1
|
Reichman JR, Vize PD. Separate introns gained within short and long soluble peridinin-chlorophyll a-protein genes during radiation of Symbiodinium (Dinophyceae) clade A and B lineages. PLoS One 2014; 9:e110608. [PMID: 25330037 PMCID: PMC4201569 DOI: 10.1371/journal.pone.0110608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Here we document introns in two Symbiodinium clades that were most likely gained following divergence of this genus from other peridinin-containing dinoflagellate lineages. Soluble peridinin-chlorophyll a-proteins (sPCP) occur in short and long forms in different species. Duplication and fusion of short sPCP genes produced long sPCP genes. All short and long sPCP genes characterized to date, including those from free living species and Symbiodinium sp. 203 (clade C/type C2) are intronless. However, we observed that long sPCP genes from two Caribbean Symbiodinium clade B isolates each contained two introns. To test the hypothesis that introns were gained during radiation of clade B, we compared sPCP genomic and cDNA sequences from 13 additional distinct Caribbean and Pacific Symbiodinium clade A, B, and F isolates. Long sPCP genes from all clade B/B1 and B/B19 descendants contain orthologs of both introns. Short sPCP genes from S. pilosum (A/A2) and S. muscatinei (B/B4) plus long sPCP genes from S. microadriaticum (A/A1) and S. kawagutii (F/F1) are intronless. Short sPCP genes of S. microadriaticum have a third unique intron. Symbiodinium clade B long sPCP sequences are useful for assessing divergence among B1 and B19 descendants. Phylogenetic analyses of coding sequences from four dinoflagellate orders indicate that introns were gained independently during radiation of Symbiodinium clades A and B. Long sPCP introns were present in the most recent common ancestor of Symbiodinium clade B core types B1 and B19, which apparently diverged sometime during the Miocene. The clade A short sPCP intron was either gained by S. microadriaticum or possibly by the ancestor of Symbiodinium types A/A1, A3, A4 and A5. The timing of short sPCP intron gain in Symbiodinium clade A is less certain. But, all sPCP introns were gained after fusion of ancestral short sPCP genes, which we confirm as occurring once in dinoflagellate evolution.
Collapse
Affiliation(s)
- Jay R. Reichman
- US Environmental Protection Agency, Western Ecology Division, Corvallis, Oregon, United States of America
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, Oregon, United States of America
- * E-mail:
| | - Peter D. Vize
- University of Calgary, Department of Biological Sciences, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Herzog M, Maroteaux L. Dinoflagellate 17S rRNA sequence inferred from the gene sequence: Evolutionary implications. Proc Natl Acad Sci U S A 2010; 83:8644-8. [PMID: 16578795 PMCID: PMC386987 DOI: 10.1073/pnas.83.22.8644] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the complete sequence of the nuclear-encoded small-ribosomal-subunit RNA inferred from the cloned gene sequence of the dinoflagellate Prorocentrum micans. The dinoflagellate 17S rRNA sequence of 1798 nucleotides is contained in a family of 200 tandemly repeated genes per haploid genome. A tentative model of the secondary structure of P. micans 17S rRNA is presented. This sequence is compared with the small-ribosomal-subunit rRNA of Xenopus laevis (Animalia), Saccharomyces cerevisiae (Fungi), Zea mays (Planta), Dictyostelium discoideum (Protoctista), and Halobacterium volcanii (Monera). Although the secondary structure of the dinoflagellate 17S rRNA presents most of the eukaryotic characteristics, it contains sufficient archaeobacterial-like structural features to reinforce the view that dinoflagellates branch off very early from the eukaryotic lineage.
Collapse
Affiliation(s)
- M Herzog
- Laboratoire Arago, Paris VI University, Centre National de la Recherche Scientifique UA 117, 66650 Banyuls sur Mer, France
| | | |
Collapse
|
3
|
Alverca E, Franca S, Díaz de la Espina SM. Topology of splicing and snRNP biogenesis in dinoflagellate nuclei. Biol Cell 2007; 98:709-20. [PMID: 16875467 DOI: 10.1042/bc20050083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND INFORMATION Dinoflagellates are protists that are hypothesized to have experienced a secondary loss of histones. Amongst eukaryotes, they are unique in lacking these proteins. To date, information on the mechanisms involving remodelling, transcription and splicing of their chromatin is limited. Dinoflagellate genes lack TATA boxes and downstream polyadenylation sites and particular linear arrangements. They have an alpha-amanitin-sensitive RNA polymerase, specific transcription factors and regulators, and both transcriptional and post-transcriptional regulation of gene expression. Dinoflagellates produce either polycistronic or discrete mRNAs, and have conserved snRNAs (small nuclear RNAs), indicating that their genes are spliced. RESULTS Five representative dinoflagellate species (Amphidinium carterae, Akashiwo sanguinea, Alexandrium lusitanicum, Alexandrium fundyense and Prorocentrum micans), which show diversity in their DNA content, nuclear organization and taxonomic position, were investigated. The nuclear distribution and ultrastructural organization of splicing and snRNP (small nuclear ribonucleoprotein) biogenesis were determined by fluorescent and electron microscopy immunolabelling with Y12 sera [recognizing the sDMA (symmetrical dimethylarginine) domain of Sm and other nuclear proteins], anti-p105-PANA [proliferation-associated nuclear antigen; a marker of IGs (interchromatin granules)] and anti-DNA antibodies. In parallel, ultrastructural analysis, including cytochemical staining for RNA, phosphorylated proteins and DNA, was carried out. Splicing factors were distributed in a diffuse perichromosomal layer containing perichromatin granules and fibrils that co-localized with the decondensed peripheral DNA loops, but not with the main chromosome body. Interchromosomal domains with IGs and Cajal-like bodies were also detected. CONCLUSIONS Dinoflagellates are rather dissimilar to other eukaryotes in their genomes, their mechanisms of gene expression and their chromosome ultrastructure. However, they share common splicing nuclear domains and snRNP biogenesis with that of other eukaryotes.
Collapse
Affiliation(s)
- Elsa Alverca
- Instituto Nacional de Saúde Dr Ricardo Jorge, Av. Padre Cruz 1649-016, Lisboa, Portugal
| | | | | |
Collapse
|
4
|
Moreno Díaz de la Espina S, Alverca E, Cuadrado A, Franca S. Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur J Cell Biol 2005; 84:137-49. [PMID: 15819396 DOI: 10.1016/j.ejcb.2005.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dinoflagellates are fascinating protists that have attracted researchers from different fields. The free-living species are major primary producers and the cause of harmful algal blooms sometimes associated with red tides. Dinoflagellates lack histones and nucleosomes and present a unique genome and chromosome organization, being considered the only living knockouts of histones. Their plastids contain genes organized in unigenic minicircles. Basic cell structure, biochemistry and molecular phylogeny place the dinoflagellates firmly among the eukaryotes. They have G1-S-G2-M cell cycles, repetitive sequences, ribosomal genes in tandem, nuclear matrix, snRNAs, and eukaryotic cytoplasm, whereas their nuclear DNA is different, from base composition to chromosome organization. They have a high G + C content, highly methylated and rare bases such as 5-hydroxymethyluracil (HOMeU), no TATA boxes, and form distinct interphasic dinochromosomes with a liquid crystalline organization of DNA, stabilized by metal cations and structural RNA. Without histones and with a protein:DNA mass ratio (1:10) lower than prokaryotes, they need a different way of packing their huge amounts of DNA into a functional chromatin. In spite of the high interest in the dinoflagellate system in genetics, molecular and cellular biology, their analysis until now has been very restricted. We review here the main achievements in the characterization of the genome, nucleus and chromosomes in this diversified phylum. The recent discovery of a eukaryotic structural and functional differentiation in the dinochromosomes and of the organization of gene expression in them, demonstrate that in spite of the secondary loss of histones, that produce a lack of nucleosomal and supranucleosomal chromatin organization, they keep a functional nuclear organization closer to eukaryotes than to prokaryotes.
Collapse
|
5
|
Mougin A, Torterotot F, Branlant C, Jacobson MR, Huang Q, Pederson T. A 3'-terminal minihelix in the precursor of human spliceosomal U2 small nuclear RNA. J Biol Chem 2002; 277:23137-42. [PMID: 11956214 DOI: 10.1074/jbc.m202258200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
U2 RNA is one of five small nuclear RNAs that participate in the majority of mRNA splicing. In addition to its role in mRNA splicing, the biosynthesis of U2 RNA and three of the other spliceosomal RNAs is itself an intriguing process involving nuclear export followed by 5'-cap hypermethylation, assembly with specific proteins, 3' end processing, and then nuclear import. Previous work has identified sequences near the 3' end of pre-U2 RNA that are required for accurate and efficient processing. In this study, we have investigated the structural basis of U2 RNA 3' end processing by chemical and enzymatic probing methods. Our results demonstrate that the 3' end of pre-U2 RNA is a minihelix with an estimated stabilization free energy of -6.9 kcal/mol. Parallel RNA structure mapping experiments with mutant pre-U2 RNAs revealed that the presence of this 3' minihelix is itself not required for in vitro 3'-processing of pre-U2 RNA, in support of earlier studies implicating internal regions of pre-U2 RNA. Other considerations raise the possibility that this distinctive structural motif at the 3' end of pre-U2 RNA plays a role in the cleavage of the precursor from its longer primary transcript or in its nucleocytoplasmic traffic.
Collapse
Affiliation(s)
- Annie Mougin
- Unité Mixte Recherche 7567 CNRS-Université Henri Poincaré Nancy I, Maturation des ARN et Enzymologie Moléculaire, Université H. Poincaré, 54506 Vandoeuvre-les Nancy, France
| | | | | | | | | | | |
Collapse
|
6
|
Mínguez A, Franca S, Moreno Díaz de la Espina S. Dinoflagellates have a eukaryotic nuclear matrix with lamin-like proteins and topoisomerase II. J Cell Sci 1994; 107 ( Pt 10):2861-73. [PMID: 7876353 DOI: 10.1242/jcs.107.10.2861] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unicellular Dinoflagellates represent the only eukaryotic Phylum lacking histones and nucleosomes. To investigate whether Dinoflagellates do have a nuclear matrix that would modulate the supramolecular organization of their non-nucleosomal DNA and chromosomes, cells of the free-living unarmored Dinoflagellate Amphidinium carterae were encapsulated in agarose microbeads and submitted to sequential extraction with non-ionic detergents, nucleases and 2 M NaCl. Our results demonstrate that this species has a residual nuclear matrix similar to that of vertebrates and higher plants. The cytoskeleton-nuclear matrix complex of A. carterae shows a relatively intricate polypeptide pattern. Immunoblots with different antibodies reveal several intermediate filament types of proteins, one of which is immunologically related to vertebrate lamins, confirming that these proteins are ancestral members of the IF family, which is highly conserved in eukaryotes. A topoisomerase II homologue has also been identified in the nuclear matrix, suggesting that these structures could play a role in organizing the Dinoflagellate DNA in loop domains. Taken together our results demonstrate that the nuclear matrix is an early acquisition of the eukaryotic nucleus, independent of histones and nucleosomes in such a way that the mechanisms controlling the two levels of organization in eukaryotic chromatin would be molecularly and evolutionarily independent.
Collapse
Affiliation(s)
- A Mínguez
- Laboratorio de Biología Celular y Molecular Vegetal, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | |
Collapse
|
7
|
Jakab G, Kis M, Solymosy F. Nucleotide sequence of U5 RNA from a green alga, Chlamydomonas reinhardtii. Nucleic Acids Res 1992; 20:5224. [PMID: 1408838 PMCID: PMC334309 DOI: 10.1093/nar/20.19.5224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- G Jakab
- Institute of Plant Physiology, Hungarian Academy of Sciences, Szeged
| | | | | |
Collapse
|
8
|
Lenaers G, Maroteaux L, Michot B, Herzog M. Dinoflagellates in evolution. A molecular phylogenetic analysis of large subunit ribosomal RNA. J Mol Evol 1989; 29:40-51. [PMID: 2504929 DOI: 10.1007/bf02106180] [Citation(s) in RCA: 194] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The sequence of the large subunit ribosomal RNA (LsuRNA) gene of the dinoflagellate Prorocentrum micans has been determined. The inferred rRNA sequence [3408 nucleotides (nt)] is presented in its most probable secondary structure based on compensatory mutations, energy, and conservation criteria. No introns have been found but a hidden break is present in the second variable domain, 690 nt from the 5' end, as judged by agarose gel electrophoresis and primer extension experiments. Prorocentrum micans LsuRNA length and G+C content are close to those of ciliates and yeast. The conserved portions of the molecule (1900 nt) have been aligned with corresponding sequences from various eukaryotes, including five protista, one metaphyta, and three metazoa. An extensive phylogenetic study was performed, comparing two phenetic methods (neighbor joining on difference matrix, and Fitch and Margoliash on Knuc values matrix) and one cladistic (parsimony). The three methods led to similar tree topologies, except for the emergence of yeast that groups with ciliates and dinoflagellates when phenetic methods are used, but emerges later in the most parsimonious tree. This discrepancy was checked by statistical analyses on reduced trees (limited to four species) inferred using parsimony and evolutionary parsimony methods. The data support the phenetic tree topologies and a close relationship between dinoflagellates, ciliates, and yeast.
Collapse
Affiliation(s)
- G Lenaers
- Département de Biologie Cellulaire et Moléculaire, Laboratoire Arago, Université de Paris, VI, CNRS UA 117, Banyuis sur mer, France
| | | | | | | |
Collapse
|
9
|
|
10
|
Affiliation(s)
- R Reddy
- Baylor College of Medicine, Department of Pharmacology, Houston, TX 77030
| |
Collapse
|
11
|
Kiss T, Antal M, Solymosy F. Plant small nuclear RNAs. II. U6 RNA and a 4.5SI-like RNA are present in plant nuclei. Nucleic Acids Res 1987; 15:543-60. [PMID: 2434924 PMCID: PMC340451 DOI: 10.1093/nar/15.2.543] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Two small nuclear RNA species (U6 RNA and a 4.5SI-like RNA) not described so far for plants were detected in broad bean (Vicia faba L.) nuclei. U6 RNA is 98 nucleotides long, contains psi and methylated nucleotides and shows a surprisingly high degree of sequence homology (80%) with its rat counterpart, particularly in the middle part (a 57 nucleotide-long stretch) of the molecule, where it amounts to 98%. The 4.5SI-like RNA, similar in its structure to 4.5SI RNA detected so far only in rodent nuclei, is 94 nucleotides long, contains psi and an unidentified nucleotide and exhibits 52% overall sequence homology with rat 4.5SI RNA. A block of 20 consecutive nucleotides at the 5' end of the molecule is conserved between broad bean 4.5SI-like RNA and rat 4.5SI RNA. The presence of the two RNA polymerase III internal promoter consensus sequences in 4.5SI-like RNA suggests that it is an RNA polymerase III transcript.
Collapse
|
12
|
|
13
|
Pedersen N, Hellung-Larsen P, Engberg J. Small nuclear RNAs in the ciliate Tetrahymena. Nucleic Acids Res 1985; 13:4203-24. [PMID: 2409533 PMCID: PMC341306 DOI: 10.1093/nar/13.11.4203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have isolated and partially characterized a family of small nuclear RNAs (snRNAs) from three different species of the protozoan Tetrahymena. We find six distinct snRNAs ranging in size from 100 to 250 nucleotides. The two largest snRNAs, as well as an abundant, heterogenous group of smaller snRNAs are found in the nucleolar RNA fraction. None of the snRNAs are transcription products of the ribosomal RNA gene or its flanking regions, as shown by hybridization tests. The snRNAs are metabolically stable as determined by pulse/chase experiments and several of them contain a number of modified nuclotides. The snRNAs from Tetrahymena all have slightly different sizes from mammalian snRNAs. The cap structure of the snRNAs from Tetrahymena differs from that of the snRNAs from mammalian cells, but has not yet been fully characterized. The relative amount of snRNAs to total RNA is less in Tetrahymena (greater than 0.1%) than in mammalian cells (2%).
Collapse
|
14
|
Reddy R, Henning D, Liu MH, Spector D, Busch H. Identification and characterization of a polyadenylated small RNA (s-poly A+ RNA) in dinoflagellates. Biochem Biophys Res Commun 1985; 127:552-7. [PMID: 2579655 DOI: 10.1016/s0006-291x(85)80195-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A 104 nucleotide-long small RNA, referred to as s-poly A+ RNA, containing 30 adenosine residues on its 3' -end was found in dinoflagellates, purified and its nucleotide sequence was determined. The sequence is: (sequence text) The polyadenylation signal AAUAAA was not found in this RNA; this result indicates that the 30 nucleotide-long poly A on the 3' -end is either coded for by this gene, or the poly A chain is added on this small RNA by a mechanism different from that for polyadenylation of messenger RNAs. Two polyadenylated small RNAs identified previously were implicated in differentiation of chicken heart muscle cells (Deshpande, A. K., Jakowlew, S. B., Arnold, H., Crawford, P. A. and Siddiqui, M. A. Q. (1977) J. Biol. Chem. 252, 6521-6527), and in brain specific mRNA transcription (Sutcliffe, J. G., Milner, R. J., Gottesfeld, J. M. and Lerner, R. A. (1984) Nature 309, 237-241). This RNA is the first polyadenylated small RNA to be sequenced.
Collapse
|
15
|
|
16
|
|
17
|
Abstract
We have investigated the sequences of the major small nuclear RNAs of Drosophila cultured cells, with the objective of elucidating phylogenetically conserved primary and secondary structures by comparison of the data with previously determined sequences of these RNAs in vertebrate species. Our results reveal striking degrees of conservation between each Drosophila RNA and its vertebrate cognate, and also demonstrate blocks of homology among the Drosophila small nuclear RNAs, as previously described for vertebrates. The most conserved features include the 5' terminal region of U1 RNA, though to function in pre-mRNA splicing, most of the regions of U4 RNA recently implicated in 3' processing of pre-mRNA, and the major snRNP protein binding site ("domain A") that is also shared by vertebrate U1, U2, U4 and U5 RNAs. Several other conserved features have been revealed, suggesting additional regions of functional significance in these RNAs and also providing further insights into the evolutionary history of the small nuclear RNAs.
Collapse
|