain nucleotides important for A-site and P-site (but not E-site) interactions with tRNAs. Sets of apparently homologous sequences within the mt-s-rRNA and mt-l-rRNA core structures, derived by alignment of the C. elegans and A. suum mt-rRNAs to the corresponding mt-rRNAs of other eukaryotes, and E. coli rRNAs were used in maximum-likelihood analyses. The patterns of divergence of metazoan phyla obtained show considerable agreement with the most prevalent metazoan divergence patterns derived from more classical, morphological, and developmental data.
Collapse
Affiliation(s)
- R Okimoto
- Department of Biology, University of Utah, Salt Lake City 84112
| | | | | |
Collapse
|
14
|
Okimoto R, Wolstenholme DR. A tRNA(Ser)(UCN) gene in Artemia salina mitochondrial DNA: a case of mistaken identity. Curr Genet 1993; 24:313-5. [PMID: 8252641 DOI: 10.1007/bf00336782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have sequenced a segment of mitochondrial DNA (mtDNA) of a crustacean, the brine shrimp, Artemia salina, that includes 3' end-proximal regions of the genes for subunit 1 of the NADH dehydrogenase complex (ND1) and cytochrome b (Cyt b). From our data we conclude that in this mtDNA, as in the mtDNAs of Drosophila species, a tRNA(Ser)(UCN) gene separates the ND1 and Cyt b genes. This is contrary to an earlier report that the A. salina ND1 and Cyt b genes are immediately adjacent to each other.
Collapse
Affiliation(s)
- R Okimoto
- Department of Biology, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
15
|
Beard CB, Hamm DM, Collins FH. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. INSECT MOLECULAR BIOLOGY 1993; 2:103-124. [PMID: 9087549 DOI: 10.1111/j.1365-2583.1993.tb00131.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The entire 15,363 bp mitochondrial genome was cloned and sequenced from the mosquito Anopheles gambiae. With respect to the protein-coding genes, rRNA genes and the control region, the gene order was identical to that reported for other insects. There were significant differences, however, in the position and orientation of specific tRNA loci. The overall nucleotide composition was heavily biased towards adenine and thymine, which accounted for 77.6% of all nucleotides. Comparisons were made with the mitochondrial genomes of other insects on the basis genome size and organization, DNA and putative amino acid sequence data, nucleotide substitutions, codon usage and bias, and patterns of AT enrichment.
Collapse
Affiliation(s)
- C B Beard
- Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, Atlanta, GA 30314-3724, USA
| | | | | |
Collapse
|
16
|
Chapter 7 Mitochondrial tRNAs; Stricture, Modified Nucleosides and Codon Reading Patterns. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0301-4770(08)61493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
17
|
Haucke HR, Gellissen G. Different mitochondrial gene orders among insects: exchanged tRNA gene positions in the COII/COIII region between an orthopteran and a dipteran species. Curr Genet 1988; 14:471-6. [PMID: 2852067 DOI: 10.1007/bf00521271] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have cloned and sequenced a 2.65 kb segment of the mtDNA molecule of the orthopteran insect Locusta migratoria. It harbors the genes for four mitochondrial tRNAs, for cytochrome c oxidase subunits II and III and for ATPase subunits 6 and 8. The order of the locust genes resembles that of Drosophila yakuba: in both insects the genes for COII and ATPase 8 are separated from each other by the genes encoding tRNA(lys) and tRNA(asp), but in the locust, the positions of the two tRNA genes are reversed. This leads to a different mitochondrial gene order in the two insects.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- DNA, Mitochondrial/genetics
- Drosophila/genetics
- Electron Transport Complex IV/genetics
- Genes
- Molecular Sequence Data
- Orthoptera/genetics
- RNA, Transfer/genetics
- RNA, Transfer, Asp
- RNA, Transfer, Gly
- RNA, Transfer, Leu
- RNA, Transfer, Lys
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- H R Haucke
- Institut für Zoologie III, Universität Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
18
|
Garesse R. Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics 1988; 118:649-63. [PMID: 3130291 PMCID: PMC1203320 DOI: 10.1093/genetics/118.4.649] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The sequence of a 8351-nucleotide mitochondrial DNA (mtDNA) fragment has been obtained extending the knowledge of the Drosophila melanogaster mitochondrial genome to 90% of its coding region. The sequence encodes seven polypeptides, 12 tRNAs and the 3' end of the 16S rRNA and CO III genes. The gene organization is strictly conserved with respect to the Drosophila yakuba mitochondrial genome, and different from that found in mammals and Xenopus. The high A + T content of D. melanogaster mitochondrial DNA is reflected in a reiterative codon usage, with more than 90% of the codons ending in T or A, G + C rich codons being practically absent. The average level of homology between the D. melanogaster and D. yakuba sequences is very high (roughly 94%), although insertion and deletions have been detected in protein, tRNA and large ribosomal genes. The analysis of nucleotide changes reveals a similar frequency for transitions and transversions, and reflects a strong bias against G + C on both strands. The predominant type of transition is strand specific.
Collapse
Affiliation(s)
- R Garesse
- Departamento de Bioquimica, Facultad de Medicina, Universidad Autonoma de Madrid, Spain
| |
Collapse
|
19
|
Clary DO, Wolstenholme DR. Drosophila mitochondrial DNA: conserved sequences in the A + T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J Mol Evol 1987; 25:116-25. [PMID: 3116271 DOI: 10.1007/bf02101753] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sequence of a segment of the Drosophila virilis mitochondrial DNA (mtDNA) molecule that contains the A + T-rich region, the small rRNA gene, the tRNA(f-met), tRNA(gln), and tRNA(ile) genes, and portions of the ND2 and tRNA(val) genes is presented and compared with the corresponding segment of the D. yakuba mtDNA molecule. The A + T-rich regions of D. virilis and D. yakuba contain two correspondingly located sequences of 49 and 276/274 nucleotides that appear to have been conserved during evolution. In each species the replication origin of the mtDNA molecule is calculated to lie within a region that overlaps the larger conserved sequence, and within this overlap is found a potential hairpin structure. Substitutions between the larger conserved sequences of the A + T-rich regions, the small mt-rRNA genes, and the ND2 genes are biased in favor of transversions, 71-97% of which are A----T changes. There is a 13.8 times higher frequency of nucleotide differences between the 5' halves than between the 3' halves of the D. virilis and D. yakuba small mt-rRNA genes. Considerations of the effects of observed substitutions and deletion/insertions on possible nucleotide pairing within the small mt-rRNA genes of D. virilis and D. yakuba strongly support the secondary structure model for the Drosophila small mt-rRNA that we previously proposed.
Collapse
Affiliation(s)
- D O Clary
- Department of Biology, University of Utah, Salt Lake City 84112
| | | |
Collapse
|
20
|
The Biochemistry and Genetics of Mosquito Cells in Culture. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/b978-0-12-007905-6.50009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
|
21
|
Alziari S, Berthier F, Debise R, Touraille S, Durand R. Translation of polyuridylic acid in lysed mitochondria. Biochimie 1986; 68:1115-21. [PMID: 3096389 DOI: 10.1016/s0300-9084(86)80186-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
After osmotic shock with 50 mM Tricine buffer (pH 7.9), isolated mitochondria from D. Melanogaster embryos are treated with a low concentration of Triton X-100 (25 micrograms/mg of protein). The lysed mitochondria are still capable of RNA and protein synthesis. While incorporation of labeled precursor is often higher in lysed than in intact mitochondria, neosynthesized proteins exhibit similar electrophoretic patterns. Studies of labeled precursor incorporation in the presence of various effectors indicate a better accessibility to the translation machinery in lysed mitochondria than in intact mitochondria. Such a system has proven capable of translating an exogenous synthetic mRNA, i.e., poly (U).
Collapse
|
22
|
Berthier F, Renaud M, Alziari S, Durand R. RNA mapping on Drosophila mitochondrial DNA: precursors and template strands. Nucleic Acids Res 1986; 14:4519-33. [PMID: 3086843 PMCID: PMC311462 DOI: 10.1093/nar/14.11.4519] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Drosophila melanogaster mitochondrial DNA (mtDNA) is closely related to the mammalian and amphibian mtDNA except for gene organization. In Drosophila, genes are distributed in clusters alternatively coded on each strand. Besides the eleven major foreseeable transcripts previously described (MERTEN and PARDUE, 1981, J. Mol. Biol., 153, 1-21), we have characterized two poly A+ transcripts, one major and one minor which could correspond respectively to the ND3 and ND6 reading frames, and 27 poly A+ minor transcripts (0.2 to greater than 3.2 kb) which are distributed along the mtDNA except in the rRNAs, ND 1 and A+ T rich regions. The mapping and length of 25 of these transcripts strongly suggest a precursor role. They would be processed at the level of tRNA or tRNA-like sequences. Most of them are transcribed from the template strand of each gene cluster and their distribution is in agreement with the hypothesis of several transcription origins and terminations located near the extremities of each gene cluster. Quantitatively our results show a large variation in each presumptive mature transcript compared to the other, even in a given gene cluster, suggesting a specific degradation of some of the mature transcripts.
Collapse
|
23
|
Dubin DT, HsuChen CC, Tillotson LE. Mosquito mitochondrial transfer RNAs for valine, glycine and glutamate: RNA and gene sequences and vicinal genome organization. Curr Genet 1986; 10:701-7. [PMID: 2452025 DOI: 10.1007/bf00410919] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the sequences of 3 transfer RNAs from mosquito (Aedes albopictus) mitochondria, those for valine (anticodon UAC), glutamic acid (anticodon UUC) and glycine (anticodon UCC), as well as sequences for the corresponding genes and for some neighboring mitochondrial genes. TRNAval is notable for its high level of psi, tRNAglu for its low level of G and C, and tRNAgly is notable in that it appears as two species widely separated in gel electrophoresis, differing only in modification status. TRNAglu is the first sequenced insect mitochondrial tRNA that would be expected to engage in U.R wobble (where U is a modified U in the first position of the anticodon, and R is G or A in the third position of codons), if the insect system followed the modified wobble rules proposed for mammalian and fungal mitochondria; and the sequence determined does fit the proposal. The gene for tRNAval follows immediately that for 12S ribosomal RNA. The gene for tRNAglu occurs in a cluster of 6 tRNA genes that is separated from the gene for tRNAgly by a short reading frame. Features of the DNA sequences are discussed with reference to Drosophila, and mammalian, mitochondrial genome organization.
Collapse
Affiliation(s)
- D T Dubin
- Department of Microbiology, University of Medicine and Dentistry of New Jersey-Rutgers Medical School, Piscataway 08854
| | | | | |
Collapse
|
24
|
Jacobs HT, Grimes B. Complete nucleotide sequences of the nuclear pseudogenes for cytochrome oxidase subunit I and the large mitochondrial ribosomal RNA in the sea urchin Strongylocentrotus purpuratus. J Mol Biol 1986; 187:509-27. [PMID: 3012091 DOI: 10.1016/0022-2836(86)90330-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nucleotide sequencing of the sea urchin nuclear genomic homologues of two mitochondrial genes, cytochrome oxidase subunit I (COI) and 16 S ribosomal RNA, shows clearly that they are both pseudogenes. The COI homologue has accumulated numerous single-base changes causing non-conservative amino acid substitutions, as well as many small insertions and deletions, most of which result in frameshifts. There is no continuous open reading frame and eight unmutated TGA codons persist. A genomic repetitive element is found between the break points of two rearrangements that have occurred in the region. By solution hybridization in RNA excess, we were unable to detect transcripts colinear with the complete nuclear COI sequence, using Strongylocentrotus purpuratus gastrula RNA, at a detection limit of 10(-6) of total RNA. Transcripts restricted to the 3' end of the COI pseudogene may be present, however, but at an extremely low level. Comparison of the 16 S/COI junctions in nuclear and mitochondrial DNA suggests a possible complementary DNA-mediated conversion of the 16 S pseudogene subsequent to its original transposition into nuclear DNA. We have estimated the likely age of the nuclear sequence element from the divergence between nuclear and mitochondrial sequences and from cross-hybridization with the genomes of other sea urchin species. With both methods, an age of more than 30 million years is suggested.
Collapse
|
25
|
Clary DO, Wolstenholme DR. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 1985; 22:252-71. [PMID: 3001325 DOI: 10.1007/bf02099755] [Citation(s) in RCA: 934] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The sequence of the 16,019 nucleotide-pair mitochondrial DNA (mtDNA) molecule of Drosophila yakuba is presented. This molecule contains the genes for two rRNAs, 22 tRNAs, six identified proteins [cytochrome b, cytochrome c oxidase subunits I, II, and III (COI-III), and ATPase subunits 6 and 8] and seven presumptive proteins (URF1-6 and URF4L). Replication originates within a region of 1077 nucleotides that is 92.8% A + T and lacks any open reading frame larger than 123 nucleotides. An equivalent to the sequence found in all mammalian mtCDNAs that is associated with initiation of second-strand DNA synthesis is not present in D. yakuba mtDNA. Introns are absent from D. yakuba mitochondrial genes and there are few (0-31) intergenic nucleotides. The genes found in D. yakuba and mammalian mtDNAs are the same, but there are differences in their arrangement and in the relative proportions of the complementary strands of the molecule that serve as templates for transcription. Although the D. yakuba small and large mitochondrial rRNA genes are exceptionally low in G and C and are shorter than any other metazoan rRNA genes reported, they can be folded into secondary structures remarkably similar to the secondary structures proposed for mammalian mitochondrial rRNAs. D. yakuba mitochondrial tRNA genes, like their mammalian counterparts, are more variable in sequence than nonorganelle tRNAs. In mitochondrial protein genes ATG, ATT, ATA, and in one case (COI) ATAA appear to be used as translation initiation codons. The only termination codon found in these genes is TAA. In the D. yakuba mitochondrial genetic code, AGA, ATA, and TGA specify serine, isoleucine, and tryptophan, respectively. Fifty-nine types of sense condon are used in the D. yakuba mitochondrial protein genes, but 93.8% of all codons end in A or T. Codon-anticodon interactions may include both G-A and C-A pairing in the wobble position. Evidence is summarized that supports the hypothesis that A and T nucleotides are favored at all locations in the D. yakuba mtDNA molecule where these nucleotides are compatible with function.
Collapse
|
26
|
Alziari S, Berthier F, Touraille S, Stepien G, Durand R. Mitochondrial DNA expression in Drosophila melanogaster: neosynthesized polypeptides in isolated mitochondria. Biochimie 1985; 67:1023-34. [PMID: 3936549 DOI: 10.1016/s0300-9084(85)80297-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The expression of mitochondrial genome of D. melanogaster in isolated mitochondria was followed by incorporation of 35S methionine in neosynthesized polypeptides. A high level of protein synthesis was obtained after optimization of all the incubation parameters. Two kinds of energy-generating systems were used: an endogenous system where an oxidizable substrate were added for ATP synthesis; an exogenous system with an energy-rich compound for ATP regeneration, the latter proved to be the most effective. The effect of the oxidative phosphorylation uncoupler (Clccp), and an ATPase inhibitor (oligomycine) allow us to postulate the role of the electrochemical potential in the expression of the mitochondrial genome. Electrophoresis and autoradiography of neosynthesized mitochondrial proteins exhibits 18 to 24 protein bands, ranging from 6.5 to 65 Kd; incubation of KC 0% drosophila cells with 35S methionine and cycloheximide gave similar results. Both our results and those published elsewhere suggest that the expression of mitochondrial genome in higher organisms could be more complex than simple translation of the 13 genes presents on these genomes.
Collapse
|
27
|
Abstract
The nucleotide sequence of a segment of the mtDNA molecule of Drosophila yakuba which contains the A+T-rich region and the small and large rRNA genes separated by the tRNAval gene has been determined. The 5' end of the small rRNA gene was located by S1 protection analysis. In contrast to mammalian mtDNA, a tRNA gene was not found at the 5' end of the D. yakuba small rRNA gene. The small and large rRNA genes are 20.7% and 16.7% G+C and contain only 789 and 1326 nucleotides. The 5' regions of the small rRNA gene (371 nucleotides) and of the large rRNA gene (643 nucleotides) are extremely low in G+C (14.6% and 9.5%, respectively) and convincing sequence homologies between these regions and the corresponding regions of mouse mt-rRNA genes were found only for a few short segments. Nevertheless, the entire lengths of both of the D. yakuba mt-rRNA genes can be folded into secondary structures which are remarkably similar to secondary structures proposed for the rRNAs of mouse mtDNA. The replication origin-containing, A+T-rich region (1077 nucleotides; 92.8% A+T), which lies between the tRNAile gene and the small rRNA gene, lacks open reading frames greater than 123 nucleotides.
Collapse
|
28
|
Suyama Y, Fukuhara H, Sor F. A fine restriction map of the linear mitochondrial DNA of Tetrahymena pyriformis: genome size, map locations of rRNA and tRNA genes, terminal inversion repeat, and restriction site polymorphism. Curr Genet 1985; 9:479-93. [PMID: 2897250 DOI: 10.1007/bf00434053] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A fine restriction map of the linear mitochondrial DNA of Tetrahymena pyriformis strain ST is presented. 1. Based on agarose gel electrophoresis data together with limited nucleotide sequences available on some restriction fragments, we estimate the actual size of this genome to be about 55,000 base pairs. 2. Seven tRNA gene locations have been assigned, which are scattered along the genome length. Six of these locations encode the genes for tRNA(phe), tRNA(his), tRNA(trp), and tRNA(glu), and the duplicate tRNA(tyr) genes which are located at the inverted terminal repeat segments. The tRNA gene(s) encoded in one location has not been identified. We have not yet found the tRNA(leu) and tRNA(met) genes, which were previously shown to be encoded in the genome (Chiu et al. 1974; Suyama 1982). 3. We have mapped the 14S rRNA gene by sequencing the 170 bp segment of EcoRI fragment 8 and by aligning its sequence with E. coli 16S rRNA. From our recent complete sequence data the gene size was found to be about 1,650 bp, which is unexpectedly large for the 14S rRNA which has an estimated size of 1,300 bp. The 14S rRNA is probably a cleavage product of the larger primary transcript of which 200-300 bases of the 5' end are missing. 4. The duplicate copies of the 21S rRNA gene at the terminal duplication inversion segments were analyzed. ClaI fragment 7 (1,500 bp) corresponds in sequence from base position 850 to 2,390 of the 20S rRNA gene of Paramecium mitochondrial DNA (Seilhamer et al. 1984b). The 21S gene is approximately 2,500 bp long. The presence of some restriction site polymorphism is apparent in this segment. 5. Each of the 21S gene copies precedes the tRNA(tyr) gene, but the space flanking one tRNA(tyr) gene differs in size and restriction sites from the space flanking another tRNA(tyr) gene. Thus, this space corresponds to the segment of an imperfect match in the terminal duplication inversion of Goldbach et al. (1978a). 6. Saccharomyces cerevisiae mitochondrial probes including Cob, ATPase VI and IX, and cytochrome oxidase I gene sequences, 21S and 15S rRNAs, and mouse mitochondrial DNA showed no significant hybridization with any restriction fragments of Tetrahymena mitochondrial DNA. The results are in accordance with an extensive sequence divergence previously found in the Tetrahymena mitochondrial genome (Goldbach et al. 1977).
Collapse
Affiliation(s)
- Y Suyama
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
29
|
Suyama Y. Nucleotide sequences of three tRNA genes encoded in Tetrahymena mitochondrial DNA. Nucleic Acids Res 1985; 13:3273-84. [PMID: 2987880 PMCID: PMC341234 DOI: 10.1093/nar/13.9.3273] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nucleotide sequences of three cloned restriction fragments of Tetrahymena mtDNA which showed hybridization with mitochondrial tRNA have been determined. EcoRI fragment 5 (4.1 kbp) contains the tRNAphe gene sequence with anticodon GAA; Hind III fragment 6 (2.0 kbp) the tRNAhis with anticodon GTG; and EcoRI fragment 7 (1.9 kbp) the tRNAtrp with anticodon TCA. The CCA end is not encoded. All three tRNAs show usual features with common invariant and semi-invariant bases and can be folded into a cloverleaf structure with standard loops and regular base pairs in the stems. However, some minor irregular features are present including several GT pairs and an unmatched TT in the stems, and TCC instead of T psi C. All exhibit high G+C contents (about 50%); in contrast, the flanking regions are extremely A+T rich (about 80%). Several short coding frames can be deduced in these sequences, but their significance is not known.
Collapse
|
30
|
Abstract
We have compared nucleotide sequences of corresponding segments of the mitochondrial DNA (mtDNA) molecules of Drosophila yakuba and Drosophila melanogaster, which contain the genes for six proteins and seven tRNAs. The overall frequency of substitution between the nucleotide sequences of these protein genes is 7.2%. As was found for mtDNAs from closely related mammals, most substitutions (86%) in Drosophila mitochondrial protein genes do not result in an amino acid replacement. However, the frequencies of transitions and transversions are approximately equal in Drosophila mtDNAs, which is in contrast to the vast excess of transitions over transversions in mammalian mtDNAs. In Drosophila mtDNAs the frequency of C----T substitutions per codon in the third position is 2.5 times greater among codons of two-codon families than among codons of four-codon families; this is contrary to the hypothesis that third position silent substitutions are neutral in regard to selection. In the third position of codons of four-codon families transversions are 4.6 times more frequent than transitions and A----T substitutions account for 86% of all transversions. Ninety-four percent of all codons in the Drosophila mtDNA segments analyzed end in A or T. However, as this alone cannot account for the observed high frequency of A----T substitutions there must be either a disproportionately high rate of A----T mutation in Drosophila mtDNA or selection bias for the products of A----T mutation. --Consideration of the frequencies of interchange of AGA and AGT codons in the corresponding D. yakuba and D. melanogaster mitochondrial protein genes provides strong support for the view that AGA specifies serine in the Drosophila mitochondrial genetic code.
Collapse
|
31
|
Attardi G. Animal mitochondrial DNA: an extreme example of genetic economy. INTERNATIONAL REVIEW OF CYTOLOGY 1985; 93:93-145. [PMID: 3891661 DOI: 10.1016/s0074-7696(08)61373-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Dubin DT, HsuChen CC, Cleaves GR, Timko KD. Sequence and structure of a serine transfer RNA with GCU anticodon from mosquito mitochondria. J Mol Biol 1984; 176:251-60. [PMID: 6565045 DOI: 10.1016/0022-2836(84)90423-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have determined the primary sequence and modification status of a transfer RNA from mosquito mitochondria whose GCU anticodon indicates that it is a serine tRNA (tRNASerGCU), and have obtained information on higher order structure using partial digestion with nucleases S1 and T1 under non-denaturing conditions. Although its primary sequence homology to mammalian mitochondrial tRNASerGCU is modest (46%), the mosquito tRNA resembles its mammalian mitochondrial counterpart in that a plausible secondary structure configuration includes a drastically abbreviated D arm and a sex base-pair anticodon stem. Other unusual features include a ribose-methylated cytidine residue at the end of the anticodon stem, and the likely occurrence of a psi residue between the amino acid arm and arm IV.
Collapse
|
33
|
Dubin DT, HsuChen CC. Sequence and structure of a methionine transfer RNA from mosquito mitochondria. Nucleic Acids Res 1984; 12:4185-9. [PMID: 6328414 PMCID: PMC318825 DOI: 10.1093/nar/12.10.4185] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have sequenced a methionine tRNA from mosquito mitochondria, and examined its structure using nucleases S1 and T1 under non-denaturing conditions. The sequence is highly homologous to a putative initiator methionine tRNA gene from Drosophila mitochondria. Its anticodon stem contains a run of three G-C base pairs that is characteristic of conventional initiator tRNAs; however, nuclease S1 analysis suggested an anticodon loop configuration characteristic of conventional elongator tRNAs. We propose that this tRNA can assume both initiator and elongator roles.
Collapse
|
34
|
Clary DO, Wahleithner JA, Wolstenholme DR. Sequence and arrangement of the genes for cytochrome b, URF1, URF4L, URF4, URF5, URF6 and five tRNAs in Drosophila mitochondrial DNA. Nucleic Acids Res 1984; 12:3747-62. [PMID: 6328435 PMCID: PMC318787 DOI: 10.1093/nar/12.9.3747] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nucleotide sequence of a segment of the mtDNA molecule of Drosophila yakuba has been determined, within which have been identified the 3' end of the large rRNA gene and the entire genes for tRNAleuCUN , URF1 , tRNAserUCN , cytochrome b, URF6 , tRNApro, tRNAthr , URF4L , URF4 , tRNAhis and URF5 . The genes are arranged in the order given, with the large rRNA gene being closest to the A+T-rich region which contains the origin of replication. Transcription of all of these genes except those for cytochrome b, URF6 , tRNAserUCN and tRNAthr proceeds in the same direction as replication. Differences occur in the relative arrangement and in the direction of transcription of these twelve genes between D. yakuba and mammalian mtDNA molecules. Internal AGA codons occur in all of the polypeptide genes except URF6 . Comparisons of the positions of these AGA codons to codons in corresponding mouse genes is consistent with the view that in the D. yakuba mitochondrial genetic code AGA specifies serine. Genes equivalent to all of the polypeptide, tRNA and rRNA genes found in mammalian mtDNA have now been identified in D. yakuba mtDNA.
Collapse
|
35
|
Clary DO, Wolstenholme DR. A cluster of six tRNA genes in Drosophila mitochondrial DNA that includes a gene for an unusual tRNAserAGY. Nucleic Acids Res 1984; 12:2367-79. [PMID: 6324117 PMCID: PMC318668 DOI: 10.1093/nar/12.5.2367] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genes for URF3, tRNAala, tRNAarg, tRNAasn, tRNAserAGY, tRNAglu, tRNAphe, and the carboxyl terminal segment of the URF5 gene have been identified within a sequenced segment of the mtDNA molecule of Drosophila yakuba. The genes occur in the order given. The URF5 and tRNAphe genes are transcribed in the same direction as replication while the URF3 and remaining five tRNA genes are transcribed in the opposite direction. Considerable differences exist in the relative arrangement of these genes in D. yakuba and mammalian mtDNA molecules. In the tRNAserAGY gene an eleven nucleotide loop, within which secondary structure formation seems unlikely, replaces the dihydrouridine arm, and both the variable loop (six nucleotides) and the T phi C loop (nine nucleotides) are larger than in any other D. yakuba tRNA gene. As available evidence is consistent with AGA codons specifying serine rather than arginine in the Drosophila mitochondrial genetic code, the possibility is considered that the 5'GCU anticodon of the D. yakuba tRNAserAGY gene can recognize AGA as well as AGY codons.
Collapse
|
36
|
Clary DO, Wolstenholme DR. Genes for cytochrome c oxidase subunit I, URF2, and three tRNAs in Drosophila mitochondrial DNA. Nucleic Acids Res 1983; 11:6859-72. [PMID: 6314262 PMCID: PMC326419 DOI: 10.1093/nar/11.19.6859] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genes for URF2, tRNAtrp, tRNAcys, tRNAtyr and cytochrome c oxidase subunit I (COI) have been identified within a sequenced segment of the Drosophila yakuba mtDNA molecule. The five genes are arranged in the order given. Transcription of the tRNAcys and tRNAtyr genes is in the same direction as replication, while transcription of the URF2, tRNAtrp and COI genes is in the opposite direction. A similar arrangement of these genes is found in mammalian mtDNA except that in the latter, the tRNAala and tRNAasn genes are located between the tRNAtrp and tRNAcys genes. Also, a sequence found between the tRNAasn and tRNAcys genes in mammalian mtDNA, which is associated with the initiation of second strand DNA synthesis, is not found in this region of the D. yakuba mtDNA molecule. As the D. yakuba COI gene lacks a standard translation initiation codon, we consider the possibility that the quadruplet ATAA may serve this function. As in other D. yakuba mitochondrial polypeptide genes, AGA codons in the URF2 and COI genes do not correspond in position to arginine-specifying codons in the equivalent genes of mouse and yeast mtDNAs, but do most frequently correspond to serine-specifying codons.
Collapse
|
37
|
Clary DO, Wolstenholme DR. Nucleotide sequence of a segment of Drosophila mitochondrial DNA that contains the genes for cytochrome c oxidase subunits II and III and ATPase subunit 6. Nucleic Acids Res 1983; 11:4211-27. [PMID: 6306579 PMCID: PMC326036 DOI: 10.1093/nar/11.12.4211] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nucleotide sequence of a segment of the mtDNA molecule of Drosophila yakuba has been determined, within which have been identified the genes for tRNAleuUUR, cytochrome c oxidase subunit II (COII), tRNAlys, tRNAasp, URFA6L, ATPase subunit 6 (ATPase6), cytochrome c oxidase subunit III (COIII) and tRNAgly. The genes are arranged in the order given and all are transcribed from the same strand of the molecule in a direction opposite to that in which replication proceeds around the molecule. The tRNAlys gene is unusual among mitochondrial tRNAlys genes in that it contains a CTT anticodon. The triplet AGA is used to specify an amino acid in all of the COII, COIII, ATPase6, and URFA6L genes. However, the AGA codons found in these four polypeptide genes correspond in position to codons which specify nine different amino acids, but never arginine, in the equivalent polypeptide gene which have been sequenced from mtDNAs of mouse, yeast and Zea mays.
Collapse
|