1
|
Taylor JW, Smolich BD, May G. EVOLUTION AND MITOCHONDRIAL DNA IN
NEUROSPORA CRASSA. Evolution 2017; 40:716-739. [DOI: 10.1111/j.1558-5646.1986.tb00533.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1985] [Accepted: 04/17/1986] [Indexed: 11/27/2022]
Affiliation(s)
- John W. Taylor
- Department of Botany University of California Berkeley CA 94720
| | | | - Georgiana May
- Department of Botany University of California Berkeley CA 94720
| |
Collapse
|
2
|
Li L, Zhong CH, Bian YB. The molecular diversity analysis of Auricularia auricula-judae in China by nuclear ribosomal DNA intergenic spacer. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2013.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
3
|
Vandenberghe A, Chen MW, Dams E, de Baere R, de Roeck E, Huysmans E, de Wachter R. The corrected nucleotide sequences of 5 S RNAs from six angiosperms. FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)80452-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Parisi S, McKay MJ, Molnar M, Thompson MA, van der Spek PJ, van Drunen-Schoenmaker E, Kanaar R, Lehmann E, Hoeijmakers JH, Kohli J. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 1999; 19:3515-28. [PMID: 10207075 PMCID: PMC84144 DOI: 10.1128/mcb.19.5.3515] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/1998] [Accepted: 01/29/1999] [Indexed: 11/20/2022] Open
Abstract
Our work and that of others defined mitosis-specific (Rad21 subfamily) and meiosis-specific (Rec8 subfamily) proteins involved in sister chromatid cohesion in several eukaryotes, including humans. Mutation of the fission yeast Schizosaccharomyces pombe rec8 gene was previously shown to confer a number of meiotic phenotypes, including strong reduction of recombination frequencies in the central region of chromosome III, absence of linear element polymerization, reduced pairing of homologous chromosomes, reduced sister chromatid cohesion, aberrant chromosome segregation, defects in spore formation, and reduced spore viability. Here we extend the description of recombination reduction to the central regions of chromosomes I and II. We show at the protein level that expression of rec8 is meiosis specific and that Rec8p localizes to approximately 100 foci per prophase nucleus. Rec8p was present in an unphosphorylated form early in meiotic prophase but was phosphorylated prior to meiosis I, as demonstrated by analysis of the mei4 mutant blocked before meiosis I. Evidence for the persistence of Rec8p beyond meiosis I was obtained by analysis of the mutant mes1 blocked before meiosis II. A human gene, which we designate hrec8, showed significant primary sequence similarity to rec8 and was mapped to chromosome 14. High mRNA expression of mouse and human rec8 genes was found only in germ line cells, specifically in testes and, interestingly, in spermatids. hrec8 was also expressed at a low level in the thymus. Sequence similarity and testis-specific expression indicate evolutionarily conserved functions of Rec8p in meiosis. Possible roles of Rec8p in the integration of different meiotic events are discussed.
Collapse
Affiliation(s)
- S Parisi
- Institute of General Microbiology, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sipiczki M. Phylogenesis of fission yeasts. Contradictions surrounding the origin of a century old genus. Antonie Van Leeuwenhoek 1995; 68:119-49. [PMID: 8546451 DOI: 10.1007/bf00873099] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The phylogenesis of fungi is controversial due to their simple morphology and poor fossilization. Traditional classification supported by morphological studies and physiological traits placed the fission yeasts in one group with ascomycetous yeasts. The rRNA sequence comparisons, however, revealed an enormous evolutionary gap between Saccharomyces and Schizosaccharomyces. As shown in this review, the protein sequences also show a large gap which is almost as large as that separating Schizosaccharomyces from higher animals. Since the two yeasts share features (both cytological and molecular) in common which are also characteristic of ascomycetous fungi, their separation must have taken place later than the sequence differences may suggest. Possible reasons for the paradox are discussed. The sequence data also suggest a slower evolutionary rate in the Schizosaccharomyces lineage than in the Saccharomyces branch. In the fission yeast lineage two ramifications can be supposed. First S. japonicus (Hasegawaea japonica) branched off, then S. octosporus (Octosporomyces octosporus) separated from S. pombe.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics, University of Debrecen, Hungary
| |
Collapse
|
6
|
Muris DF, Bezzubova O, Buerstedde JM, Vreeken K, Balajee AS, Osgood CJ, Troelstra C, Hoeijmakers JH, Ostermann K, Schmidt H. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination. Mutat Res 1994; 315:295-305. [PMID: 7526206 DOI: 10.1016/0921-8777(94)90040-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were cloned by the polymerase chain reaction. DNA sequence analysis revealed an open reading frame of 418 amino acids for the human RAD52 homolog and of 420 amino acid residues for the mouse counterpart. The identity between the two proteins is 69% and the overall similarity 80%. The homology of the mammalian proteins with their counterparts from yeast is primarily concentrated in the N-terminal region. Low amounts of RAD52 RNA were observed in adult mouse tissues. A relatively high level of gene expression was observed in testis and thymus, suggesting that the mammalian RAD52 protein, like its homolog from yeast, plays a role in recombination. The mouse RAD52 gene is located near the tip of chromosome 6 in region G3. The human equivalent maps to region p13.3 of chromosome 12. Until now, this human chromosome has not been implicated in any of the rodent mutants with a defect in the repair of double-strand breaks.
Collapse
Affiliation(s)
- D F Muris
- Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Garre V, Murillo FJ, Torres-Martínez S. Isolation of the facA (acetyl-CoA synthetase) gene of Phycomyces blakesleeanus. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:278-86. [PMID: 7914670 DOI: 10.1007/bf00285455] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 5.6 kb DNA fragment from the fungus Phycomyces blakesleeanus has been cloned and sequenced. The fragment contains a gene that probably codes for the enzyme acetyl-coenzyme A synthetase (facA). The amino acid sequence deduced for the P. blakesleeanus protein is highly homologous to those of acetyl-coA-synthetases from other organisms. When placed under the control of a constitutive promoter from Aspergillus nidulans, the cloned gene complemented a facA- mutation of this organism. In P. blakesleeanus, the expression of facA is induced by acetate.
Collapse
Affiliation(s)
- V Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Spain
| | | | | |
Collapse
|
8
|
Muris DF, Vreeken K, Carr AM, Broughton BC, Lehmann AR, Lohman PH, Pastink A. Cloning the RAD51 homologue of Schizosaccharomyces pombe. Nucleic Acids Res 1993; 21:4586-91. [PMID: 8233794 PMCID: PMC311194 DOI: 10.1093/nar/21.19.4586] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The RAD51 gene of Saccharomyces cerevisiae encodes a RecA like protein, which is involved in the recombinational repair of double strand breaks. We have isolated the RAD51 homologue, rhp51+, of the distantly related yeast strain Schizosaccharomyces pombe by heterologous hybridization. DNA sequence analysis of the rhp51+ gene revealed an open reading frame of 365 amino acids. Comparison of the amino acid sequences of RAD51 and rhp51+ showed a high level of conservation: 69% identical amino acids. There are two Mlul sites in the upstream region which may be associated with cell cycle regulation of the rhp51+ gene. The rhp51+ null allele, constructed by disruption of the coding region, is extremely sensitive to X-rays, indicating that the rhp51+ gene, like RAD51, is also involved in the repair of X-ray damage. The structural and functional homology between rhp51+ and RAD51 suggests evolutionary conservation of certain steps in the recombinational repair pathway.
Collapse
Affiliation(s)
- D F Muris
- Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
Her Y, Kang YW, Jung HS, Park YH. Phylogenetic position of Trimorphomyces papilionaceus based on 5S rRNA sequence. Nucleic Acids Res 1992; 20:5229. [PMID: 1408840 PMCID: PMC334313 DOI: 10.1093/nar/20.19.5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Y Her
- Department of Microbiology, College of Natural Sciences, Seoul National University, Korea
| | | | | | | |
Collapse
|
10
|
Reynolds PR, Biggar S, Prakash L, Prakash S. The Schizosaccharomyces pombe rhp3+ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae. Nucleic Acids Res 1992; 20:2327-34. [PMID: 1534406 PMCID: PMC312349 DOI: 10.1093/nar/20.9.2327] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA.RNA helicase activities. Mutational studies have indicated a requirement for the RAD3 helicase activities in excision repair. To examine the extent of conservation of structure and function of RAD3 during eukaryotic evolution, we have cloned the RAD3 homolog, rhp3+, from the distantly related yeast Schizosaccharomyces pombe. RAD3 and rhp3+ encoded proteins are highly similar, sharing 67% identical amino acids. We show that like RAD3, rhp3+ is indispensable for excision repair and cell viability, and our studies indicate a requirement of the putative rhp3+ DNA helicase activity in DNA repair. We find that the RAD3 and rhp3+ genes can functionally substitute for one another. The level of complementation provided by the rhp3+ gene in S.cerevisiae rad3 mutants or by the RAD3 gene in S.pombe rhp3 mutants is remarkable in that both the excision repair and viability defects in both yeasts are restored to wild type levels. These observations suggest a parallel evolutionary conservation of other protein components with which RAD3 interacts in mediating its DNA repair and viability functions.
Collapse
Affiliation(s)
- P R Reynolds
- Department of Biophysics, University of Rochester School of Medicine, NY 14642-8408
| | | | | | | |
Collapse
|
11
|
Damagnez V, Tillit J, de Recondo AM, Baldacci G. The POL1 gene from the fission yeast, Schizosaccharomyces pombe, shows conserved amino acid blocks specific for eukaryotic DNA polymerases alpha. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:182-9. [PMID: 2034212 DOI: 10.1007/bf00273602] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The POL1 gene of the fission yeast, Schizosaccharomyces pombe, was isolated using a POL1 gene probe from the budding yeast Saccharomyces cerevisiae, cloned and sequenced. This gene is unique and located on chromosome II. It includes a single 91 bp intron and is transcribed into a mRNA of about 4500 nucleotides. The predicted protein coded for by the S. pombe POL1 gene is 1405 amino acid long and its calculated molecular weight is about 160,000 daltons. This peptide contains seven amino acid blocks conserved among several DNA polymerases from different organisms and shares overall 37% and 34% identity with DNA polymerases alpha from S. cerevisiae and human cells, respectively. These results indicate that this gene codes for the S. pombe catalytic subunit of DNA polymerase alpha. The comparisons with human DNA polymerase alpha and with the budding yeast DNA polymerases alpha, delta and epsilon reveal conserved blocks of amino acids which are structurally and/or functionally specific only for eukaryotic alpha-type DNA polymerases.
Collapse
Affiliation(s)
- V Damagnez
- Groupe de Biologie et Génétique Moléculaires, UPR 272-CNRS, Villejuif, France
| | | | | | | |
Collapse
|
12
|
Hendriks L, De Baere R, Van de Peer Y, Neefs J, Goris A, De Wachter R. The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J Mol Evol 1991; 32:167-77. [PMID: 1901093 DOI: 10.1007/bf02515389] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The complete small ribosomal subunit RNA (srRNA) sequence was determined for the red alga Porphyra umbilicalis and the basidiomycete Leucosporidium scottii, representing two taxa for which no srRNA sequences were hitherto known. These sequences were aligned with other published complete srRNA sequences of 58 eukaryotes. Evolutionary trees were reconstructed by a matrix optimization method from a dissimilarity matrix based on sections of the alignment that correspond to structurally conservative areas of the molecule that can be aligned unambiguously. The overall topology of the eukaryotic tree thus constructed is as follows: first there is a succession of early diverging branches, leading to a diplomonad, a microsporidian, a euglenoid plus kinetoplastids, an amoeba, and slime molds. Later, a nearly simultaneous radiation seems to occur into a number of taxa comprising the metazoa, the red alga, the sporozoa, the higher fungi, the ciliates, the green plants, plus some other less numerous groups. Because the red alga diverges late in the evolutionary tree, it does not seem to represent a very primitive organism as proposed on the basis of morphological and 5S rRNA sequence data. Asco- and basidiomycetes do not share a common ancestor in our tree as is generally accepted on the basis of conventional criteria. In contrast, when all alignment positions, rather than the more conservative ones, are used to construct the evolutionary tree, higher fungi do form a monophyletic cluster. The hypothesis that higher fungi and red algae might have shared a common origin has been put forward. Although the red alga and fungi seem to diverge at nearly the same time, no such relationship can be detected. The newly determined sequences can be fitted into a secondary structure model for srRNA, which is now relatively well established with the exception of uncertainties in a number of eukaryote-specific expansion areas. A specific structural model featuring a pseudoknot is proposed for one of these areas.
Collapse
Affiliation(s)
- L Hendriks
- Departement Biochemie, Universiteit Antwerpen (UIA), Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Doshi P, Bossie CA, Doonan JH, May GS, Morris NR. Two alpha-tubulin genes of Aspergillus nidulans encode divergent proteins. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:129-41. [PMID: 1672037 DOI: 10.1007/bf00282651] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have isolated and analyzed the tubA and tubB alpha-tubulin genes of Aspergillus nidulans. The nucleotide sequences of these genes predict polypeptides of 447 amino acids for tubA and 450 for tubB. The predicted amino acids sequences exhibit 28% divergence between the two polypeptides. This is the second known case of such high divergence between alpha-tubulins within the same species. The tubB gene is unique in that it codes for an extra glycine residue between what are usually the second and third amino acids. RNA blot analysis demonstrates that the tubA and tubB transcripts are each 1.8 kb long. The level of tubA transcript remains the same throughout the cell cycle. The level of tubB transcript does not change at any particular stage in the cell cycle but increases continuously during spore germination. The tubA gene was previously mapped to linkage group eight, and we have now mapped the tubB gene to linkage group four. Gene disruption in heterokaryons suggests that the phenotypic consequences of disruption are different for the tubA and tubB genes. Molecular disruption of tubA results in a block in nuclear division whereas in tubB it gives rise to abnormal cell and nuclear morphology.
Collapse
Affiliation(s)
- P Doshi
- Department of Pharmacology, UMDNJ/Robert Wood Johnson Medical School, Piscataway 08854
| | | | | | | | | |
Collapse
|
14
|
Drosophila scaffold-attached regions bind nuclear scaffolds and can function as ARS elements in both budding and fission yeasts. Mol Cell Biol 1990. [PMID: 2118998 DOI: 10.1128/mcb.10.10.5442] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone-depleted nuclei maintain sequence-specific interactions with genomic DNA at sites known as scaffold attachment regions (SARs) or matrix attachment regions. We have previously shown that in Saccharomyces cerevisiae, autonomously replicating sequence elements bind the nuclear scaffold. Here, we extend these observations to the fission yeast Schizosaccharomyces pombe. In addition, we show that four SARs previously mapped in the genomic DNA of Drosophila melanogaster bind in vitro to nuclear scaffolds from both yeast species. In view of these results, we have assayed the ability of the Drosophila SARs to promote autonomous replication of plasmids in the two yeast species. Two of the Drosophila SARs have autonomously replicating sequence activity in budding yeast, and three function in fission yeast, while four flanking non-SAR sequences are totally inactive in both.
Collapse
|
15
|
Abstract
U6 is the most conserved of the five small nuclear RNAs known to participate in pre-mRNA splicing. In the fission yeast Schizosaccharomyces pombe, the single-copy gene encoding this RNA is itself interrupted by an intron (T. Tani and Y. Ohshima, Nature (London) 337:87-90, 1989). Here we report analysis of the U6 genes from all four Schizosaccharomyces species, revealing that each is interrupted at an identical position by a homologous intron; in other groups, including ascomycete and basidiomycete fungi, as well as more distantly related organisms, the U6 gene is colinear with the RNA. The most parsimonious interpretation of our data is that the ancestral U6 gene did not contain an intron, but rather, it was acquired via a single relatively recent insertional event.
Collapse
|
16
|
Amati B, Gasser SM. Drosophila scaffold-attached regions bind nuclear scaffolds and can function as ARS elements in both budding and fission yeasts. Mol Cell Biol 1990; 10:5442-54. [PMID: 2118998 PMCID: PMC361251 DOI: 10.1128/mcb.10.10.5442-5454.1990] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Histone-depleted nuclei maintain sequence-specific interactions with genomic DNA at sites known as scaffold attachment regions (SARs) or matrix attachment regions. We have previously shown that in Saccharomyces cerevisiae, autonomously replicating sequence elements bind the nuclear scaffold. Here, we extend these observations to the fission yeast Schizosaccharomyces pombe. In addition, we show that four SARs previously mapped in the genomic DNA of Drosophila melanogaster bind in vitro to nuclear scaffolds from both yeast species. In view of these results, we have assayed the ability of the Drosophila SARs to promote autonomous replication of plasmids in the two yeast species. Two of the Drosophila SARs have autonomously replicating sequence activity in budding yeast, and three function in fission yeast, while four flanking non-SAR sequences are totally inactive in both.
Collapse
Affiliation(s)
- B Amati
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges s/Lausanne
| | | |
Collapse
|
17
|
Abstract
U6 is the most conserved of the five small nuclear RNAs known to participate in pre-mRNA splicing. In the fission yeast Schizosaccharomyces pombe, the single-copy gene encoding this RNA is itself interrupted by an intron (T. Tani and Y. Ohshima, Nature (London) 337:87-90, 1989). Here we report analysis of the U6 genes from all four Schizosaccharomyces species, revealing that each is interrupted at an identical position by a homologous intron; in other groups, including ascomycete and basidiomycete fungi, as well as more distantly related organisms, the U6 gene is colinear with the RNA. The most parsimonious interpretation of our data is that the ancestral U6 gene did not contain an intron, but rather, it was acquired via a single relatively recent insertional event.
Collapse
|
18
|
Tollervey D, Tessars G, Lührmann R. Immunoprecipitation distinguishes non-overlapping groups of snRNPs in Schizosaccharomyces pombe. Nucleic Acids Res 1990; 18:5207-12. [PMID: 2144896 PMCID: PMC332143 DOI: 10.1093/nar/18.17.5207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The large number of snRNAs in the fission yeast Schizosaccharomyces pombe can be divided into four non-overlapping groups by immunoprecipitation with antibodies directed against mammalian snRNP proteins. 1) Of the abundant snRNAs, anti-Sm sera precipitate only the spliceosomal snRNAs U1, U2, U4, U5 and U6. Surprisingly, three Sm-sera tested distinguish between U2, U4 and U5 and U1 from S.pombe; one precipitating only U1 and two precipitating U2, U4 and U5 but not U1. 2) A group of 11 moderately abundant snRNAs are not detectably precipitated by human anti-Sm sera, but are specifically precipitated by monoclonal antibody H57 specific for the human B/B' polypeptides. From Aspergillus nidulans this antibody also precipitates at least 12 snRNAs. 3) Anti-(U3)RNP sera do not precipitate the above snRNAs, but precipitate at least 6 further snRNAs, including the homologues of U3. Both the anti-(U3)RNP sera and H57 also efficiently precipitate a number of discrete non-capped RNAs. 4) A small number of additional snRNAs are not detectably precipitated by any anti-serum tested to date, further analysis may identify antisera specific for these snRNPs. Western blots of purified snRNP proteins were used to identify the S.pombe proteins responsible for these immunoprecipitations. Several Sm-sera decorate a 16.3kD protein which may be a D protein homologue, monoclonal H57 decorates a further protein of 16kD and an anti-(U3)RNP serum decorates the homologue of the 36kD U3-specific protein, fibrillarin.
Collapse
Affiliation(s)
- D Tollervey
- European Molecular Biology Laboratory, Heidelberg, FRG
| | | | | |
Collapse
|
19
|
Abstract
Screening for genes homologous to ras in Schizosaccharomyces pombe resulted in the isolation of a homolog of Saccharomyces cerevisiae YPT1. This S. pombe gene, named ypt3, has a coding capacity of 214 amino acids interrupted by two introns, and is essential for cell growth. Two more YPT1 homologs were isolated from S. pombe using a part of the ypt3 gene as the probe. One of them, named ypt1, is highly homologous to S. cerevisiae YPT1 and mouse ypt1 and is essential for cell growth. This gene has four introns and encodes 203 amino acids. Its cDNA placed downstream of the S. cerevisiae GAL7 promoter could complement S. cerevisiae ypt1-, indicating that Sp ypt1 and Sc YPT1 are functionally homologous. The other isolate, named ryh1, and a fourth homolog, ypt2, have been characterized by Gallwitz and co-workers. The ypt1, ypt2 and ypt3 genes, but not ryh1, constitute a family, their products having double cysteine as their C terminus and serine in place of a glycine residue highly conserved in ras proteins (mammalian Gly-12 or S. pombe Gly-17). The physiological roles of these genes appear to be distinct because each of them is indispensable for cell growth.
Collapse
Affiliation(s)
- S Miyake
- Institute of Medical Science, University of Tokyo, Japan
| | | |
Collapse
|
20
|
Duchesne LC, Anderson JB. Location and direction of transcription of the 5S rRNA gene in Armillaria. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/s0953-7562(09)80626-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Engelberg D, Poradosu E, Simchen G, Levitzki A. Adenylyl cyclase activity of the fission yeast Schizosaccharomyces pombe is not regulated by guanyl nucleotides. FEBS Lett 1990; 261:413-8. [PMID: 2178979 DOI: 10.1016/0014-5793(90)80605-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The adenylyl cyclase activity of the fission yeast Schizosaccharomyces pombe is localized to the plasma membrane of the cell. The enzyme utilizes Mn2+/ATP as substrate and free Mn2+ ions as an effector. Unlike the baker yeast Saccharomyces cerevisiae, S. pombe adenylyl cyclase does not utilize Mg2+/ATP as substrate and the activity is not stimulated by guanyl nucleotides. The optimal pH for the S. pombe adenylyl cyclase activity is 6.0. The activity dependence on ATP is cooperative with a Hill coefficient of 1.68 +/- 0.14.
Collapse
Affiliation(s)
- D Engelberg
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
22
|
The Nucleotide Sequence of the Small Ribosomal Subunit RNA of the Yeast Candida albicans and the Evolutionary Position of the Fungi among the Eukaryotes. Syst Appl Microbiol 1989. [DOI: 10.1016/s0723-2020(89)80066-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Smith TL. Disparate evolution of yeasts and filamentous fungi indicated by phylogenetic analysis of glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci U S A 1989; 86:7063-6. [PMID: 2674943 PMCID: PMC297994 DOI: 10.1073/pnas.86.18.7063] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genes encoding glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) from several evolutionarily disparate organisms were used to construct a phylogenetic tree by evolutionary parsimony. The GAPDH tree indicates that, in contrast to the presently accepted taxonomy of fungi, the yeasts Saccharomyces cerevisiae and Zygosaccharomyces rouxii evolved separately from the filamentous ascomycetes (such as Aspergillus nidulans) with which these yeasts are classified. According to this tree, the Saccharomyces-like yeasts evolved very early in the course of eukaryotic evolution, whereas both ascomycete and basidiomycete filamentous fungi diverged much later through a common ancestor.
Collapse
Affiliation(s)
- T L Smith
- Biotechnology Center, University of Wisconsin-Madison
| |
Collapse
|
24
|
|
25
|
Yasui A, Eker AP, Koken M. Existence and expression of photoreactivation repair genes in various yeast species. Mutat Res 1989; 217:3-10. [PMID: 2911265 DOI: 10.1016/0921-8777(89)90029-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoreactivation repair (Phr) activities in cell extracts of 13 different yeast species were measured by the Haemophilus influenzae transformation assay. Five species including Schizosaccharomyces pombe showed no or low enzymatic activity. In contrast to the other species, chromosomal DNAs of these 5 species did not show detectable hybridization using a DNA fragment of the photolyase PHR1 gene of Saccharomyces cervisiae as a probe even at a low stringency condition. When the PHR1 gene was attached to the 5'-flanking sequence of the iso-1-cytochrome c (CYC-1) gene of S. cerevisiae and introduced into S. pombe cells, the transformants acquired a high Phr activity, indicating that the PHR1 gene alone can provide a Phr-negative species with this repair activity and the light-absorbing cofactor(s) must be present in S. pombe. Our results also demonstrated that the 5'-flanking sequence of the S. cerevisiae CYC-1 gene works in S. pombe as a regulatory element.
Collapse
Affiliation(s)
- A Yasui
- Research Institute for Tuberculosis and Cancer, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
26
|
Qu LH, Nicoloso M, Bachellerie JP. Phylogenetic calibration of the 5' terminal domain of large rRNA achieved by determining twenty eucaryotic sequences. J Mol Evol 1988; 28:113-24. [PMID: 3148731 DOI: 10.1007/bf02143502] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Due to their high information content and their particular mode of variation, large rRNA molecules potentially represent powerful indicators of phylogenetic relationships. Even partial sequences may suffice to generate reliable estimations, provided they correspond to well-chosen portions of the molecule. We have systematically analyzed a specific portion of the large rRNA (the region extending over nearly 400 nucleotides from the 5' end) as a general index of eucaryotic phylogeny. By means of fast and direct rRNA sequencing, we have determined the sequence of this region for 20 additional eucaryotes, including several representatives of each vertebrate class, an invertebrate metazoan (mussel), a fungus (Schizosaccharomyces pombe), and three higher plants. Comparative treatment of these new data and previously reported rRNA sequences shows that this region can serve as an indicator of eucaryotic phylogeny for evaluating both long-range and short-range relationships. Its conservative domains appear to possess a rather uniform rate of nucleotide changes in all the eucaryotic lineages analyzed and the phylogenetic tree we derived agrees with classical views.
Collapse
Affiliation(s)
- L H Qu
- Centre de Recherche de Biochimie et de Genetique Cellulaires du CNRS, Toulouse, France
| | | | | |
Collapse
|
27
|
Abstract
The thraustochytrids, a group of marine, monocentric protists are reconsidered phylogenetically drawing upon ultrastructural and biochemical characters. They appear to have affiliations with both heterokont groups and other phyla of marine organisms, but still remain an essentially independent entity.
Collapse
Affiliation(s)
- A H Chamberlain
- Department of Microbiology, University of Surrey, Guildford, U.K
| | | |
Collapse
|
28
|
Manske CL, Chapman DJ. Nonuniformity of nucleotide substitution rates in molecular evolution: computer simulation and analysis of 5S ribosomal RNA sequences. J Mol Evol 1987; 26:226-51. [PMID: 3129569 DOI: 10.1007/bf02099855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of temporal (among different branches of a phylogeny) and spatial (among different nucleotide sites within a gene) nonuniformities of nucleotide substitution rates on the construction of phylogenetic trees from nucleotide sequences are addressed. Spatial nonuniformity may be estimated by using Shannon's (1948) entropy formula to measure the Relative Nucleotide Variability (RNV) at each nucleotide site in an aligned set of sequences; this is demonstrated by a comparative analysis of 5S rRNAs. New methods of constructing phylogenetic trees are proposed that augment the Unweighted Pair-Group Using Arithmetic Averages (UPGMA) algorithm by estimating and compensating for both spatial and temporal nonuniformity in substitution rates. These methods are evaluated by computer simulations of 5S rRNA evolution that include both kinds of nonuniformities. It was found that the proposed Reference Ratio Method improved both the ability to reconstruct the correct topology of a tree and also the estimation of branch lengths as compared to UPGMA. A previous method (Farris et al. 1970; Klotz et al. 1979; Li 1981) was found to be less successful in reconstructing topologies when there is high probability of multiple mutations at some sites. Phylogenetic analyses of 5S rRNA sequences support the endosymbiotic origins of both chloroplasts and mitochondria, even though the latter exhibit an accelerated rate of nucleotide substitution. Phylogenetic trees also reveal an adaptive radiation within the eubacteria and another within the eukaryotes for the origins of most major phyla within each group during the Precambrian era.
Collapse
Affiliation(s)
- C L Manske
- Department of Biology, University of California, Los Angeles 90024
| | | |
Collapse
|
29
|
Allshire RC, Cranston G, Gosden JR, Maule JC, Hastie ND, Fantes PA. A fission yeast chromosome can replicate autonomously in mouse cells. Cell 1987; 50:391-403. [PMID: 3475186 DOI: 10.1016/0092-8674(87)90493-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To test the functional capacity of a fission yeast chromosome in mouse cells, a strain of the fission yeast Schizosaccharomyces pombe, ED628 Int5, was constructed. A plasmid bearing the SV2NEO gene, which can confer G418 resistance to mouse cells, was integrated at the ura4 locus on S. pombe chromosome III. S. pombe Int5 chromosomes were introduced into mouse C127 cells by PEG-facilitated protoplast fusion. Here we describe two independent G418-resistant cell lines with distinct growth characteristics, F1.1 and F7.1, and examine the structure of material derived from S. pombe Int5 chromosome III in these lines. F1.1 is shown to contain a single rearranged block of chromatin from S. pombe chromosome III integrated into a mouse chromosome, maintained in the absence of selection. In contrast, the data for F7.1 are consistent with the presence of linear, unintegrated copies of S. pombe chromosome III, which are apparently intact and maintained in an unstable but autonomous state. The unstable maintenance of this chromosome may be due to defective centromere function leading to missegregation at mitosis or to over- or underreplication.
Collapse
|
30
|
Bartoszewski S, Borsuk P, Kern I, Bartnik E. Microheterogeneity in Aspergillus nidulans 5S rRNA genes. Curr Genet 1987; 11:571-3. [PMID: 3329974 DOI: 10.1007/bf00384621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have determined the sequence of 4 Aspergillus nidulans 5S rRNA genes and compared it with 4 previously established sequences. No extensive homologies are found in 5' flanking sequences, but in the 3' flanks of two genes and two pseudogenes similar sequences are observed. In the coding sequences differences occur in 7 positions. Two 5S rRNA genes which are found in one plasmid 1.1 kb apart are located in opposite orientations.
Collapse
|
31
|
Simanis V, Carr AM, Goss M, Lee MG, MacNeill SA, Nurse P. Cell cycle regulation in yeasts and man: towards a unifying mechanism. Antonie Van Leeuwenhoek 1987; 53:319-23. [PMID: 3318688 DOI: 10.1007/bf00400555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Abstract
A critique of both autogeneous and symbiotic hypotheses for the origin of microtubules and cilia and eukaryotic flagella (undulipodia) is presented. It is proposed that spirochetes provided the ancient eukaryotic cell with microtubules twice; cytoplasmic microtubules originated from phagocytosed spirochetes whereas axopodial tubules of undulipodia were transformed from ectosymbiotic spirochetes. A role in transport for microtubules in spirochetes together with a detailed scenario by which free-living spirochetes attached as ectosymbionts and subsequently differentiated into undulipodia is outlined. A mechanism for the continuity of motility in the form of "training" of the novel microtubular axoneme by the ancient spirochete motility apparatus is proposed. Transitional states (missing links) are unlikely to have survived. Constraints regarding the nature of the host cell are discussed. A corresponding flowchart of the early evolution of eukaryotes is presented in which plastids and mitochondria are polyphyletic in their origins.
Collapse
|
33
|
|
34
|
Primary structures of the 5S ribosomal RNAs of 11 arthropods and applicability of 5S RNA to the study of metazoan evolution. J Mol Evol 1986. [DOI: 10.1007/bf02099957] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Jahnke KD, Bahnweg G. Assessing natural relationships in the Basidiomycetes by DNA analysis. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/s0007-1536(86)80019-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Kwok S, White TJ, Taylor JW. Evolutionary relationships between fungi, red algae, and other simple eucaryotes inferred from total DNA hybridizations to a cloned basidiomycete ribosomal DNA. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0147-5975(86)90004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Matsuura ET, Domenico JM, Cummings DJ. An additional class II intron with homology to reverse transcriptase in rapidly senescing Podospora anserina. Curr Genet 1986; 10:915-22. [PMID: 2452024 DOI: 10.1007/bf00398289] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Senescence in Podospora anserina is maternally inherited and the parameters of senescence are race specific. We have compared the restriction enzyme fragment maps of race A, the most rapidly senescing race, with race s and have found three inserts in race A which are not present in race s mitochondrial DNA. Fragment A was mapped and found to be located downstream of the so-called alpha senDNA, a class II intron, near the 5' end of the COI gene, separated from alpha senDNA by two class I introns. DNA sequence analysis showed that fragment A is also a class II intron, but with only 10% DNA sequence homology to alpha senDNA. Like alpha senDNA, intron A contains significant amino acid homology with known reverse transcriptases. The importance of this additional class II intron in the mitochondrial genome with the relative rate of senescence in race A is discussed.
Collapse
Affiliation(s)
- E T Matsuura
- Department of Microbiology and Immunology, University of Colorado Health Sciences Center, Denver 80262
| | | | | |
Collapse
|
38
|
Marchionni M, Gilbert W. The triosephosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell 1986; 46:133-41. [PMID: 3755078 DOI: 10.1016/0092-8674(86)90867-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have cloned and characterized a cDNA and genomic DNA for the triosephosphate isomerase expressed in maize roots. The gene is interrupted by eight introns. If we compare this gene with that for the protein in chicken, which has six introns, we see that five of the introns are at identical places, one has shifted by three codons, and two are totally new. This great matching leads us to conclude that the introns were in place before the plant-animal divergence, and that the parental gene had at least eight introns, two of which were lost in the line that leads to animals.
Collapse
|
39
|
Blanz PA, Gottschalk M. Systematic Position of Septobasidium, Graphiola and other Basidiomycetes as Deduced on the Basis of their 5S Ribosomal RNA Nucleotide Sequences. Syst Appl Microbiol 1986. [DOI: 10.1016/s0723-2020(86)80159-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Willekens P, Huysmans E, Vandenberghe A, De Wachter R. Archaebacterial 5 S ribosomal RNA: Nucleotide sequence in two methanogen species, secondary structure models, and molecular evolution. Syst Appl Microbiol 1986. [DOI: 10.1016/s0723-2020(86)80138-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Durkacz B, Carr A, Nurse P. Transcription of the cdc2 cell cycle control gene of the fission yeast Schizosaccharomyces pombe. EMBO J 1986; 5:369-73. [PMID: 16453669 PMCID: PMC1166741 DOI: 10.1002/j.1460-2075.1986.tb04221.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cdc2 gene plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. It is required in G1 at start for commitment to the mitotic cycle and then again in G2 where it determines the timing of mitosis. We have identified the cdc2 gene transcript as a 1.6-kb polyadenylated mRNA. This transcript is generated after four introns have been spliced out; there is no evidence for differential splicing. The level of cdc2 transcript does not change during a shift between cell proliferation and stationary phase or during the mitotic cell cycle. Overproduction of the cdc2 transcript does not alter the normal cell cycle. We conclude that the cell cycle is not controlled by changes in either the cdc2 transcript level or in its processing. A gene adjacent to cdc2 called cdc2L has also been identified. This encodes three transcripts of 1.0-1.3 kb in length, at least two of which are cell cycle regulated. Their levels peak during S-phase and are increased in certain cell cycle mutants. This gene may code for a product which is required for the mitotic cell cycle.
Collapse
Affiliation(s)
- B Durkacz
- Cell Cycle Control Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
42
|
Erdmann VA, Pieler T, Wolters J, Digweed M, Vogel D, Hartmann R. Comparative Structural and Functional Studies on Small Ribosomal RNAs. SPRINGER SERIES IN MOLECULAR BIOLOGY 1986. [DOI: 10.1007/978-1-4612-4884-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Trinkl H, Wolf K. The mosaic cox1 gene in the mitochondrial genome of Schizosaccharomyces pombe: minimal structural requirements and evolution of group I introns. Gene 1986; 45:289-97. [PMID: 3026914 DOI: 10.1016/0378-1119(86)90027-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The gene encoding subunit 1 of cytochrome oxidase (cox1) in the fission yeast Schizosaccharomyces pombe is polymorphic. In strain 50 it contains two group I introns with open reading frames (ORFs) in phase with the upstream exons (Lang, 1984). In strain EF1 two additional very short group I introns which do not possess ORFs were detected by DNA sequencing. These two introns (AI2a and AI3) share distinct characteristics concerning their nucleotide sequence and secondary structure and are located at identical positions as the introns AI4 and AI5 beta, respectively, in the cox1 gene of Saccharomyces cerevisiae. The sequence homology of the cob and cox1 genes around the splice points of introns AI2a, AI4, and BI4 (cob intron 4) might reflect horizontal gene transfer between the distantly related species S. pombe and S. cerevisiae.
Collapse
|
44
|
Käufer NF, Simanis V, Nurse P. Fission yeast Schizosaccharomyces pombe correctly excises a mammalian RNA transcript intervening sequence. Nature 1985; 318:78-80. [PMID: 2997624 DOI: 10.1038/318078a0] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Study of heterologous gene expression in the budding yeast Saccharomyces cerevisiae has shown that this organism is incapable of correctly removing intervening sequences from transcripts of higher eukaryotic genes. This is probably due to the stringent requirement for the presence of a TACTAAC box close to the 3' end of the intervening sequence if splicing in S. cerevisiae is to occur. Comparison of the introns found in the fission yeast Schizosaccharomyces pombe has identified conserved sequences similar to those found in higher eukaryotes. Therefore, we have investigated whether Schiz. pombe is capable of accurately excising intervening sequences from the transcripts of higher eukarotic genes. We show here that both the 5' and 3' splice sites of the simian virus 40 (SV40) small-T antigen transcript are accurately utilized when cloned viral DNA is expressed in Schiz. pombe cells. These data suggest that Schiz. pombe may be a better model system than S. cerevisiae for the genetic study of RNA splicing and for expressing higher eukaryotic genes.
Collapse
|
45
|
Michel F, Cummings DJ. Analysis of class I introns in a mitochondrial plasmid associated with senescence of Podospora anserina reveals extraordinary resemblance to the Tetrahymena ribosomal intron. Curr Genet 1985; 10:69-79. [PMID: 3940064 DOI: 10.1007/bf00418495] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Recently, the nucleotide sequences for three "mitochondrial plasmids" associated with senescence of Podospora anserina were determined (Cummings et al. 1985). One of these sequences, corresponding to the plasmid termed epsilon senDNA, contains three class I introns, all within a protein coding sequence equivalent to the mammalian "URF1" gene. Here, we present primary and secondary structure analyses for two of these introns as well as a partial analysis for the third, which extends beyond the DNA sequence determined. With regard to both primary and secondary structure, the closest known relative of intron 1 is the self-splicing intron in the large ribosomal RNA gene of Tetrahymena. One secondary structure domain at the periphery of intron 1 and Tetrahymena models is also present in intron 2. The latter intron is the longest known class I member and contains remnants of two protein-coding sequences, one of which is split by the other. Evolutionary processes that might be responsible for the unusual structure of introns 1 and 2 are discussed.
Collapse
Affiliation(s)
- F Michel
- Centre de Génétique Moléculaire du CNRS, Laboratoire associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | |
Collapse
|
46
|
Lang BF, Ahne F, Bonen L. The mitochondrial genome of the fission yeast Schizosaccharomyces pombe. The cytochrome b gene has an intron closely related to the first two introns in the Saccharomyces cerevisiae cox1 gene. J Mol Biol 1985; 184:353-66. [PMID: 4046021 DOI: 10.1016/0022-2836(85)90286-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The DNA sequence of the cob region of the Schizosaccharomyces pombe mitochondrial DNA has been determined. The cytochrome b structural gene is interrupted by an intron of 2526 base-pairs, which has an open reading frame of 2421 base-pairs in phase with the upstream exon. The position of the intron differs from those found in the cob genes of Saccharomyces cerevisiae, Aspergillus nidulans or Neurospora crassa. The Sch. pombe cob intron has the potential of assuming an RNA secondary structure almost identical to that proposed for the first two cox1 introns (group II) in S. cerevisiae and the p1-cox1 intron in Podospora anserina. It has most of the consensus nucleotides in the central core structure described for this group of introns and its comparison with other group II introns allows the identification of an additional conserved nucleotide stretch. A comparison of the predicted protein sequences of group II intronic coding regions reveals three highly conserved blocks showing pairwise amino acid identities of 34 to 53%. These regions comprise over 50% of the coding length of the intron but do not include the 5' region, which has strong secondary structural features. In addition to the potential intron folding, long helical structures involving repetitive sequences can be formed in the flanking cob exon regions. A comparison of the Sch. pombe cytochrome b sequence with those available from other organisms indicates that Sch. pombe is evolutionarily distant from both budding yeasts and filamentous fungi. As was seen for the Sch. pombe cox1 gene (Lang, 1984), the cob exons are translated using the universal genetic code and this distinguishes Sch. pombe mitochondria from all other fungal and animal mitochondrial systems.
Collapse
|
47
|
Sloof P, Van den Burg J, Voogd A, Benne R, Agostinelli M, Borst P, Gutell R, Noller H. Further characterization of the extremely small mitochondrial ribosomal RNAs from trypanosomes: a detailed comparison of the 9S and 12S RNAs from Crithidia fasciculata and Trypanosoma brucei with rRNAs from other organisms. Nucleic Acids Res 1985; 13:4171-90. [PMID: 2409531 PMCID: PMC341304 DOI: 10.1093/nar/13.11.4171] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have determined the nucleotide sequence of a maxi-circle segment from the insect trypanosome Crithidia fasciculata mitochondrial DNA, on which the genes for the major maxicircle transcripts of 9S and 12S are localized. The 5'-terminal sequences of these RNAs were determined by wandering spot analysis. The map coordinates of the 9S and 12S RNAs from Trypanosoma brucei were adjusted with respect to a previous report with the aid of primer extension analysis with reverse transcriptase. This approach allowed us to align the corresponding genes from both organisms which show an overall sequence homology of 77%. The 9S and 12S RNA genes from the two trypanosome species contain sequences, closely related to some of the regions that are universally conserved among ribosomal RNAs from members of the three primary kingdoms and their organelles, even though the overall level of sequence homology is extremely low. These universal sequences occur at positions in the 9S and 12S RNAs that are analogous to those occupied by their counterparts in authentic ribosomal RNAs. The characteristic secondary structure elements flanking these universal sequences in genuine ribosomal RNAs can also be formed in the trypanosomal 9S and 12S RNAs. These results provide unequivocal evidence for a ribosomal function of the 9S and 12S RNAs of trypanosomal mitochondria, notwithstanding their extremely small size (estimated to be 612 and 1141 nucleotides in C. fasciculata, 611 and 1150 nucleotides in T. brucei) and their unusual base composition (83% A+U).
Collapse
|
48
|
Delihas N, Andersen J, Berns D. Phylogeny of the 5S ribosomal RNA from Synechococcus lividus II: the cyanobacterial/chloroplast 5S RNAs form a common structural class. J Mol Evol 1985; 21:334-7. [PMID: 6443313 DOI: 10.1007/bf02115651] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complete nucleotide sequence of the 5S ribosomal RNA from the cyanobacterium Synechococcus lividus II has been determined. The sequence is (sequence in text) This 5S RNA has the cyanobacterial- and chloroplast-specific nucleotide insertion between positions 30 and 31 (using the numbering system of the generalized eubacterial 5S RNA) and the chloroplast-specific nucleotide-deletion signature between positions 34 and 39. The 5S RNA of S. lividus II has 27 base differences compared with the 5S RNA of the related strain S. lividus III. This large difference may reflect an ancient divergence between these two organisms. The electrophoretic mobilities on nondenaturing polyacrylamide gels of renatured 5S RNAs from S. lividus II, S. lividus III, and spinach chloroplasts are identical, but differ considerably from that of Escherichia coli 5S RNA. This most likely reflects differences in higher-order structure between the 5S RNA of E. coli and these cyanobacterial and chloroplast 5S RNAs.
Collapse
|
49
|
Genes for respiratory chain proteins and ribosomal RNAs are present on a 16-kilobase-pair DNA species from Chlamydomonas reinhardtii mitochondria. Proc Natl Acad Sci U S A 1985; 82:3340-4. [PMID: 2987921 PMCID: PMC397771 DOI: 10.1073/pnas.82.10.3340] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have used heterologous hybridization and DNA sequence analysis to determine whether the 16-kilobase-pair (kbp) DNA from Chlamydomonas reinhardtii mitochondria is the functional equivalent of mtDNA in other eukaryotes. Restriction fragments corresponding to a continuous internal stretch spanning 75% of the 16-kbp DNA have been cloned and mapped, and regions hybridizing with probes specific for the cytochrome oxidase subunit I [CytOx I (acronym COI)] and apocytochrome b (Cyt b) genes of yeast and the mitochondrial 26S and 18S rRNA genes of wheat have been identified. Sequence analysis has verified the presence of CytOx I and the large and small subunit rRNA genes in the C. reinhardtii 16-kbp DNA. In the region of the 16-kbp DNA corresponding to exon 4 in the yeast CytOx I gene, the derived amino acid sequence is 61% and 63% identical with the CytOx I amino acid sequences of yeast and human mitochondria, respectively. Notably, tryptophan is specified by TGG rather than by TGA in this section of the C. reinhardtii CytOx I gene. A probe from the CytOx I region of the 16-kbp DNA hybridizes only with this 16-kbp DNA in Southern blots of total cellular DNA from C. reinhardtii but with a larger DNA species in the total cellular DNA of C. moewusii and C. eugametos--two species that lack a 16-kbp DNA. These observations provide evidence that C. reinhardtii 16-kbp DNA comprises at least part of the mitochondrial genome of this organism and that a homologous DNA exists in other species of Chlamydomonas.
Collapse
|
50
|
Erdmann VA, Wolters J, Huysmans E, De Wachter R. Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences. Nucleic Acids Res 1985; 13 Suppl:r105-53. [PMID: 3923444 PMCID: PMC320506 DOI: 10.1093/nar/13.suppl.r105] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|