1
|
Nguyen SV, Stroeva E, Germann MW. Simplifying DNA NMR spectroscopy by silencing GH8 and AH8 resonances. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Standara S, Maliňáková K, Marek R, Marek J, Hocek M, Vaara J, Straka M. Understanding the NMR chemical shifts for 6-halopurines: role of structure, solvent and relativistic effects. Phys Chem Chem Phys 2010; 12:5126-39. [DOI: 10.1039/b921383j] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Niimura N, Bau R. Neutron protein crystallography: beyond the folding structure of biological macromolecules. Acta Crystallogr A 2007; 64:12-22. [DOI: 10.1107/s0108767307043498] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 09/05/2007] [Indexed: 11/10/2022] Open
Abstract
Neutron diffraction provides an experimental method of directly locating H atoms in proteins, a technique complementary to ultra-high-resolution X-ray diffraction. Three different types of neutron diffractometers for biological macromolecules have been constructed in Japan, France and the USA, and they have been used to determine the crystal structures of proteins up to resolution limits of 1.5–2.5 Å. Results relating to H-atom positions and hydration patterns in proteins have been obtained from these studies. Examples include the geometrical details of hydrogen bonds, the role of H atoms in enzymatic activity, CH3configuration, H/D exchange in proteins and oligonucleotides, and the dynamical behavior of hydration structures, all of which have been extracted from these structural results and reviewed. Other techniques, such as the growth of large single crystals and a database of hydrogen and hydration in proteins, are described.
Collapse
|
4
|
Evidence for the production of fluorescent pyrazine derivatives using supercritical water. J Supercrit Fluids 2007. [DOI: 10.1016/j.supflu.2006.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Seggerson K, Moore PB. Structure and stability of variants of the sarcin-ricin loop of 28S rRNA: NMR studies of the prokaryotic SRL and a functional mutant. RNA (NEW YORK, N.Y.) 1998; 4:1203-1215. [PMID: 9769095 PMCID: PMC1369693 DOI: 10.1017/s1355838298980773] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
NMR has been used to examine the conformational properties of two variants of the sarcin-ricin loop (SRL) from eukaryotic 28S rRNA, which is essential for elongation factor interactions with the ribosome: (1) its bacterial homologue, which lacks two of the bases that flank the conserved 12-nt sequence in the middle of the SRL, but which is functionally equivalent, and (2) a functionally active variant of the eukaryotic SRL in which the bulged G within the conserved sequence is replaced by an A. The data indicate that, although the bacterial SRL is less stable than the eukaryotic SRL, its conformation is closely similar. Furthermore, even though replacement of the bulged G in the SRL with an A seriously destabilizes the center of the loop, its effect on the overall conformation of the SRL appears to be modest. In the course of this work, it was serendipitously discovered that at neutral pH, the C8 proton of the bulged G, in both PRO-SRL and E73, exchanges about 10 times faster than it does in GMP.
Collapse
Affiliation(s)
- K Seggerson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
6
|
Walters KJ, Russu IM. Sequence dependence of purine C8H exchange kinetics in the dodecamer 5'-d(CGCGAATTCGCG)-3'. Biopolymers 1993; 33:943-51. [PMID: 8318667 DOI: 10.1002/bip.360330610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proton nmr spectroscopy is used to measure the deuterium exchange rates of C8 protons in individual purines of the dodecamer 5'-d(CGCGAATTCGCG)-3' and their temperature dependence. In perfect agreement with results from tritium labeling and laser Raman spectroscopy, we find that the DNA secondary structure retards the rates of purine C8H exchange. The largest effects are observed for the C8 protons of adenines whose rates of exchange at 40 degrees C are 3- to 4-fold lower than that in 5'-adenosine monophosphate. Moreover, the retardation of exchange at the central adenine is greater than that at its 5'-neighbor. For the guanines, the exchange rates are up to 2-fold lower than that in 5'-guanosine monophosphate, and the largest retardation is observed for the bases at positions 10 and 12. A dependence on base sequence is also observed for the activation energy for exchange. The activation energy is largest for the adenines and its value is 4 kcal/mol higher than that in 5'-adenosine monophosphate. The lowest activation energy is observed for the guanine in position 4 and the value is the same as in 5'-guanosine monophosphate. These results demonstrate the sensitivity of the purine C8H exchange kinetics to sequence-dependent conformational features of B-DNA in solution state.
Collapse
Affiliation(s)
- K J Walters
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| | | |
Collapse
|
7
|
Fritzsche H, Brandes R, Rupprecht A, Song Z, Weidlich T, Kearns DR. The formation of A-DNA in NaDNA films is suppressed by netropsin. Nucleic Acids Res 1992; 20:1223-8. [PMID: 1313963 PMCID: PMC312162 DOI: 10.1093/nar/20.6.1223] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oriented films of NaDNA complexed with netropsin were studied with deuterium nuclear magnetic resonance (2H NMR), X-ray diffraction and ultraviolet (UV) linear dichroism to obtain information about the influence of netropsin on the structural arrangement of the DNA bases and on the B-A transition. The results of these studies clearly demonstrate a strong suppression of the formation of A-DNA at relative humidities (RHs) down to about 50%. The suppression was complete in the NaDNA-netropsin complex studied with 2H NMR which had a netropsin input ratio, r, of 0.22 drug/base pair. The sample used for UV linear dichroism had a similar input ratio while the X-ray diffraction samples had input ratios between 0.033 and 0.39 drug/base pair. Together, the results of these studies are in agreement with previous infrared (IR) linear dichroism studies of the conformation of the sugar-phosphate backbone in NaDNA-netropsin complexes, which showed that the B-A transition is suppressed for r-values down to approximately 0.1 drug/base pair (Fritzsche, H., Rupprecht, A. and Richter, M., Nucleic Acids Res. 12 (1984) 9165-9177).
Collapse
Affiliation(s)
- H Fritzsche
- Institute of Microbiology and Experimental Therapy, Jena, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Lamba OP, Becka R, Thomas GJ. Adenine and guanine 8CH exchange in nucleic acids: resolution and measurement by Raman optical multichannel analysis. Biopolymers 1990; 29:1465-77. [PMID: 2361156 DOI: 10.1002/bip.360291013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deuterium exchange of 8C protons of adenine and guanine in nucleic acids is conveniently monitored by laser Raman spectrophotometry, and the average exchange rate so determined [kA + kG] can be exploited as a dynamic probe of the secondary structure of DNA or RNA [J. M. Benevides and G. J. Thomas, Jr. (1985) Biopolymers 24, 667-682]. The present work describes a rapid Raman procedure, based upon optical multichannel analysis, which permits discrimination of the different 8CH exchange rates, kA of adenine and kG of guanine, in a single experimental protocol. For this procedure, simultaneous measurements are made of the intensity decay or frequency shift in separately resolved Raman bands of adenine and guanine, each of which is sensitive only to 8C deuteration of its respective purine. Resolution of the rates kA and kG is demonstrated for the mononucleotide mixtures, 5'-rAMP + 5'-rGMP and 5'-dAMP + 5'-dGMP, for the polynucleotides poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC), for calf thymus DNA, and for the 17 base-pair operator OR3. We show that the different exchange rates of adenine and guanine, in nucleotide mixtures and in DNA, may also be calculated independently from intensity decay of the composite 1481-cm-1 band, comprising overlapped adenine and guanine components, over a time domain that encompasses two distinct regimes: (1) a relatively more rapid exchange of guanine, and (2) a concurrent slower exchange of adenine. Both methods developed here yield consistent results. We find, first, that exchange of guanine is approximately twofold more rapid than that of adenine when both purines are present in the same structure and solvent environment, presumably a consequence of the greater basicity of the 7N site of guanine. Second, we find that adenine suffers greater retardation of exchange than guanine when both purines are incorporated into a "classical" B-DNA secondary structure, such as that of calf thymus DNA. This finding suggests different microenvironments at the 7N-8C loci of adenine and guanine in aqueous B-DNA. We also confirm that adenine residues of B-form poly(dA-dT).poly(dA-dT) exchange much more slowly than those of other B-DNA sequences, implying a secondary structure for the alternating-AT sequence with unusual stereochemistry in the major groove. The greater resistance of adenine than guanine to 8CH exchange in the B-DNA secondary structure is more evident in high molecular weight calf thymus DNA and in the alternating AT and GC copolymer duplexes than in the smaller 17 base-pair operator OR3.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- O P Lamba
- Division of Cell Biology and Biophysics, School of Basic Life Sciences, University of Missouri--Kansas City 64110-2499
| | | | | |
Collapse
|
9
|
Grütter R, Otting G, Wüthrich K, Leupin W. OR3 operator of bacteriophage lambda in a 23 base-pair DNA fragment: sequence-specific 1H NMR assignments for the non-labile protons and comparison with the isolated 17 base-pair operator. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1988; 16:279-86. [PMID: 2853668 DOI: 10.1007/bf00254064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sequence-specific 1H NMR assignments are presented for a non-selfcomplementary 23-base-pair DNA duplex of molecular weight 15,000 daltons, containing the OR3 repressor binding site of bacteriophage lambda as the central core. The NMR techniques used were mainly phase-sensitive two-dimensional NOE and 2Q spectroscopy, the latter to overcome overlap problems within the spectral region of the deoxyribose spin-systems. Direct sequential NOE connectivities are observed between adenine 2 H and deoxyribose 1' protons. We propose the use of these connectivities as a check of the assignments of C1' and A2 protons, which have independently been derived via other assignment pathways.
Collapse
Affiliation(s)
- R Grütter
- Institut für Molekularbiologie und Biophysik, ETH-Hönggerberg, Zürich, Switzerland
| | | | | | | |
Collapse
|
10
|
Van de Ven FJ, Hilbers CW. Nucleic acids and nuclear magnetic resonance. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 178:1-38. [PMID: 3060357 DOI: 10.1111/j.1432-1033.1988.tb14425.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- F J Van de Ven
- Department of Biophysical Chemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|
11
|
Brandes R, Vold RR, Kearns DR, Rupprecht A. Static disorder and librational motions of the purine bases in films of oriented Li-DNA. J Mol Biol 1988; 202:321-32. [PMID: 3172220 DOI: 10.1016/0022-2836(88)90461-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Solid-state 2H nuclear magnetic resonance line shapes have been obtained from folded films of oriented Li-DNA molecules with the purine bases selectively labeled with deuterium at the 8-position. From line shape simulations, the static base tilts as well as the anisotropic motional amplitudes were determined as a function of hydration level and temperature. It was found that the average tilt angle of the bases is close to 0 degrees and at a hydration of ten water molecules per nucleotide the distribution width of tilt angles about this average cannot be larger than 9 degrees (standard deviation). A slightly increased distribution width is observed at low hydration levels. The motional amplitudes are hydration dependent, with the tilting motion ranging from 4 degrees for the driest, up to 15 degrees for the wettest sample, and slightly larger amplitudes are observed for the twisting motion. The amplitude of the twisting motion is unaffected by a temperature decrease down to -60 degrees C, in contrast to the tilting motion that is suppressed at low temperatures.
Collapse
Affiliation(s)
- R Brandes
- Department of Chemistry, University of California-San Diego, La Jolla 92093
| | | | | | | |
Collapse
|
12
|
Leroy JL, Kochoyan M, Huynh-Dinh T, Guéron M. Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton. J Mol Biol 1988; 200:223-38. [PMID: 2836594 DOI: 10.1016/0022-2836(88)90236-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Using nuclear magnetic resonance line broadening, longitudinal relaxation and magnetization transfer from water, we have measured the imino proton exchange times in the duplex form of the 10-mer d-CGCGATCGCG and in seven other deoxy-duplexes, as a function of the concentration of exchange catalysts, principally ammonia. All exchange times are catalyst dependent. Base-pair lifetimes are obtained by extrapolation to infinite concentration of ammonia. Lifetimes of internal base-pairs are in the range of milliseconds at 35 degrees C and ten times more at 0 degrees C. Lifetimes of neighboring pairs are different, hence base-pairs open one at a time. Lifetimes of d(G.C) are about three times longer than those of d(A.T). The nature of neighbors usually has little effect, but lifetime anomalies that may be related to sequence and/or structure have been observed. In contrast, there is no anomaly in the A.T base-pair lifetimes of d-CGCGA[TA]5TCGCG, a model duplex of poly[d(A-T)].poly[d(A-T)]. The d(A.T) lifetimes are comparable to those of r(A.U) that we reported previously. End effects on base-pair lifetimes are limited to two base-pairs. The low efficiency of exchange catalysts is ascribed to the small dissociation constant of the deoxy base-pairs, and helps to explain why exchange catalysis had been overlooked in the past. This resulted in a hundredfold overestimation of base-pair lifetimes. Cytosine amino proteins have been studied in the duplex of d-CGm5CGCG. Exchange from the closed base-pair is indicated. Hence, the use of an amino exchange rate to evaluate the base-pair dissociation constant would result in erroneous, overestimated values. Catalyzed imino proton exchange is at this time the safest and most powerful, if not the only probe of base-pair kinetics. We propose that the single base-pair opening event characterized here may be the only mode of base-pair disruption, at temperatures well below the melting transition.
Collapse
Affiliation(s)
- J L Leroy
- Groupe de Biophysique, Ecole Polytechnique, Palaiseau, France
| | | | | | | |
Collapse
|
13
|
Lesnik EA, Maslova RN, Agranovich IM, Varshavsky YaM. Conformational peculiarities of polynucleotides with a nonrandom base sequence according to the 1H----3H exchange rate in C8H groups of purinic residues. J Biomol Struct Dyn 1987; 5:601-14. [PMID: 3271486 DOI: 10.1080/07391102.1987.10506415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have determined the 1H----3H exchange rate constants between water and C8H groups of purinic residues of alternating polynucleotides poly(dA-dT).poly(dA-dT), poly(dG-dC).poly(dG-dC) and poly(dA-dC).poly(dG-dT) as well as homopolynucleotides poly(dA).poly(dT) and poly(dG).poly(dC) in aqueous solutions with high-salt concentrations (3 M NaCl and 4-6 M CsF), in water-ethanol (60%) solution and in 0.15 M NaCl at 25 degrees C. The rate constants for adenine (kA) and guanine (kG) of polynucleotides were compared with corresponding constants for E. coli DNA. dGMP nd dAMP at the same conditions. The relation between exchange rates and conformations of polynucleotides permits the study of their conformational peculiarities in solution. Of three alternating polynucleotides examined in 0.15 M NaCl the exchange retardation was observed only for poly(dA-dT).poly(dA-dT) as compared with that in B-DNA, which is in good agreement with the B-alternating "wrinkled" DNA model. The conformations of poly(dG-dC).poly(dG-dC) and poly(dA-dC).poly(dG-dT), according to the exchange data obtained are within the B form. For homopolynucleotides in 0.15 M NaCl, the KA value for poly(dA).poly(dT) is nearly the same as kA for B-DNA, which indicates the similarity of their conformations, whereas the kG value for poly(dG).poly(dC) is 1.7-fold lower in comparison with the kG value in B-DNA. This seems to be connected with the existence of B = A conformation equilibrium for poly(dG).poly(dC) in solution. The increase of NaCl concentration to 3 M results in a B----Z transition in the case of poly(dG-dC).poly(dG-dC) and in the shift of B = A equilibrium towards the A-form in the case of poly(dG).poly(dC) as is evidenced by alterations of their KG values. Poly(dA-dT).poly(dA-dT) in 6 M CsF and poly(dA-dC).poly(dG-dT) in 4.3 M CsF maintain their inherent conformations in 0.15 M NaCl in spite of the fact that they are characterised by the "X-type" CD-spectrum at these conditions. According to the exchange data the conformation of poly(dA).poly(dT) in 6 M CsF corresponds to the "heteronomous" DNA model or some other structure with lower accessibility of C8H groups of adenylic residues.
Collapse
Affiliation(s)
- E A Lesnik
- Institute of Molecular Biology, USSR Academy of Sciences, Moscow
| | | | | | | |
Collapse
|