1
|
Xie Y, Wu L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Chen X. Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Front Microbiol 2019; 10:941. [PMID: 31134006 PMCID: PMC6517553 DOI: 10.3389/fmicb.2019.00941] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha-herpesvirus thymidine kinase (TK) genes are virulence-related genes and are nonessential for viral replication; they are often preferred target genes for the construction of gene-deleted attenuated vaccines and genetically engineered vectors for inserting and expressing foreign genes. The enzymes encoded by TK genes are key kinases in the nucleoside salvage pathway and have significant substrate diversity, especially the herpes simplex virus 1 (HSV-1) TK enzyme, which phosphorylates four nucleosides and various nucleoside analogues. Hence, the HSV-1 TK gene is exploited for the treatment of viral infections, as a suicide gene in antitumor therapy, and even for the regulation of stem cell transplantation and treatment of parasitic infection. This review introduces the effects of α-herpesvirus TK genes on viral virulence and infection in the host and classifies and summarizes the current main application domains and potential uses of these genes. In particular, mechanisms of action, clinical limitations, and antiviral and antitumor therapy development strategies are discussed.
Collapse
Affiliation(s)
- Ying Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Ma Y, Liu D, Gao J, Wang X. Similar regulation of two distinct UL24 promoters by regulatory proteins of equine herpesvirus type 1 (EHV-1). FEBS Lett 2015; 589:1467-75. [PMID: 25937123 DOI: 10.1016/j.febslet.2015.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
To characterise the pattern of the transcriptional regulation of equine herpesvirus type 1 (EHV-1) UL24 by regulatory proteins, we identified two distinct promoter regions and two transcription initiation (Tci) sites located upstream of the UL24 open reading frame (ORF). The ORF proximal promoter exhibited higher cis-activity than that of the distal one. Contrary to the former, the latter performed its function dependent on an initiator (INR) due to its lack of a TATA box. Our results showed that the EHV-1 regulatory proteins EICP0, EICP22 and ETIF trans-activated the two promoters, whereas IEP and IR2P displayed negative regulation. In summary, the regulatory proteins exhibited similar regulatory patterns for the two distinct promoters of EHV-1 UL24.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jun Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
| |
Collapse
|
3
|
Carvalho RF, Spilki FR, Cunha EM, Stocco RC, Arns CW. Molecular data of UL24 homolog gene (ORF37) from Brazilian isolates of equine herpesvirus type 1. Res Vet Sci 2011; 93:494-7. [PMID: 21684566 DOI: 10.1016/j.rvsc.2011.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 05/06/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
Equine herpesvirus type 1 (EHV-1) is associated with abortions, respiratory distress, and neurological disturbances in horses. The ORF37 of EHV-1 encodes a protein homolog to UL24 gene product of human herpesvirus that has been associated with neurovirulence. In the present work, ORF37 PCR fragments derived from two Brazilian EHV-1 isolates, a German isolate and an American reference strain were sequenced and characterized by molecular phylogenetic analysis. This genomic region is highly conserved an allowed to infer genetic distances between EHV-1 strains and other animal herpesvirus.
Collapse
Affiliation(s)
- R F Carvalho
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, CEP 05503-900, Brazil.
| | | | | | | | | |
Collapse
|
4
|
Hussein ITM, Miguel RN, Tiley LS, Field HJ. Substrate specificity and molecular modelling of the feline herpesvirus-1 thymidine kinase. Arch Virol 2008; 153:495-505. [DOI: 10.1007/s00705-007-0021-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/13/2007] [Indexed: 11/28/2022]
|
5
|
Li H, Liu S, Kong X. Characterization of the genes encoding UL24, TK and gH proteins from duck enteritis virus (DEV): a proof for the classification of DEV. Virus Genes 2006; 33:221-7. [PMID: 16972038 DOI: 10.1007/s11262-005-0060-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/28/2005] [Indexed: 10/24/2022]
Abstract
Duck enteritis virus (DEV) is classified to the family Herpesviridae, but has not been grouped into any genus so far. Four overlapped fragments were amplified from the DEV genome with polymerase chain reaction (PCR). The assembled length of the four fragments was 6,202 bp, which contained the genes encoding unique long (UL) 24, thymidine kinase (TK) and glycoprotein H (gH) proteins. The UL24 overlapped with TK by 64 nucleotides (nt), in a head-to-head transcription orientation, and the TK and gH had the same transcription orientation. The comparison of amino acid sequences of these 3 deduced DEV proteins with other 12 alphaherpesviruses displayed 5 highly conserved sites in the UL24, as well as another 5 consensus regions in the TK and 4 consensus regions in the gH. The RNA polymerase II transcriptional control elements were identified in all the UL24, TK and gH of DEV. These elements included core promoters, TATA motifs and polyadenylation sites. Phylogenetic analysis for the genetic classification of DEV in the Alphaherpesvirinae subfamily with other 12 alphaherpesviruses was computed. The result showed that DEV was more closely related to avian herpesviruses, except infectious laryngotracheitis virus (ILTV), than to other alphaherpesviruses. Conclusively, according to the phylogenesis-based analysis and the homology comparison of functional domains of UL24, TK and gH, DEV should be classified to a separate genus of the Alphaherpesvirinae subfamily in the family Herpesviridae.
Collapse
Affiliation(s)
- Huixin Li
- Division of Avian Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Science, Harbin 150001, People's Republic of China
| | | | | |
Collapse
|
6
|
Derbigny WA, Kim SK, Jang HK, O'Callaghan DJ. EHV-1 EICP22 protein sequences that mediate its physical interaction with the immediate-early protein are not sufficient to enhance the trans-activation activity of the IE protein. Virus Res 2002; 84:1-15. [PMID: 11900834 DOI: 10.1016/s0168-1702(01)00377-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The early 293 amino acid EICP22 protein (EICP22P) of equine herpesvirus 1 localizes within the nucleus and functions as an accessory regulatory protein (J. Virol. 68 (1994) 4329). Transient transfection assays indicated that although the EICP22P by itself only minimally trans-activates EHV-1 promoters, the EICP22P functions synergistically with the immediate-early protein (IEP) to enhance expression of EHV-1 early genes (J. Virol. 71 (1997) 1004). We previously showed that the EICP22 protein enhances the DNA-binding activity of the EHV-1 IEP and that it also physically interacts with the IEP (J. Virol. 74 (2000) 1425). In this communication, we employed transient trans-activation assays utilizing EICP22P deletion mutants to address whether the sequences required for EICP22P-IEP physical interactions are essential for EICP22P's ability to interact synergistically with the IEP. Assays employing various classes of the EHV-1 promoters fused to the chloramphenicol acetyl-transferase (CAT) reporter gene indicated that: (1) neither full length nor any of the EICP22P mutants tested was able to overcome repression of the IE promoter elicited by the IEP, (2) the full-length EICP22P interacted synergistically with the IEP to trans-activate the early and late promoters tested, and (3) all of the EICP22P mutants, including those that were able to physically interact with IEP and itself, failed to function synergistically with the IEP to trans-activate representative EHV-1 early and late promoters. The results suggest that EICP22P sequences required for its interaction with the IE protein are not sufficient to mediate its synergistic effect on the trans-activation function of the IEP. The possible explanations as to why sequences in addition to those that mediate EICP22P-IEP interaction and EICP22P self-interactions are essential for the synergistic function of EICP22P are discussed.
Collapse
Affiliation(s)
- Wilbert A Derbigny
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
7
|
Tsai MF, Yu HT, Tzeng HF, Leu JH, Chou CM, Huang CJ, Wang CH, Lin JY, Kou GH, Lo CF. Identification and characterization of a shrimp white spot syndrome virus (WSSV) gene that encodes a novel chimeric polypeptide of cellular-type thymidine kinase and thymidylate kinase. Virology 2000; 277:100-10. [PMID: 11062040 DOI: 10.1006/viro.2000.0597] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
From previously constructed genomic libraries of a Taiwan WSSV isolate, a putative WSSV tk-tmk gene was identified. Uniquely, the open reading frame (ORF) of this gene was predicted to encode a novel chimeric protein of 388 amino acids with significant homology to two proteins: thymidine kinase (TK) and thymidylate kinase (TMK). Northern blot analysis with a WSSV tk-tmk-specific riboprobe detected a major transcript of 1.6 kb. When healthy adult Penaeus monodon shrimp were inoculated with WSSV, the tk-tmk gene transcript was first detected by RT-PCR analysis at 4 h postinfection and transcription levels continued to increase over the first 18 h. The gene's major in vitro transcription and translation product, equivalent to the predicted size (43 kDa), is a single chimeric protein that includes both the TK and TMK functional motifs. Evidence for phylogenetic analysis and sequence alignment suggested that the gene may have resulted from the fusion of a cellular-type TK gene and a cellular-type TMK gene. Its unique arrangement may also provide a valuable gene marker for WSSV.
Collapse
Affiliation(s)
- M F Tsai
- Department of Zoology, Institute of Biochemistry, Taipei, 106, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Carvalho R, Passos LM, Martins AS. Development of a differential multiplex PCR assay for equine herpesvirus 1 and 4 as a diagnostic tool. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2000; 47:351-9. [PMID: 10900826 DOI: 10.1046/j.1439-0450.2000.00361.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, a multiplex polymerase chain reaction (PCR) procedure was developed for differentiation of strains and field isolates of equine herpesvirus type 1 (EHV-1) and type 4 (EHV-4). Specific oli-gonucleotide primers were combined to amplify the thymidine kinase (TK) gene region of EHV-1 and EHV-4, which would yield fragments of different lengths for each virus in the same amplification reaction. The specificity of the largest PCR amplicon for EHV-4 was confirmed by restriction digestion with HindIII. The multiplex PCR proved to be a fast and sensitive method for typing EHV-1 and EHV-4 isolates and for detection and differentiation of both viruses in field samples in which infectious virus is no longer available. The sensitivity was improved by combining cycling optimization and visualization of PCR products in ethidium bromide and silver-stained acrylamide gels.
Collapse
Affiliation(s)
- R Carvalho
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, UFMG, Belo Horizonte, Brazil
| | | | | |
Collapse
|
9
|
Pilger BD, Perozzo R, Alber F, Wurth C, Folkers G, Scapozza L. Substrate diversity of herpes simplex virus thymidine kinase. Impact Of the kinematics of the enzyme. J Biol Chem 1999; 274:31967-73. [PMID: 10542226 DOI: 10.1074/jbc.274.45.31967] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus type 1 (HSV 1) thymidine kinase (TK) exhibits an extensive substrate diversity for nucleobases and sugar moieties, in contrast to other TKs. This substrate diversity is the crucial molecular basis of selective antiviral and suicide gene therapy. The mechanisms of substrate binding of HSV 1 TK were studied by means of site-directed mutagenesis combined with isothermal calorimetric measurements and guided by theoretical calculations and sequence comparison. The results show the link between the exceptionally broad substrate diversity of HSV 1 TK and the presence of structural features such as the residue triad His-58/Met-128/Tyr-172. The mutation of Met-128 into a Phe and the double mutant M128F/Y172F result in mutants that have lost their activity. However, by exchanging His to form the triple mutant H58L/M128F/Y172F, the enzyme regains activity. Strikingly, this triple mutant becomes resistant toward acyclovir. Furthermore, we give evidence for the importance of Glu-225 of the flexible LID region for the catalytic reaction. The data presented give new insights to understand mechanisms ruling substrate diversity and thus are crucial for both the development of new antiviral drugs and engineering of mutant TKs apt to accept novel substrate analogs for gene therapeutic approaches.
Collapse
Affiliation(s)
- B D Pilger
- Department of Pharmacy, Swiss Federal Institute of Technology, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
10
|
Cannon JS, Hamzeh F, Moore S, Nicholas J, Ambinder RF. Human herpesvirus 8-encoded thymidine kinase and phosphotransferase homologues confer sensitivity to ganciclovir. J Virol 1999; 73:4786-93. [PMID: 10233939 PMCID: PMC112521 DOI: 10.1128/jvi.73.6.4786-4793.1999] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) sensitivity to the nucleoside analog ganciclovir (GCV) suggests the presence of a virally encoded kinase that catalyzes the initial phosphorylation of GCV. Analysis of the HHV-8 genome identified two candidate kinases: proteins encoded by open reading frame (ORF) 21, with homology to the herpesvirus thymidine kinases (TK), and ORF 36, with homology to the herpesvirus phosphotransferases (PT). Experiments presented here show that both ORF 21 and ORF 36 encode GCV kinase activities as demonstrated by GCV phosphorylation and GCV-mediated cell death. In both regards the PT homologue ORF 36 was more active than the TK homologue ORF 21. ORF 21, but not ORF 36, weakly sensitized cells to killing by penciclovir. Neither ORF sensitized cells to killing by (E)-5-(2-bromovinyl)-2'-deoxyuridine.
Collapse
Affiliation(s)
- J S Cannon
- Departments of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
11
|
Moore DM, Zsak L, Neilan JG, Lu Z, Rock DL. The African swine fever virus thymidine kinase gene is required for efficient replication in swine macrophages and for virulence in swine. J Virol 1998; 72:10310-5. [PMID: 9811782 PMCID: PMC110620 DOI: 10.1128/jvi.72.12.10310-10315.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1998] [Accepted: 09/02/1998] [Indexed: 11/20/2022] Open
Abstract
African swine fever virus (ASFV) replicates in the cytoplasm of infected cells and contains genes encoding a number of enzymes needed for DNA synthesis, including a thymidine kinase (TK) gene. Recombinant TK gene deletion viruses were produced by using two highly pathogenic isolates of ASFV through homologous recombination with an ASFV p72 promoter-beta-glucuronidase indicator cassette (p72GUS) flanked by ASFV sequences targeting the TK region. Attempts to isolate double-crossover TK gene deletion mutants on swine macrophages failed, suggesting a growth deficiency of TK- ASFV on macrophages. Two pathogenic ASFV isolates, ASFV Malawi and ASFV Haiti, partially adapted to Vero cells, were used successfully to construct TK deletion viruses on Vero cells. The selected viruses grew well on Vero cells, but both mutants exhibited a growth defect on swine macrophages at low multiplicities of infection (MOI), yielding 0.1 to 1.0% of wild-type levels. At high MOI, the macrophage growth defect was not apparent. The Malawi TK deletion mutant showed reduced virulence for swine, producing transient fevers, lower viremia titers, and reduced mortality. In contrast, 100% mortality was observed for swine inoculated with the TK+ revertant virus. Swine surviving TK- ASFV infection remained free of clinical signs of African swine fever following subsequent challenge with the parental pathogenic ASFV. The data indicate that the TK gene of ASFV is important for growth in swine macrophages in vitro and is a virus virulence factor in swine.
Collapse
Affiliation(s)
- D M Moore
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944-0848, USA.
| | | | | | | | | |
Collapse
|
12
|
Chen SH, Cook WJ, Grove KL, Coen DM. Human thymidine kinase can functionally replace herpes simplex virus type 1 thymidine kinase for viral replication in mouse sensory ganglia and reactivation from latency upon explant. J Virol 1998; 72:6710-5. [PMID: 9658118 PMCID: PMC109874 DOI: 10.1128/jvi.72.8.6710-6715.1998] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Herpes simplex virus type 1 thymidine kinase exhibits a strikingly broad substrate specificity. It is capable of phosphorylating deoxythymidine and deoxyuridine as does human thymidine kinase, deoxycytidine as does human deoxycytidine kinase, the cytosolic kinase whose amino acid sequence it most closely resembles, and thymidylate as does human thymidylate kinase. Following peripheral inoculation of mice, viral thymidine kinase is ordinarily required for viral replication in ganglia and for reactivation from latency following ganglionic explant. To determine which activity of the viral kinase is important for replication and reactivation in mouse ganglia, recombinant viruses lacking viral thymidine kinase but expressing individual human kinases were constructed. Each recombinant virus expressed the appropriate kinase activity with early kinetics following infection of cultured cells. The virus expressing human thymidine kinase exhibited thymidine phosphorylation activity equivalent to approximately 5% of that of wild-type virus in a quantitative plaque autoradiography assay. Nevertheless, it was competent for ganglionic replication and reactivation following corneal inoculation of mice. The virus expressing human thymidylate kinase was partially competent for these activities despite failing to express detectable thymidine kinase activity. The virus expressing human deoxycytidine kinase failed to replicate acutely in neurons or to reactivate from latency. Therefore, it appears that low levels of thymidine phosphorylation suffice to fulfill the role of the viral enzyme in ganglia and that this role can be partially fulfilled by thymidylate kinase activity alone.
Collapse
Affiliation(s)
- S H Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
13
|
Guettari N, Loubière L, Brisson E, Klatzmann D. Use of herpes simplex virus thymidine kinase to improve the antiviral activity of zidovudine. Virology 1997; 235:398-405. [PMID: 9281520 DOI: 10.1006/viro.1997.8706] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many antiviral drugs must be metabolized to their active form by cellular enzymes. Their antiviral activity may therefore be limited by an inefficient metabolism, leading to low intracellular concentration of the active form or to the accumulation of toxic intermediate metabolites. Gene transfer might be used to overcome such limitations by transducing a gene able to increase intracellular drug metabolism. To prove such a concept, we chose the well-studied paradigm of zidovudine (AZT) metabolism and anti-HIV activity. AZT-triphosphate is the active form of AZT, acting through inhibition of HIV reverse transcription. In human cells, the rate-limiting step for AZT phosphorylation is catalyzed by the thymidylate kinase. We thus tested the capacity of herpes simplex virus type 1 thymidine kinase, which possesses a thymidylate kinase activity, to improve AZT metabolism and antiviral activity. Our results show enhanced AZT phosphorylation in HSV-1 TK-expressing lymphoid and monoblastoid cells, which correlated with significantly improved antiviral activity against different strains of HIV-1. The antiviral activity of Foscarnet, another reverse transcriptase inhibitor that does not require phosphorylation, remained unchanged. These results suggest that gene transfer might be envisioned for genetic pharmacomodulation of antiviral drugs.
Collapse
Affiliation(s)
- N Guettari
- Centre National de la Recherche Scientifique, ERS 107, Hôpital de la Pitié-Salpêtrière, 83, Boulevard de l'hôpital, Paris Cedex 13, 75651, France
| | | | | | | |
Collapse
|
14
|
Kim SK, Holden VR, O'Callaghan DJ. The ICP22 protein of equine herpesvirus 1 cooperates with the IE protein to regulate viral gene expression. J Virol 1997; 71:1004-12. [PMID: 8995619 PMCID: PMC191150 DOI: 10.1128/jvi.71.2.1004-1012.1997] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The equine herpesvirus 1 (EHV-1) immediate-early (IE) phosphoprotein is essential for the activation of transcription from viral early and late promoters and regulates transcription from its own promoter. The EHV-1 EICP22 protein, a homolog of ICP22 of herpes simplex virus, increased the in vitro DNA binding activity of the IE protein for sequences in the IE, early, and late promoters. The EICP22 protein affected the rate as well as the extent of the IE protein binding to promoter DNA sequences. To study the DNA binding activity of the IE protein, Trp493, Gln495, Asn496, and Lys498 of the WLQN region, which is directly involved in DNA binding, were replaced with Ser (IEW493S), Glu (IEQ495E), Ile (IEN496I), and Glu (IEK498E), respectively. Gel shift assays revealed that the glutathione S-transferase (GST)-IEQ495E(407-615) and GST-IEK498E(407-615) proteins failed to bind to the IE promoter, indicating that the Gln and Lys residues are important for the DNA binding activity. In the presence of the GST-EICP22 protein, DNA binding activity of the GST-IEQ495E(407-615) protein was restored, suggesting that the EICP22 protein cooperates with the IE protein to regulate EHV-1 gene expression. Transient-transfection assays also showed that the EICP22 protein allowed the IEQ495E mutant to be functional as a transactivator. These results are unique and may represent an important role for the EICP22 protein in EHV-1 gene regulation.
Collapse
Affiliation(s)
- S K Kim
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | |
Collapse
|
15
|
Shimojima Y, Jang HK, Ono M, Maeda K, Tohya Y, Mikami T. Identification and DNA sequence analysis of the Marek's disease virus serotype 2 genes homologous to the thymidine kinase and UL24 genes of herpes simplex virus type 1. Virus Genes 1997; 14:81-7. [PMID: 9208458 DOI: 10.1023/a:1007943624997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The thymidine kinase (TK) gene has been used as a safe and convenient locus for expression of heterologous proteins in some alphaherpesviruses including herpesvirus of turkeys (HVT) antigenically related to Marek's disease virus (MDV) serotypes 1 (MDV1) and 2 (MDV2). In MDV2 strain HPRS 24 genome, genes equivalent to the TK and UL24 homologues of herpes simplex virus type 1 were identified and sequenced. The MDV2 UL24 gene overlaps the 5' end of the TK gene in a head-to-head orientation. The predicted region encoding for the MDV2 TK gene is 1,056 nucleotides, corresponding to a polypeptide of 352 amino acids in length. Putative nucleotide- and thymidine-binding sites were identified within the predicted amino acid sequence. The predicted region encoding for the UL24 gene is 948 nucleotides, corresponding to a polypeptide of 316 amino acids in length. By northern blot analyses using MDV2 TK- and UL24-specific DNA probes, four transcripts of approximately 7.8, 5.0, 3.5, and 1.1 kb for the TK gene, and a transcript of 3.8 kb for the UL24 gene were detected in MDV2-infected cells. Alignment of the amino acid sequence of MDV2 TK homologue with those published for TK homologues of other MDV serotypes showed 73.9% (MDV1 vs. MDV2), 58.2% (MDV1 vs. HVT), and 56.8% (MDV2 vs. HVT) identities. Comparison to other alphaherpesvirus TK homologues revealed amino acid sequence homologies varying from 34.5% to 27.8%. The putative MDV2 UL24 homologous protein had identity with the well conserved five motifs among alphaherpesviruses.
Collapse
Affiliation(s)
- Y Shimojima
- Department of Veterinary Microbiology, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Reynes JP, Tiraby M, Baron M, Drocourt D, Tiraby G. Escherichia coli thymidylate kinase: molecular cloning, nucleotide sequence, and genetic organization of the corresponding tmk locus. J Bacteriol 1996; 178:2804-12. [PMID: 8631667 PMCID: PMC178014 DOI: 10.1128/jb.178.10.2804-2812.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thymidylate kinase (dTMP kinase; EC 2.7.4.9) catalyzes the phosphorylation of dTMP to form dTDP in both de novo and salvage pathways of dTTP synthesis. The nucleotide sequence of the tmk gene encoding this essential Escherichia coli enzyme is the last one among all the E. coli nucleoside and nucleotide kinase genes which has not yet been reported. By subcloning the 24.0-min region where the tmk gene has been previously mapped from the lambda phage 236 (E9G1) of the Kohara E. coli genomic library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987), we precisely located tmk between acpP and holB genes. Here we report the nucleotide sequence of tmk, including the end portion of an upstream open reading frame (ORF 340) of unknown function that may be cotranscribed with the pabC gene. The tmk gene was located clockwise of and just upstream of the holB gene. Our sequencing data allowed the filling in of the unsequenced gap between the acpP and holB genes within the 24-min region of the E. coli chromosome. Identification of this region as the E. coli tmk gene was confirmed by functional complementation of a yeast dTMP kinase temperature-sensitive mutant and by in vitro enzyme assay of the thymidylate kinase activity in cell extracts of E. coli by use of tmk-overproducing plasmids. The deduced amino acid sequence of the E. coli tmk gene showed significant similarity to the sequences of the thymidylate kinases of vertebrates, yeasts, and viruses as well as two uncharacterized proteins of bacteria belonging to Bacillus and Haemophilus species.
Collapse
|
17
|
Pumphrey CY, Gray WL. Identification and analysis of the simian varicella virus thymidine kinase gene. Arch Virol 1996; 141:43-55. [PMID: 8629950 DOI: 10.1007/bf01718587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The thymidine kinase (TK) of herpesviruses, in contrast to cellular TKs, phosphorylates a variety of substrates including antiherpetic nucleoside analogues. This study reports the identification and DNA sequence of the simian varicella virus (SVV) TK gene. A 32P-labeled varicella zoster virus (VZV) TK DNA probe hybridized to the HindIII B subclone of the SVV BamHI B restriction endonuclease (RE) fragment, indicating the presence of a SVV DNA sequence homologous to the VZV TK gene. DNA sequence analysis of the SVV HindIII B subclone revealed a 1014 base pair (bp) open reading frame (ORF) encoding a 337 amino acid polypeptide homologous to herpesvirus TKs. The predicted SVV and VZV TK polypeptides share 51.3% identity, and alignment of the putative protein sequence of several TK homologues suggests the position of a conserved nucleotide binding site and a nucleoside (substrate) binding site in the SVV TK. Identification of the 5' end of the SVV TK transcript by primer extension analysis allowed a comparison of the SVV and VZV TK promoter regions indicating extensive conservation of the DNA sequence and transcription factor binding sites. Plaque reduction assays demonstrate that the SVV TK is active based on the susceptibility of SVV to acyclovir treatment and that SVV is less sensitive to acyclovir than VZV and herpes simplex virus (HSV-1) in infected Vero cells. Identification of the SVV TK ORF will facilitate studies that examine the role of viral TKs in pathogenesis and antiviral sensitivity and provides a potential insertion site for the expression of foreign genes.
Collapse
Affiliation(s)
- C Y Pumphrey
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, USA
| | | |
Collapse
|
18
|
Xuan X, Maeda K, Tohya Y, Mikami T, Otsuka H. Identification and nucleotide sequence of the thymidine kinase gene of canine herpesvirus. Virus Genes 1996; 12:185-8. [PMID: 8879135 DOI: 10.1007/bf00572957] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper presents the entire nucleotide sequence of the thymidine Kinase (TK) gene of canine herpesvirus (CHV). The gene was located within a 2.1 kbp EcoRV fragment by Southern-blot hybridization with a probe derived from the known feline herpesvirus type 1 (FHV-1) TK gene. An open reading frame (ORF) of 987 nucleotides, capable of encoding a TK translation product of 328 amino acids, was identified. Alignment of the predicted amino acid sequence of the CHV TK with other herpesvirus TKs revealed homologies of 25-47%. The proposed nucleotide-binding site and thymidine-binding site sequences of known herpesvirus TKs could be aligned with similar sequences in CHV TK. Northern-blot analysis revealed 1.3 kb and 5.0 kb mRNAs as the TK-specific transcripts. It is probable that the 1.3 kb transcript codes for the CHV TK and that the 5.0 kb transcript codes for the CHV TK and the downstream sequence.
Collapse
Affiliation(s)
- X Xuan
- Department of Animal Resource Science, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
19
|
Rémond M, Sheldrick P, Lebreton F, Foulon T. Sequence of the canine herpesvirus thymidine kinase gene: taxon-preferred amino acid residues in the alphaherpesviral thymidine kinases. Virus Res 1995; 39:341-54. [PMID: 8837896 DOI: 10.1016/0168-1702(95)00089-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multiple sequence alignments of evolutionarily related proteins are finding increasing use as indicators of critical amino acid residues necessary for structural stability or involved in functional domains responsible for catalytic activities. In the past, a number of alignments have provided such information for the herpesviral thymidine kinases, for which three-dimensional structures are not yet available. We have sequenced the thymidine kinase gene of a canine herpesvirus, and with a multiple alignment have identified amino acids preferentially conserved in either of two taxons, the genera Varicellovirus and Simplexvirus, of the subfamily Alphaherpesvirinae. Since some regions of the thymidine kinases show otherwise elevated levels of substitutional tolerance, these conserved amino acids are candidates for critical residues which have become fixed through selection during the evolutionary divergence of these enzymes. Several pairs with distinctive patterns of distribution among the various viruses occur in or near highly conserved sequence motifs previously proposed to form the catalytic site, and we speculate that they may represent interacting, co-ordinately variable residues.
Collapse
Affiliation(s)
- M Rémond
- Laboratoire de Virologie de l'Herpès, CNRS, UPR 9045, Villejuif, France
| | | | | | | |
Collapse
|
20
|
Brown DG, Visse R, Sandhu G, Davies A, Rizkallah PJ, Melitz C, Summers WC, Sanderson MR. Crystal structures of the thymidine kinase from herpes simplex virus type-1 in complex with deoxythymidine and ganciclovir. NATURE STRUCTURAL BIOLOGY 1995; 2:876-81. [PMID: 7552712 DOI: 10.1038/nsb1095-876] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The crystal structures of thymidine kinase from herpes simplex virus type-1 complexed with its natural substrate deoxythymidine (dT) and complexed with the guanosine analogue Ganciclovir have been solved. Both structures are in the C222(1) crystal form with two molecules per asymmetric unit related by a non-crystallographic two-fold axis. The present models have been refined to 2.8 A and 2.2 A, with crystallographic R factors of 24.1% and 23.3% for the dT and Ganciclovir complexes respectively, without the inclusion of any solvent molecules. The core of the molecule exhibits high structural homology with adenylate kinase and other nucleotide binding proteins. These structural similarities provide an insight into the mechanism of nucleoside phosphorylation by thymidine kinase.
Collapse
Affiliation(s)
- D G Brown
- Division of Biomedical Sciences, Randall Institute, King's College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Crabb BS, Studdert MJ. Equine herpesviruses 4 (equine rhinopneumonitis virus) and 1 (equine abortion virus). Adv Virus Res 1995; 45:153-90. [PMID: 7793324 DOI: 10.1016/s0065-3527(08)60060-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- B S Crabb
- Centre for Equine Virology, School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
22
|
Roberts GB, Fyfe JA, McKee SA, Rahim SG, Daluge SM, Almond MR, Rideout JL, Koszalka GW, Krenitsky TA. Varicella-zoster virus thymidine kinase. Characterization and substrate specificity. Biochem Pharmacol 1993; 46:2209-18. [PMID: 8274154 DOI: 10.1016/0006-2952(93)90611-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The varicella-zoster virus (VZV) thymidine kinase (TK) EC 2.7.2.21) catalyzes the phosphorylation of many anti-VZV nucleosides. Purified, bacterially expressed VZV TK was characterized with regard to N-terminal amino acid sequence, pI value, pH optimum, metal ion requirement, phosphate donor and acceptor specificity, and inhibition by dTTP. Initial velocities of thymidine phosphorylation with variable MgATP concentrations fit a two-site model with apparent Km values for MgATP of 0.10 and 900 microM. dTTP was a noncompetitive inhibitor of thymidine phosphorylation but was competitive with MgATP. Phosphate donor and acceptor specificities of the bacterially expressed enzyme were indistinguishable from those of VZV TK purified from infected cells. Detailed studies of the nucleoside specificity with the bacterially expressed enzyme showed that, for a given sugar moiety, thymine nucleosides were the most efficient substrates followed by nucleosides of cytosine, uracil, adenine, and with some exceptions, guanine. For a given pyrimidine or purine (except guanine), 2'-deoxyribonucleosides were the most efficient substrates, followed by arabinosides, ribonucleosides, 2',3'-dideoxyribonucleosides, and the acyclic moiety of acyclovir.
Collapse
Affiliation(s)
- G B Roberts
- Wellcome Research Laboratories, Research Triangle Park, NC 27709
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Koonin EV, Senkevich TG. Fowlpox virus encodes a protein related to human deoxycytidine kinase: further evidence for independent acquisition of genes for enzymes of nucleotide metabolism by different viruses. Virus Genes 1993; 7:289-95. [PMID: 8279127 DOI: 10.1007/bf01702589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is demonstrated that fowlpox virus (FPV) protein FP26 located in the HindIII D fragment of the genome is related to the human deoxycytidine kinase (dCK) and probably possesses the same enzymatic activity. A homologous protein is not encoded by vaccinia virus. A multiple alignment of the amino acid sequences of the human and FPV dCKs, the thymidine kinases (TK) of herpesviruses, and cellular and vaccinia virus thymidylate kinases (ThyK) was generated and the conserved motifs, at least two of which are implicated in ATP binding, were characterized. An apparent duplication of ATP-binding motif B in the dCKs was revealed, leading to the reassignment of one of the catalytic residues. Phylogenetic analysis based on the multiple alignment suggested that the putative dCK of FPV probably has diverged from the common ancestor with the human dCK at a later stage of evolution than the herpesvirus TKs, with the ThyKs being peripheral members of the family. These results are compatible with hypothesis that genes for enzymes of nucleotide metabolism could be acquired independently by different DNA viruses (Koonin, E.V. and Senkevich, T.G., Virus Genes 6:187-196, 1992).
Collapse
Affiliation(s)
- E V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | | |
Collapse
|
24
|
Bell CW, Whalley JM. Herpesvirus ICP18.5 and DNA-binding protein genes are conserved in equine herpesvirus-1. Virus Genes 1993; 7:219-28. [PMID: 8279122 DOI: 10.1007/bf01702583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The genome of equine herpesvirus-1 (EHV-1) contained three open reading frames (ORFs) in a 3.9 kbp BamHI-SmaI fragment at 0.38-0.41 map units in the long unique region. The most 5' ORF encoded the carboxy terminus of a protein with 45-55 percent amino acid homology to the DNA-binding proteins (ICP8-DBP) of four other alpha-herpesviruses. The middle ORF translated to a polypeptide of 775 residues with 43-55% homology to the ICP18.5 proteins. The most 3' ORF encoded the EHV-1 glycoprotein B (gB) gene. Three mRNAs of 4.3, 4.4-4.8, and 3.5-3.9 kb (corresponding to the three sequenced ORFs) were all transcribed from the same strand. The gene order of this group was conserved in all herpesviruses examined.
Collapse
Affiliation(s)
- C W Bell
- School of Biological Sciences, Macquarie University, Sydney, N.S.W., Australia
| | | |
Collapse
|
25
|
Brisebois JJ, DuBow MS. Selection for spontaneous null mutations in a chromosomally-integrated HSV-1 thymidine kinase gene yields deletions and a mutation caused by intragenic illegitimate recombination. Mutat Res 1993; 287:191-205. [PMID: 7685479 DOI: 10.1016/0027-5107(93)90012-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Spontaneous null mutations represent low frequency events that irreversibly and completely inactivate a gene, and can often consist of major gene alterations. To study the molecular mechanisms leading to recessive spontaneous null mutations in the human genome, we designed and tested a selection procedure in cell culture to enrich for this rare class of spontaneous mutations. The KT cell line contains the herpes simplex virus type 1 (HSV-1) thymidine kinase (tk) gene and the neomycin-resistance gene (neo), from plasmid pSV2neoKT, integrated as a single-copy in the human tk- cell line 143B. The HSV-1 tk gene was the target for spontaneous gene inactivation, and antiviral drugs (acyclovir, trifluorothymidine and ganciclovir) were used, in combination, to provide a selective enrichment for null mutations over the background of more frequent and revertible point mutations. The tk- mutations obtained with this multiple drug selection assay appeared at a very low frequency, rarely reverted to wild-type (tk+), and the TK protein was observed only in 4.8% of these null mutants. Deletions of the entire tk gene, or its 3' region, constituted the major class of DNA rearrangements seen in the null mutations. Additionally, one of the null mutants contained an intragenic 106-bp duplication within a 43-bp deleted region of the tk gene. We propose this mutation to be the outcome of an intragenic gene conversion event which may have been facilitated by short regions of junctional homology.
Collapse
Affiliation(s)
- J J Brisebois
- Department of Microbiology and Immunology, McGill University, Montréal, Qué., Canada
| | | |
Collapse
|
26
|
Purewal AS, Smallwood AV, Allsopp R, Welch HM, Edington N. Cross-hybridization of equid herpesvirus-2 (EHV-2) and herpes simplex virus-1 (HSV-1) genes to equid herpesvirus-1 (EHV-1). Vet Microbiol 1993; 35:1-10. [PMID: 8103247 DOI: 10.1016/0378-1135(93)90111-j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In contrast to previous findings, the Ab4 isolate of equid herpesvirus-1 (EHV-1) was shown to share homology with the G9 isolate of equid herpesvirus-2 (EHV-2). Using Southern blotting and stringent hybridization conditions, a significant proportion of this cross-hybridization was identified by the immediate-early gene-3 (IE-3) probe from herpes simplex virus-1 (HSV-1). The HSV-1 UL48 gene probe (encoding the IE gene transactivating protein VmW65, which is also known as alpha-TIF or VP16) was used to identify and isolate its counterpart in EHV-1. The relevance of shared homology to transactivation is being investigated.
Collapse
Affiliation(s)
- A S Purewal
- Department of Veterinary Pathology, Royal Veterinary College, London, UK
| | | | | | | | | |
Collapse
|
27
|
Corrochano LM, Madueño F, Field HJ, de la Fuente R. Sequence analysis of thymidine kinase-defective mutants of equine herpesvirus-1 (EHV-1). Gene 1993; 126:257-60. [PMID: 8387060 DOI: 10.1016/0378-1119(93)90376-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have amplified, cloned and sequenced the gene encoding the thymidine kinase (TK) of a wild-type strain (Ab4) of equine herpesvirus-1 (EHV-1) and two mutants with defective TK activity isolated for resistance to penciclovir (PCV). One of the mutants, PR1, has suffered a 879-bp deletion which reduces the size of TK to 180 bp. The other mutant, PR3, has an adenine to cytosine mutation resulting in a Lys38-->Thr change. This mutation modifies the amino acid sequence of a domain involved in binding ATP, leading to non-detectable enzymatic activity. Lys38 thus appears to be essential for the activity of the TK of EHV-1.
Collapse
|
28
|
Nagesha HS, Crabb BS, Studdert MJ. Analysis of the nucleotide sequence of five genes at the left end of the unique short region of the equine herpesvirus 4 genome. Arch Virol 1993; 128:143-54. [PMID: 8380320 DOI: 10.1007/bf01309795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Eco RI fragment G of equine herpesvirus 4 strain 405/76 (EHV 4.405/76) is located at the left end of the unique short region close to or extending into the internal repeat region of the prototypic arrangement of the genome. The nucleotide sequence of two subclones designated HS and G 19, contiguous within Eco RI fragment G, was determined for each strand by obtaining a nested set of deletion clones of these double-stranded DNA plasmids. Analysis of the nucleotide sequence revealed that the two subclones contain 5449 base pairs with four complete open reading frames (ORFs) and part of a fifth ORF. Comparison of the predicted amino acid sequences of these reading frames showed that they correspond to ORFs 67, 68, 69, 70, and 71 of equine herpesvirus type 1 (EHV 1) [41], of which ORFs 68, 69, and 70 are homologous to human herpes simplex virus (HSV) genes in the unique short (US) region, i.e., US 2, US 3, and US 4. ORF 67' of EHV 4 and ORF 67 of EHV 1 are homologous (65.7%) but these genes have no homologue in HSV 1.
Collapse
Affiliation(s)
- H S Nagesha
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
29
|
Talarico CL, Phelps WC, Biron KK. Analysis of the thymidine kinase genes from acyclovir-resistant mutants of varicella-zoster virus isolated from patients with AIDS. J Virol 1993; 67:1024-33. [PMID: 8380452 PMCID: PMC237457 DOI: 10.1128/jvi.67.2.1024-1033.1993] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Patients with AIDS often experience recurrent infections with varicella-zoster virus (VZV) requiring repeated or prolonged treatment with acyclovir (ACV), which may lead to the development of ACV resistance. The ACV resistance of isolates recovered from such patients is associated with diminished VZV thymidine kinase (TK) function. We determined the nucleotide sequences of the TK genes of 12 ACV-resistant VZV strains purified from nine patients with AIDS. Five VZV strains contained nucleotide deletions in their TK genes, introducing a premature termination codon which is expected to result in the production of a truncated protein. No detectable full-length TK protein could be immunoprecipitated from extracts of cells infected with these virus strains. These TK-deficient strains were cross resistant to the TK-dependent antiviral agents ACV, 9-(4-hydroxy-3-hydroxymethylbutyl-yl)guanine (penciclovir), and 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl) uracil (BVaraU). The remaining seven strains each contained a nucleotide change that resulted in an amino acid substitution in the TK protein. These substitutions occurred throughout the TK protein, namely, in the ATP-binding site, the nucleoside-binding site, between the two binding sites, and at the carboxy terminus of the protein. We determined the effects of these mutations on the stability of TK protein expression in virus-infected cells and on the sensitivity of mutants to the TK-dependent antiviral agents ACV, BVaraU, and penciclovir.
Collapse
Affiliation(s)
- C L Talarico
- Division of Virology, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709
| | | | | |
Collapse
|
30
|
Palù G, Gerna G, Bevilacqua F, Marcello A. A point mutation in the thymidine kinase gene is responsible for acyclovir-resistance in herpes simplex virus type 2 sequential isolates. Virus Res 1992; 25:133-44. [PMID: 1329374 DOI: 10.1016/0168-1702(92)90105-i] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A number of HSV-2 isolates, sequentially recovered from ulcerative ano-genital lesions of an AIDS patient during a prolonged treatment with acyclovir (ACV), have been studied at the molecular level. All of them were highly resistant to ACV (ACV-r) and shown to be virtually deficient in thymidine kinase (TK) activity. The ACV-r phenotype was demonstrated to be due to the production of truncated TK polypeptide. Structural alteration of this gene, as shown in one isolate, was caused by a chain-terminating mutation that originated from a cytidine deletion at position 520 of the TK open reading frame. This mutation generated a TGA stop codon 27 nucleotides downstream. An additional isolate was also recovered following ACV discontinuation and after a cycle of treatment with foscarnet. This isolate had lost the ACV-r trait and was characterized by a wild type TK sequence and by the production of a functional enzyme. Data presented confirm that a prolonged treatment with acyclovir can easily select ACV-r HSV-2 isolates carrying a TK- phenotype caused by a frameshift mutation. Although recovered from lesions tributary of different myelomers, these isolates may belong to the same strain that has undergone multiple cycles of reactivation and has possibly mutated during its axonal route to the skin.
Collapse
Affiliation(s)
- G Palù
- Institute of Microbiology, University of Padova Medical School, Italy
| | | | | | | |
Collapse
|
31
|
Abstract
The complete DNA sequence was determined of a pathogenic British isolate of equine herpesvirus-1, a respiratory virus which can cause abortion and neurological disease. The genome is 150,223 bp in size, has a base composition of 56.7% G + C, and contains 80 open reading frames likely to encode protein. Since four open reading frames are duplicated in the major inverted repeat, two are probably expressed as a spliced mRNA, and one may contain an internal transcriptional promoter, the genome is considered to contain 76 distinct genes. The genes are arranged collinearly with those in the genomes of the two previously sequenced alphaherpesviruses, varicella-zoster virus, and herpes simplex virus type-1, and comparisons of predicted amino acid sequences allowed the functions of many equine herpesvirus 1 proteins to be assigned.
Collapse
Affiliation(s)
- E A Telford
- Institute of Virology, University of Glasgow, United Kingdom
| | | | | | | |
Collapse
|
32
|
A single amino acid substitution abolishes feedback inhibition of vaccinia virus thymidine kinase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50155-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Suzutani T, Lacey SF, Powell KL, Purifoy DJ, Honess RW. Random mutagenesis of the thymidine kinase gene of varicella-zoster virus. J Virol 1992; 66:2118-24. [PMID: 1312622 PMCID: PMC289003 DOI: 10.1128/jvi.66.4.2118-2124.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To understand the relationship between the primary structure and function of varicella-zoster virus thymidine kinase (VZV TK; EC 2.7.1.21), we established rapid screening and phenotypic selection of mutant VZV TK genes in TK-deficient Escherichia coli C600 by using a constitutive pKK223-3 expression plasmid. In this screening system, mutant TK genes generated by random mutagenesis were identified by the sensitivity of E. coli-expressing VZV TKs to 5-bromo-2'-deoxyuridine and 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl) uracil. Twenty-four mutant clones with amino acid substitutions were isolated, and their nucleotide sequence and enzymatic activities were determined. Of the 24 clones, 20 had single amino acid substitutions, 2 clones had double amino acid substitutions, and 1 clone had triple amino acid substitutions. In 17 cases of single amino acid substitution, six mutations led to lost enzyme activity, and four of these six mutations centered in the ATP-binding site. The other 11 mutations resulted in reduction of both TK and thymidylate kinase activities or only thymidylate kinase activity and were located in scattered positions in the VZV TK gene, although 5 mutations showed a tendency to cluster in the region between positions 251 and 260.
Collapse
Affiliation(s)
- T Suzutani
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Koonin EV, Senkevich TG. Evolution of thymidine and thymidylate kinases: the possibility of independent capture of TK genes by different groups of viruses. Virus Genes 1992; 6:187-96. [PMID: 1317076 DOI: 10.1007/bf01703067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phylogenetic analysis of viral and cellular thymidine and thymidylate kinases was performed using computer-assisted methods. Multiple alignments and tentative phylogenetic trees were generated for the two families of these enzymes, which include a) thymidine kinases (TK) of mammals, poxviruses, African swine fever virus, E. coli, and bacteriophage T4; and b) thymidylate kinases (ThyK) of yeast and poxviruses and distantly related herpesvirus proteins with both enzymatic activities. Analysis of the alignment of the TKs of the first family highlighted three strongly conserved segments. Two of these corresponded to the A and B motifs of the purine NTP-binding pattern. The third, C-terminal segment, showing the highest conservation, encompassed a modified Zn finger motif. It is speculated that this motif might be involved in TK oligomerization. Phylogenetic trees constructed by three different methods suggested that cellular TK genes could be captured independently by T4 bacteriophage, African swine fever virus, fowlpox virus, and the other poxviruses. The observed tree topologies appear to contradict the popular virus-host coevolution schemes and to imply that different subdivisions of poxviruses diverged at earlier stages of evolution than their hosts did. It was shown that deoxynucleoside monophosphate kinase of bacteriophage T4 is related to the ThyK family. Phylogenetic analysis suggested that ThyK genes probably have been acquired independently by phage T4, poxviruses, and herpes-viruses.
Collapse
Affiliation(s)
- E V Koonin
- Institute of Microbiology, USSR Academy of Sciences, Oktyabrya
| | | |
Collapse
|
35
|
Lomonte P, Bublot M, Pastoret PP, Thiry E. Location and characterization of the bovine herpesvirus type 4 thymidine kinase gene; comparison with thymidine kinase genes of other herpesviruses. Arch Virol 1992; 127:327-37. [PMID: 1339265 DOI: 10.1007/bf01309595] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The location and nucleotide sequence of the bovine herpesvirus type 4 (BHV-4) thymidine kinase (TK) gene was determined. The coding region of the TK gene is 1335 nucleotides long and corresponds to a polypeptide of 445 amino acids. Comparison of TK amino acid sequences of BHV-4 and 16 herpesvirus TKs reveals a greater homology to those of the gammaherpesviruses EBV and specially HVS, than to those of alphaherpesviruses. The open reading frames detected in the vicinity of TK gene were homologous to the corresponding ones in other herpesviruses.
Collapse
Affiliation(s)
- P Lomonte
- Virology Department, Faculty of Veterinary Medicine, University of Liège, Belgium
| | | | | | | |
Collapse
|
36
|
Smith RH, Caughman GB, O'Callaghan DJ. Characterization of the regulatory functions of the equine herpesvirus 1 immediate-early gene product. J Virol 1992; 66:936-45. [PMID: 1309921 PMCID: PMC240795 DOI: 10.1128/jvi.66.2.936-945.1992] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Use of the translation-inhibiting drug cycloheximide has indicated that the equine herpesvirus 1 (EHV-1) immediate-early (IE) gene, the sole EHV-1 IE gene, encodes a major viral regulatory protein since IE mRNA translation is a prerequisite for all further viral gene expression (W.L. Gray, R. P. Baumann, A. T. Robertson, G. B. Caughman, D. J. O'Callaghan, and J. Staczek, Virology 158:79-87, 1987). An EHV-1 IE gene expression vector (pSVIE) in combination with chimeric EHV-1 promoter-chloramphenicol acetyltransferase (CAT) reporter constructs was used in transient transfection assays to characterize the regulatory functions of the IE gene product. These experiments demonstrated that (i) the EHV-1 IE gene product is a bifunctional protein capable of both positive and negative modulation of gene expression; (ii) the IE gene product possesses an autoregulatory function which represses the IE promoter; (iii) IE autoregulation is dependent on IE promoter sequences mapping within positions -288 to +73 relative to the transcription initiation site (+1) of the IE gene; (iv) the IE gene product can independently activate the EHV-1 tk promoter (an early promoter) by as much as 60-fold; (v) two EHV-1 beta-gamma (leaky late) promoters, those of IR5 (gene 5 in the inverted repeat) and the glycoprotein D gene, demonstrate a requirement for both the IE gene product as well as a gene product encoded within the EHV-1 XbaI G fragment for significant activation; and (vi) the IE gene product is capable of activating heterologous viral promoters.
Collapse
Affiliation(s)
- R H Smith
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | | | |
Collapse
|
37
|
Sharma PC, Cullinane AA, Onions DE, Nicolson L. Diagnosis of equid herpesviruses -1 and -4 by polymerase chain reaction. Equine Vet J 1992; 24:20-5. [PMID: 1313360 DOI: 10.1111/j.2042-3306.1992.tb02772.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The polymerase chain reaction (PCR) is a sensitive technique used to detect DNA of viral pathogens. We have applied the technique to the detection of Equid herpesviruses-1 and -4 (EHV-1 and EHV-4) DNA within nasopharyngeal swab samples from horses. Ninety-eight samples from suspected field cases and in-contact horses were analysed. The assays were conducted blind and later decoded and compared with virus isolation data. Our results indicate that PCR is a sensitive and rapid technique for the diagnosis of EHV-1 and EHV-4 infection.
Collapse
Affiliation(s)
- P C Sharma
- Department of Veterinary Pathology, University of Glasgow Veterinary School, UK
| | | | | | | |
Collapse
|
38
|
Abstract
Thymidine kinases were described for cellular life long before it was shown that they could also be encoded by viruses, but the viral thymidine kinase genes were the first to be sequenced. These enzymes have been extraordinarily useful to the researcher, serving first to help label DNA, then to get thymidine analogs incorporated into DNA for therapeutic and other purposes and more recently to move genes from one genome to another. Knowledge of the nucleotide and amino acid sequences of these enzymes has allowed some deductions about their possible three-dimensional structure, as well as the location on the polypeptide of various functions; it has also allowed their classification into two main groups: the herpesviral thymidine/eukaryotic deoxycytidine kinases and the poxviral and cellular thymidine kinases; the relationships of the mitochondrial enzyme are still not clear.
Collapse
Affiliation(s)
- G A Gentry
- Department of Microbiology, University of Mississippi Medical Center, Jackson 39216-4505
| |
Collapse
|
39
|
Whalley M, Robertson G, Bell C, Love D, Elphinstone M, Wiley L, Craven D. Identification and comparative sequence analysis of a gene in equine herpesvirus 1 with homology to the herpes simplex virus glycoprotein D gene. Virus Genes 1991; 5:313-25. [PMID: 1665613 DOI: 10.1007/bf00271530] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A homologue of the herpes simplex virus (HSV) glycoprotein D gene has been identified in the genome of equine herpesvirus-1 (EHV-1, equine abortion virus). An open reading frame in the middle of the short unique (US) region is capable of encoding a polypeptide of 402 amino acids that has 26% and 20% of its residues matching pseudorabies virus (PRV) gp50 and HSV-1 gD, respectively. Despite this low level of similarity, the positional identity of six cysteine residues and certain motifs, and the location of the EHV-1 gene, clearly define the EHV-1 polypeptide as one of a family of "gD-like" proteins. Two transcripts of 3.3-3.6 kb and 5.4-5.9 kb were identified, consistent with coterminal mRNAs for the EHV-1 gD gene and the adjacent upstream gene, respectively. Partial sequencing of other regions in US also revealed EHV-1 homologues of HSV-1 gE and gI genes, and a possible equivalent gene to PRV gX. By analogy with the ability of HSV-1 gD and PRV gp50 to induce strong anti-viral immune responses, the EHV-1 gD gene product is expected to be an excellent candidate for development as a vaccine antigen.
Collapse
Affiliation(s)
- M Whalley
- School of Biological Sciences, Macquarie University, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Folkers G, Trumpp-Kallmeyer S, Gutbrod O, Krickl S, Fetzer J, Keil GM. Computer-aided active-site-directed modeling of the herpes simplex virus 1 and human thymidine kinase. J Comput Aided Mol Des 1991; 5:385-404. [PMID: 1663155 DOI: 10.1007/bf00125660] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thymidine kinase (TK), which is induced by Herpes Simplex Virus 1 (HSV1), plays a key role in the antiviral activity of guanine derivatives such as aciclovir (ACV). In contrast, ACV shows only low affinity to the corresponding host cell enzyme. In order to define the differences in substrate binding of the two enzymes on molecular level, models for the three-dimensional (3-D) structures of the active sites of HSV1-TK and human TK were developed. The reconstruction of the active sites of HSV1-TK and human TK were developed. The reconstruction of the active sites started from primary and secondary structure analysis of various kinases. The results were validated to homologous enzymes with known 3-D structures. The models predict that both enzymes consist of a central core beta-sheet structure, connected by loops and alpha-helices very similar to the overall structure of other nucleotide binding enzymes. The phosphate binding site is made up of a highly conserved glycine-rich loop at the N-terminus of the proteins and a conserved region at the C-terminus. The thymidine recognition site was found about 100 amino acids downstream from the phosphate binding loop. The differing substrate specificity of human and HSV1-TK can be explained by amino-acid substitutions in the homologous regions. To achieve a better understanding of the structure of the active site and how the thymidine kinase proteins interact with their substrates, the corresponding complexes of thymidine and dihydroxypropoxyguanine (DHPG) with HSV1 and human TK were built. For the docking of the guanine derivative, the X-ray structure of Elongation Factor Tu (EF-Tu), co-crystallized with guanosine diphosphate, was taken as reference. Fitting of thymidine into the active sites was done with respect to similar interactions found in thymidylate kinase. To complement the analysis of the 3-D structures of the two kinases and the substrate enzyme interactions, site-directed mutagenesis of the thymidine recognition site of HSV1-TK has been undertaken, changing Asp162 in the thymidine recognition site into Asn. First investigations reveal that the enzymatic activity of the mutant protein is destroyed.
Collapse
Affiliation(s)
- G Folkers
- Pharmaceutical Institute, University of Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Smith GA, Young PL, Mattick JS. Nucleotide and amino acid sequence analysis of the thymidine kinase gene of a bovine encephalitis herpesvirus. Arch Virol 1991; 119:199-210. [PMID: 1678935 DOI: 10.1007/bf01310670] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleotide and predicted amino acid sequence of the thymidine kinase (TK) gene of N 569, a bovine encephalitis herpesvirus (BEHV), has been determined and compared with those of avian, bovine and other mammalian herpesvirus TK genes. Striking differences were observed between the nucleotide sequence of this BEHV TK gene and those reported for bovine herpesvirus 1 (BHV-1). A total of 118 base changes, 39 base deletions and 14 base insertions were identified relative to the TK sequence of a BHV-1.2a strain, resulting in a net loss of seven residues. Comparison of the TK sequences of BEHV and the BHV-1 Q 3932 strain with that reported for the BHV-1 6660 strain suggested that the latter may have contained sequencing errors. The most significant difference between the BEHV TK sequence and those of BHV-1 strains was the absence of a contiguous stretch of ten codons.
Collapse
Affiliation(s)
- G A Smith
- Pathology Branch, Queensland Department of Primary Industries, Yeerongpilly, Australia
| | | | | |
Collapse
|
42
|
Field HJ, Awan AR, de la Fuente R. Isolation of equine herpesvirus-1 mutants in the presence of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine: demonstration of resistance in vitro and in vivo. Antiviral Res 1991; 16:29-39. [PMID: 1663728 DOI: 10.1016/0166-3542(91)90056-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The compound (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine (HPMPA) had been previously shown to be highly effective in treatment of EHV-1 in a murine model for the equine disease. This paper describes the isolation of a series of mutants resistant to the drug. Resistance was demonstrated in cell culture and one mutant was tested in a murine model. The resistant mutant was pathogenic for mice; infectious virus was recovered from respiratory tissues and blood at levels similar to the parental virus. However, the mutant showed a significant degree of resistance in vivo, thus proving the virus-specific mode of action of the antiviral compound.
Collapse
Affiliation(s)
- H J Field
- Department of Clinical Veterinary Medicine, University of Cambridge, U.K
| | | | | |
Collapse
|
43
|
Schnitzler P, Handermann M, Szépe O, Darai G. The primary structure of the thymidine kinase gene of fish lymphocystis disease virus. Virology 1991; 182:835-40. [PMID: 2024501 DOI: 10.1016/0042-6822(91)90625-l] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The DNA nucleotide sequence of the thymidine kinase (TK) gene of fish lymphocystis disease virus (FLDV) which has been localized between the coordinates 0.678 to 0.688 of the viral genome was determined. The analysis of the DNA nucleotide sequence located between the recognition sites of HindIII (0.669 map unit; nucleotide position 1) and AccI (nucleotide position 2032) revealed the presence of an open reading frame of 954 bp on the lower strand of this region between nucleotide positions 1868 (ATG) and 915 (TAA). It encodes for a protein of 318 amino acid residues. The evolutionary relationships of the TK gene of FLDV to the other known TK genes was investigated using the method of progressive sequence alignment. These analyses revealed a high degree of diversity between the protein sequence of FLDV TK gene and the amino acid composition of other TKs tested. However, significant conservations were detected at several regions of amino acid residues of the FLDV TK protein when compared to the amino acid sequence of TKs of African swine fever virus, fowlpox virus, shope fibroma virus, and vaccinia virus and to the amino acid sequences of the cellular cytoplasmic TK of chicken, mouse, and man.
Collapse
Affiliation(s)
- P Schnitzler
- Institut für Medizinische Virologie, Universität Heidelberg, Germany
| | | | | | | |
Collapse
|
44
|
Bockamp EO, Blasco R, Viñuela E. Escherichia coli thymidine kinase: nucleotide sequence of the gene and relationships to other thymidine kinases. Gene 1991; 101:9-14. [PMID: 2060797 DOI: 10.1016/0378-1119(91)90218-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The thymidine kinase (TK)-encoding gene (tdk) of Escherichia coli is located at min 27 of the E. coli genetic map. Sequence analysis of this region revealed an open reading frame of 205 codons. Identification of this region as the E. coli tdk gene was confirmed by its similarity to other TK-encoding genes. The E. coli amino acid (aa) sequence showed significant similarity to the corresponding TK polypeptides of vertebrates and large DNA viruses, but showed no similarity to known herpes virus TK enzymes. Mapping of highly conserved positions among all sequences indicates the importance of these residues for catalytic activity and may facilitate further functional studies. Using a distance matrix method, the evolutionary relationships among the TK aa sequence of poxviruses, eukaryotes and prokaryotes were analyzed and a potential phylogenetic tree was established.
Collapse
Affiliation(s)
- E O Bockamp
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | |
Collapse
|
45
|
Su JY, Sclafani RA. Molecular cloning and expression of the human deoxythymidylate kinase gene in yeast. Nucleic Acids Res 1991; 19:823-7. [PMID: 2017365 PMCID: PMC333717 DOI: 10.1093/nar/19.4.823] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
(Deoxy)thymidylate (dTMP) kinase is an enzyme which phosphorylates dTMP to dTDP in the presence of ATP and magnesium. This enzyme is important in cellular DNA synthesis because the synthesis of dTTP, either via the de novo pathway or through the exogenous supply of thymidine, requires the activity of this enzyme. It has been suggested that the activities of the enzymes involved in DNA precursor biosynthesis, such as thymidine kinase, thymidylate synthase, thymidylate kinase, and dihydrofolate reductase, are subjected to cell cycle regulation. Here we describe the cloning of a human dTMP kinase cDNA by functional complementation of a yeast dTMP kinase temperature-sensitive mutant at the non-permissive temperature. The nucleotide sequence of the cloned human cDNA is predicted to encode a 24 KD protein that shows considerable homology with the yeast and vaccinia virus dTMP kinase enzymes. The human enzyme activity has been investigated by expressing it in yeast. In this work, we demonstrate that the cloned human cDNA, when expressed in yeast, produces dTMP kinase activity.
Collapse
Affiliation(s)
- J Y Su
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | |
Collapse
|
46
|
Black ME, Hruby DE. Nucleotide sequence of the Escherichia coli thymidine kinase gene provides evidence for conservation of functional domains and quaternary structure. Mol Microbiol 1991; 5:373-9. [PMID: 2041474 DOI: 10.1111/j.1365-2958.1991.tb02119.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using lambda bacteriophage clones from the Kohara Escherichia coli library spanning minutes 25.5 to 28.5 on the E. coli chromosome (strain W3110), two overlapping DNA fragments were identified which were able to confer thymidine kinase (TK) enzyme activity to a TK- strain of E. coli (KY895). This genetic complementation assay was used in concert with subcloning procedures to identify the minimal region (a 900 bp EcoRI-SalI fragment) which contained the E. coli thymidine kinase gene (tdk). The nucleotide sequence of the EcoRI-SalI fragment and a small portion of the adjoining downstream fragment was determined. Computer analysis of the derived sequence indicated the presence of a rightward-reading open reading frame of 615 bp which was capable of encoding a 205-amino-acid polypeptide with a predicted Mr of 23458 daltons. The in vivo transcriptional activity of this locus was confirmed by Northern blot hybridization analysis of RNA isolated from E. coli JM101 or KY895 which detected a 650-nucleotide RNA transcribed from this region. This places the tdk gene at approximately minute 27.35 on the E. coli W3110 chromosome, about 15 kb downstream from the narG locus and approximately 25 kb upstream of the trp operon. Although the predicted Mr of the E. coli TK protein was 23.5 kDa, gel-filtration analyses suggested that, like eukaryotic thymidine kinases, the active form of this enzyme is a multimeric complex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M E Black
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | |
Collapse
|
47
|
Robertson GR, Scott NA, Miller JM, Sabine M, Zheng M, Bell CW, Whalley JM. Sequence characteristics of a gene in equine herpesvirus 1 homologous to glycoprotein H of herpes simplex virus. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1991; 1:241-9. [PMID: 1666854 DOI: 10.3109/10425179109020779] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A gene in equine herpesvirus 1 (EHV-1, equine abortion virus) homologous to the glycoprotein H gene of herpes simplex virus (HSV) was identified and characterised by its nucleotide and derived amino acid sequence. The EHV-1 gH gene is located at 0.47-0.49 map units and contains an open reading frame capable of specifying a polypeptide of 848 amino acids, including N- and C-terminal hydrophobic domains consistent with signal and membrane anchor regions respectively, and 11 potential sites for N-glycosylation. Alignment of the amino acid sequence with those published for HSV gH, varicella zoster virus gpIII, Epstein Barr virus gp85 and human cytomegalovirus p86 shows similarity of the EHV gene with the 2 other alpha-herpesviruses over most of the polypeptide, but only the C-terminal half could be aligned for all 5 viruses. The identical positioning of 6 cysteine residues and a number of highly conserved amino acid motifs supports a common evolutionary origin of this gene and is consistent with its role as an essential glycoprotein of the herpesvirus family. An origin of replication is predicted to occur at approximately 300 nucleotides downstream of the EHV-1 gH coding region, on the basis of similarity to other herpesvirus origins.
Collapse
Affiliation(s)
- G R Robertson
- School of Biological Sciences, Macquarie University, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The genomic position of an equine herpesvirus 4 (EHV-4) gene homologue of the herpes simplex virus 1 (HSV-1) gC gene was determined by Southern analysis and DNA sequencing. The gene lies within a 2-kbp Bg/II-EcoRI fragment mapping between 0.15 and 0.17 within the long unique component of the EHV-4 genome and is transcribed from right to left. Putative promoter elements were identified upstream of the 1455-bp open reading frame which encodes a 485-amino-acid protein of unglycosylated molecular weight 52,513. Computer-assisted analysis of the primary sequence predicts the protein possesses a domain structure characteristic of a type 1 integral membrane glycoprotein. Four domains were distinguished--(i) an N-terminal signal sequence, (ii) a large extracellular domain containing 11 putative N-linked glycosylation sites, (iii) a hydrophobic transmembrane domain, and (iv) a C-terminal charged domain. Comparison of the predicted amino acid sequence to that of other herpesvirus glycoproteins indicated identities of between 22 and 29% with HSV-1 gC, HSV-2 gC, VZV gpV, PRV gIII, BHV-1 gIII, and MDV A antigen and of 79% with EHV-1 gp13. A gene with no apparent homologue in HSV-1 or VZV maps immediately downstream of the EHV-4 gC gene homologue.
Collapse
Affiliation(s)
- L Nicolson
- Department of Veterinary Pathology, University of Glasgow Veterinary School, United Kingdom
| | | |
Collapse
|
49
|
Blasco R, López-Otín C, Muñóz M, Bockamp EO, Simón-Mateo C, Viñuela E. Sequence and evolutionary relationships of African swine fever virus thymidine kinase. Virology 1990; 178:301-4. [PMID: 2389555 PMCID: PMC9534224 DOI: 10.1016/0042-6822(90)90409-k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/1990] [Accepted: 05/02/1990] [Indexed: 12/31/2022]
Abstract
The thymidine kinase gene of African swine fever virus was mapped in a 1.4-kb EcoRI-PstI fragment located in the left half of the Eco RI K fragment of African swine fever virus DNA by using degenerate oligonucleotide probes derived from regions of the thymidine kinase sequence conserved in several poxviruses, man, mouse, and chicken. The nucleotide sequence of this region revealed an open reading frame of 196 codons, whose translated amino acid sequence showed significant similarity to the thymidine kinases of vaccinia virus, variola virus, monkeypox virus, shope fibroma virus, fowlpox virus, capripox virus, man, mouse, and chicken. The similarity scores obtained after comparison of known thymidine kinase sequences indicated that the African swine fever virus thymidine kinase is more distantly related than the poxvirus thymidine kinases to their cellular homologs. The evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
- R Blasco
- Centro de Biología Molecular (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- M Sabine
- Department of Veterinary Pathology, University of Sydney, New South Wales
| | | |
Collapse
|