1
|
Sanyal SJ, Yang TC, Catalano CE. Integration host factor assembly at the cohesive end site of the bacteriophage lambda genome: implications for viral DNA packaging and bacterial gene regulation. Biochemistry 2014; 53:7459-70. [PMID: 25335823 PMCID: PMC4263431 DOI: 10.1021/bi501025s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Integration host factor (IHF) is
an Escherichia coli protein involved in (i) condensation
of the bacterial nucleoid and
(ii) regulation of a variety of cellular functions. In its regulatory
role, IHF binds to a specific sequence to introduce a strong bend
into the DNA; this provides a duplex architecture conducive to the
assembly of site-specific nucleoprotein complexes. Alternatively,
the protein can bind in a sequence-independent manner that weakly
bends and wraps the duplex to promote nucleoid formation. IHF is also
required for the development of several viruses, including bacteriophage
lambda, where it promotes site-specific assembly of a genome packaging
motor required for lytic development. Multiple IHF consensus sequences
have been identified within the packaging initiation site (cos), and we here interrogate IHF–cos binding interactions using complementary electrophoretic mobility
shift (EMS) and analytical ultracentrifugation (AUC) approaches. IHF
recognizes a single consensus sequence within cos (I1) to afford a strongly bent nucleoprotein complex.
In contrast, IHF binds weakly but with positive cooperativity to nonspecific
DNA to afford an ensemble of complexes with increasing masses and
levels of condensation. Global analysis of the EMS and AUC data provides
constrained thermodynamic binding constants and nearest neighbor cooperativity
factors for binding of IHF to I1 and to nonspecific
DNA substrates. At elevated IHF concentrations, the nucleoprotein
complexes undergo a transition from a condensed to an extended rodlike
conformation; specific binding of IHF to I1 imparts
a significant energy barrier to the transition. The results provide
insight into how IHF can assemble specific regulatory complexes in
the background of extensive nonspecific DNA condensation.
Collapse
Affiliation(s)
- Saurarshi J Sanyal
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington , H-172 Health Sciences Building, Box 357610, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
2
|
Abstract
The study of the bacteriophage lambda has been critical to the discipline of molecular biology. It was the source of key discoveries in the mechanisms of, among other processes, gene regulation, recombination, and transcription initiation and termination. We trace here the events surrounding these findings and draw on the recollections of the participants. We show how a particular atmosphere of interactions among creative scientists yielded spectacular insights into how living things work.
Collapse
Affiliation(s)
- Max E Gottesman
- Institute of Cancer Research, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
3
|
de Beer T, Fang J, Ortega M, Yang Q, Maes L, Duffy C, Berton N, Sippy J, Overduin M, Feiss M, Catalano CE. Insights into specific DNA recognition during the assembly of a viral genome packaging machine. Mol Cell 2002; 9:981-91. [PMID: 12049735 DOI: 10.1016/s1097-2765(02)00537-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Terminase enzymes mediate genome "packaging" during the reproduction of DNA viruses. In lambda, the gpNu1 subunit guides site-specific assembly of terminase onto DNA. The structure of the dimeric DNA binding domain of gpNu1 was solved using nuclear magnetic resonance spectroscopy. Its fold contains a unique winged helix-turn-helix (wHTH) motif within a novel scaffold. Surprisingly, a predicted P loop ATP binding motif is in fact the wing of the DNA binding motif. Structural and genetic analysis has identified determinants of DNA recognition specificity within the wHTH motif and the DNA recognition sequence. The structure reveals an unexpected DNA binding mode and provides a mechanistic basis for the concerted action of gpNu1 and Escherichia coli integration host factor during assembly of the packaging machinery.
Collapse
Affiliation(s)
- Tonny de Beer
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hwang Y, Hang JQ, Neagle J, Duffy C, Feiss M. Endonuclease and helicase activities of bacteriophage lambda terminase: changing nearby residue 515 restores activity to the gpA K497D mutant enzyme. Virology 2000; 277:204-14. [PMID: 11062051 DOI: 10.1006/viro.2000.0591] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminase, the DNA packaging enzyme of bacteriophage lambda, is a heteromultimer of gpNu1 and gpA subunits. In an earlier investigation, a lethal mutation changing gpA residue 497 from lysine to aspartic acid (K497D) was found to cause a mild change in the high-affinity ATPase that resides in gpA and a severe defect in the endonuclease activity of terminase. The K497D terminase efficiently sponsored packaging of mature lambda DNA into proheads. In the present work, K497D terminase was found to have a severe defect in the cohesive end separation, or helicase, activity. Plaque-forming pseudorevertants of lambda A K497D were found to carry mutations in A that suppressed the lethality of the A K497D mutation. The two suppressor mutations identified, A E515G and A E515K, affected residue 515, which is located near the putative P-loop of gpA. A codon substitution study of codon 515 showed that hydrophobic and basic residues suppress the K497D defect, but hydrophilic and acidic residues do not. The E515G change was demonstrated to reverse the endonuclease and helicase defects caused by the K497D change. Moreover, the gpA K497D E515G enzyme was found to have kinetic constants for the high-affinity ATPase center similar to those of the wild type enzyme, and the endonuclease activity of the K497D E515G enzyme was stimulated by ATP to an extent similar to the ATP stimulation of the endonuclease activity of the wild type enzyme.
Collapse
Affiliation(s)
- Y Hwang
- Department of Microbiology, College of Medicine, Iowa City, Iowa, 52242, USA
| | | | | | | | | |
Collapse
|
5
|
Hwang Y, Feiss M. A mutation correcting the DNA interaction defects of a mutant phage lambda terminase, gpNu1 K35A terminase. Virology 1999; 265:196-205. [PMID: 10600592 DOI: 10.1006/viro.1999.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminase, the DNA packaging enzyme of bacteriophage lambda, is a heteromultimer composed of gpNu1 (181 aa) and gpA (641 aa) subunits, encoded by the lambda Nu1 and A genes, respectively. Similarity between the deduced amino acid sequences of gpNu1 and gpA and the nucleotide binding site consensus sequence suggests that each terminase subunit has an ATP reactive center. Terminase has been shown to have two distinct ATPase activities. The gpNu1 subunit has a low-affinity ATPase stimulated by nonspecific DNA and gpA has a high-affinity ATPase. In previous work, a mutant terminase, gpNu1 K35A holoterminase, had a mild defect in interactions with DNA, such that twofold increased DNA concentrations were required both for full stimulation of the low-affinity ATPase and for saturation of the cos cleavage reaction. In addition, the gpNu1 K35A terminase exhibited a post-cleavage defect in DNA packaging that accounted for the lethality of the Nu1 K35A mutation [Y. Hwang and M. Feiss (1997) Virology 231, 218-230]. In the work reported here, a mutation in the turn of the putative helix-turn-helix DNA binding domain has been isolated as a suppressor of the gpNu1 K35A change. This suppressor mutation causes the change A14V in gpNu1. A14V reverses the DNA-binding defects of gpNu1 K35A terminase, both for stimulation of the low-affinity ATPase and for saturation of the cos cleavage defect. A14V suppresses the post-cleavage DNA packaging defect caused by the gpNu1 K35A change.
Collapse
Affiliation(s)
- Y Hwang
- College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
6
|
Hang Q, Woods L, Feiss M, Catalano CE. Cloning, expression, and biochemical characterization of hexahistidine-tagged terminase proteins. J Biol Chem 1999; 274:15305-14. [PMID: 10336415 DOI: 10.1074/jbc.274.22.15305] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The terminase enzyme from bacteriophage lambda is composed of two viral proteins (gpA, 73.2 kDa; gpNu1, 20.4 kDa) and is responsible for packaging viral DNA into the confines of an empty procapsid. We are interested in the genetic, biochemical, and biophysical properties of DNA packaging in phage lambda and, in particular, the nucleoprotein complexes involved in these processes. These studies require the routine purification of large quantities of wild-type and mutant proteins in order to probe the molecular mechanism of DNA packaging. Toward this end, we have constructed a hexahistidine (hexa-His)-tagged terminase holoenzyme as well as hexa-His-tagged gpNu1 and gpA subunits. We present a simple, one-step purification scheme for the purification of large quantities of the holoenzyme and the individual subunits directly from the crude cell lysate. Importantly, we have developed a method to purify the highly insoluble gpNu1 subunit from inclusion bodies in a single step. Hexa-His terminase holoenzyme is functional in vivo and possesses steady-state and single-turnover ATPase activity that is indistinguishable from wild-type enzyme. The nuclease activity of the modified holoenzyme is near wild type, but the reaction exhibits a greater dependence on Escherichia coli integration host factor, a result that is mirrored in vivo. These results suggest that the hexa-His-tagged holoenzyme possesses a mild DNA-binding defect that is masked, at least in part, by integration host factor. The mild defect in hexa-His terminase holoenzyme is more significant in the isolated gpA-hexa-His subunit that does not appear to bind DNA. Moreover, whereas the hexa-His-tagged gpNu1 subunit may be reconstituted into a holoenzyme complex with wild-type catalytic activities, gpA-hexa-His is impaired in its interactions with the gpNu1 subunit of the enzyme. The results reported here underscore that a complete biochemical characterization of the effects of purification tags on enzyme function must be performed prior to their use in mechanistic studies.
Collapse
Affiliation(s)
- Q Hang
- Molecular Biology Program, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
7
|
Arens JS, Hang Q, Hwang Y, Tuma B, Max S, Feiss M. Mutations that extend the specificity of the endonuclease activity of lambda terminase. J Bacteriol 1999; 181:218-24. [PMID: 9864333 PMCID: PMC103552 DOI: 10.1128/jb.181.1.218-224.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1998] [Accepted: 10/20/1998] [Indexed: 11/20/2022] Open
Abstract
Terminase, an enzyme encoded by the Nu1 and A genes of bacteriophage lambda, is crucial for packaging concatemeric DNA into virions. cosN, a 22-bp segment, is the site on the virus chromosome where terminase introduces staggered nicks to cut the concatemer to generate unit-length virion chromosomes. Although cosN is rotationally symmetric, mutations in cosN have asymmetric effects. The cosN G2C mutation (a G-to-C change at position 2) in the left half of cosN reduces the phage yield 10-fold, whereas the symmetric mutation cosN C11G, in the right half of cosN, does not affect the burst size. The reduction in phage yield caused by cosN G2C is correlated with a defect in cos cleavage. Three suppressors of the cosN G2C mutation, A-E515G, A-N509K, and A-R504C, have been isolated that restore the yield of lambda cosN G2C to the wild-type level. The suppressors are missense mutations that alter amino acids located near an ATPase domain of gpA. lambda A-E515G, A-N509K, and A-R504C phages, which are cosN+, also had wild-type burst sizes. In vitro cos cleavage experiments on cosN G2C C11G DNA showed that the rate of cleavage for A-E515G terminase is three- to fourfold higher than for wild-type terminase. The A-E515G mutation changes residue 515 of gpA from glutamic acid to glycine. Uncharged polar and hydrophobic residues at position 515 suppressed the growth defect of lambda cosN G2C C11G. In contrast, basic (K, R) and acidic (E, D) residues at position 515 failed to suppress the growth defect of lambda cosN G2C C11G. In a lambda cosN+ background, all amino acids tested at position 515 were functional. These results suggest that A-E515G plays an indirect role in extending the specificity of the endonuclease activity of lambda terminase.
Collapse
Affiliation(s)
- J S Arens
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242,
| | | | | | | | | | | |
Collapse
|
8
|
Cue D, Feiss M. Genetic evidence that recognition of cosQ, the signal for termination of phage lambda DNA packaging, depends on the extent of head filling. Genetics 1997; 147:7-17. [PMID: 9286664 PMCID: PMC1208123 DOI: 10.1093/genetics/147.1.7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Packaging a phage lambda chromosome involves cutting the chromosome from a concatemer and translocating the DNA into a prohead. The cutting site, cos, consists of three subsites: cosN, the nicking site; cosB, a site required for packaging initiation; and cosQ a site required for termination of packaging. cosB contains three binding sites (R sequences) for gpNu1, the small subunit of terminase. Because cosQ has sequence identity to the R sequences, it has been proposed that cosQ is also recognized by gpNu1. Suppressors of cosB mutations were unable to suppress a cosQ point mutation. Suppressors of a cosQ mutation (cosQ1) were isolated and found to be of three sorts, the first affecting a base pair in cosQ. The second type of cosQ suppression involved increasing the length of the phage chromosome to a length near to the maximum capacity of the head shell. A third class of suppressors were missense mutations in gene B, which encodes the portal protein of the virion. It is speculated that increasing DNA length and altering the portal protein may reduce the rate of translocation, thereby increasing the efficiency of recognition of the mutant cosQ. None of the cosQ suppressors was able to suppress cosB mutations. Because cosQ and cosB mutations are suppressed by very different types of suppressors, it is concluded that cosQ and the R sequences of cosB are recognized by different DNA-binding determinants.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
9
|
Hwang Y, Feiss M. Mutations affecting lysine-35 of gpNu1, the small subunit of bacteriophage lambda terminase, alter the strength and specificity of holoterminase interactions with DNA. Virology 1997; 231:218-30. [PMID: 9168884 DOI: 10.1006/viro.1997.8542] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The small subunit of lambda terminase, gpNu1, contains a low-affinity ATPase activity that is stimulated by nonspecific dsDNA. The location of the gpNu1 ATPase center is suggested by a sequence match between gpNu1 (29-VLRGGGKG-36) and the phosphate-binding loop, or P-loop (GXXXXGKT/S), of known ATPase. The proposed P-loop of gpNu1 is just downstream of a putative helix-turn-helix DNA-binding motif, located between residues 5 and 24. Published work has shown that changing lysine-35 of the proposed P-loop of gpNu1 alters the response of the ATPase activity to DNA, as follows. The changes gpNu1 k35A and gpNu1 K35D increase the level of DNA required for maximal stimulation of the gpNu1 ATPase by factors of 2- and 10-fold, respectively. The maximally stimulated ATPase activities of the mutant enzymes are indistinguishable from that of the wild-type enzyme. In the present work, the effects of changing lysine-35 on the cos-cleavage and DNA-packaging activities of terminase were examined. In vitro, the gpNu1 K35A enzyme cleaved cos as efficiently as the wild-type enzyme, but required a 2-fold increased level of substrate DNA for saturation, suggesting a slight reduction in DNA affinity. In a crude DNA-packaging system using cleaved lambda DNA as substrate, the gpNu1 K35A enzyme had a 10-fold defect. In vivo, lambda Nu1 K35A showed a 2-fold reduction in cos cleavage, but no packaged DNA was detected. The primary defect of the gpNu1 K35A enzyme was concluded to be in a post-cos-cleavage step of DNA packaging. In in vitro cos-cleavage experiments, the gpNu1 K35D enzyme had a 10-fold increased requirement for saturation by substrate DNA. Furthermore, the cos-cleavage activity of gpNu1 K35D enzyme was strongly inhibited by the presence of nonspecific DNA, indicating that the gpNu1 K35D enzyme is unable to discriminate effectively between cos and nonspecific DNA. No cos cleavage was observed in vivo for lambda Nu1 K35D, a result consistent with the discrimination defect found in vitro for the gpNu1 K35D enzyme. In a crude packaging system the gpNu1 K35D enzyme had a 200-fold defect; in a purified packaging system, the gpNu1 K35D enzyme was found to be unable to discriminate between lambda DNA and nonspecific phage T7 DNA, a result indicating that the gpNu1 K35D enzyme is also defective in discriminating between lambda DNA and nonspecific DNA during DNA packaging.
Collapse
Affiliation(s)
- Y Hwang
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
10
|
Cai ZH, Hwang Y, Cue D, Catalano C, Feiss M. Mutations in Nu1, the gene encoding the small subunit of bacteriophage lambda terminase, suppress the postcleavage DNA packaging defect of cosB mutations. J Bacteriol 1997; 179:2479-85. [PMID: 9098042 PMCID: PMC178993 DOI: 10.1128/jb.179.8.2479-2485.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The linear double-stranded DNA molecules in lambda virions are generated by nicking of concatemeric intracellular DNA by terminase, the lambda DNA packaging enzyme. Staggered nicks are introduced at cosN to generate the cohesive ends of virion DNA. After nicking, the cohesive ends are separated by terminase; terminase bound to the left end of the DNA to be packaged then binds the empty protein shell, i.e., the prohead, and translocation of DNA into the prohead occurs. cosB, a site adjacent to cosN, is a terminase binding site. cosB facilitates the rate and fidelity of the cosN cleavage reaction by serving as an anchoring point for gpNu1, the small subunit of terminase. cosB is also crucial for the formation of a stable terminase-DNA complex, called complex I, formed after cosN cleavage. The role of complex I is to bind the prohead. Mutations in cosB affect both cosB functions, causing mild defects in cosN cleavage and severe packaging defects. The lethal cosB R3- R2- R1- mutation contains a transition mutation in each of the three gpNu1 binding sites of cosB. Pseudorevertants of lambda cosB R3- R2- R1- DNA contain suppressor mutations affecting gpNu1. Results of experiments that show that two such suppressors, Nu1ms1 and Nu1ms3, do not suppress the mild cosN cleavage defect caused by the cosB R3- R2- R1- mutation but strongly suppress the DNA packaging defect are presented. It is proposed that the suppressing terminases, unlike the wild-type enzyme, are able to assemble a stable complex I with cosB R3- R2- R1- DNA. Observations on the adenosine triphosphatase activities and protease susceptibilities of gpNu1 of the Nu1ms1 and Nu1ms3 terminases indicate that the conformation of gpNu1 is altered in the suppressing terminases.
Collapse
Affiliation(s)
- Z H Cai
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Phage lambda, like a number of other large DNA bacteriophages and the herpesviruses, produces concatemeric DNA during DNA replication. The concatemeric DNA is processed to produce unit-length, virion DNA by cutting at specific sites along the concatemer. DNA cutting is co-ordinated with DNA packaging, the process of translocation of the cut DNA into the preformed capsid precursor, the prohead. A key player in the lambda DNA packaging process is the phage-encoded enzyme terminase, which is involved in (i) recognition of the concatemeric lambda DNA; (ii) initiation of packaging, which includes the introduction of staggered nicks at cosN to generate the cohesive ends of virion DNA and the binding of the prohead; (iii) DNA packaging, possibly including the ATP-driven DNA translocation; and (iv) following translocation, the cutting of the terminal cosN to complete DNA packaging. To one side of cosN is the site cosB, which plays a role in the initiation of packaging; along with ATP, cosB stimulates the efficiency and adds fidelity to the endonuclease activity of terminase in cutting cosN. cosB is essential for the formation of a post-cleavage complex with terminase, complex I, that binds the prohead, forming a ternary assembly, complex II. Terminase interacts with cosN through its large subunit, gpA, and the small terminase subunit, gpNu1, interacts with cosB. Packaging follows complex II formation. cosN is flanked on the other side by the site cosQ, which is needed for termination, but not initiation, of DNA packaging. cosQ is required for cutting of the second cosN, i.e. the cosN at which termination occurs. DNA packaging in lambda has aspects that differ from other lambda DNA transactions. Unlike the site-specific recombination system of lambda, for DNA packaging the initial site-specific protein assemblage gives way to a mobile, translocating complex, and unlike the DNA replication system of lambda, the same protein machinery is used for both initiation and translocation during lambda DNA packaging.
Collapse
Affiliation(s)
- C E Catalano
- School of Pharmacy, University of Colorado Health Science Center, Denver 80262, USA
| | | | | |
Collapse
|
12
|
Abstract
Integration host factor (IHF) is a small heterodimeric DNA-binding protein of E coli composed of two subunits, alpha and beta, encoded by the himA and hip genes, respectively. IHF binds to DNA at a consensus sequence and bends DNA. HU protein, encoded by the hupA and hupB genes, is similar to IHF except that it does not bind to a specific DNA sequence. To investigate the protein determinants for IHF specificity we exchanged progressively longer segments from the C-terminus of Hip with those of HupA, and followed the activity in vivo and in vitro of four such IHF/HU hybrids. Replacement of 11 residues from the C-terminal alpha helix of Hip by the complementary eight residues of HupA (hybrid 1), had only minor effects on the DNA binding activity of the protein. As progressively longer segments of Hip were replaced by HupA, a precipitous decrease in IHF activity was observed. The hybrid with the longest substitution, hybrid 4, was totally inactive in vivo and could not be purified. None of the hybrid proteins could complement HU activity. Comparing the activities of hybrid 1, hybrid 2 and IHF point mutants, led us to conclude that the structural integrity of the C-terminal alpha helix and its spatial position, but not its amino acid sequence, are important for DNA binding specificity. We favor the hypothesis that alpha helices 3 of both IHF subunits interact with the body of IHF so as to anchor the arms. This interaction stabilizes the arms to permit DNA binding specificity. Thus the C-termini of IHF influence, in an indirect way, the recognition of specific sites on DNA.
Collapse
Affiliation(s)
- D Goldenberg
- Department of Molecular Genetics, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
13
|
Morse BK, Michalczyk R, Kosturko LD. Multiple molecules of integration host factor (IHF) at a single DNA binding site, the bacteriophage lambda cos I1 site. Biochimie 1994; 76:1005-17. [PMID: 7748922 DOI: 10.1016/0300-9084(94)90025-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integration host factor (IHF) is an E coli protein that binds DNA sequence-specifically and serves as a cofactor in many intracellular processes including lambda DNA packaging. In gel shift experiments, cos DNA, a DNA fragment containing the recognition signal for lambda DNA packaging, forms multiple protein-DNA complexes when combined with pure IHF. Copper(II)-1,10 orthophenanthroline footprinting of individual IHF-cos DNA complexes shows that multiple complex formation does not result from IHF binding to successive sites on the cos DNA fragment. Instead, the footprinting of DNA from two IHF-cos complexes shows protection at one site alone. DNA in the first complex is only partially protected from nucleolytic cleavage, while DNA in the second, slower-moving, complex is completely protected at the same binding site. Quantitative Western blotting experiments determined the relative stoichiometry of IHF to DNA in the two complexes. The results confirm that two molecules of IHF bind at a single site in the cos fragment. This site, cos I1, has two matches to the IHF consensus sequence, but the two matches overlap by eight of thirteen nucleotides. A search of the DNA sequence around cos, using an expanded IHF consensus sequence, has revealed additional, low-affinity consensus matches, contiguous to these. The extent of the copper(II)-1,10 orthophenanthroline footprint and the stoichiometry of the IHF-cos I1 complexes suggest that either two molecules of IHF bind to overlapping sites, or IHF binds to a site of low affinity contiguous to a strong site. Application of a thermodynamic model to the results of gel shift experiments with IHF and cos DNA suggests that multiple complex formation requires cooperative interaction between the two IHF binding sites.
Collapse
Affiliation(s)
- B K Morse
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459-0175, USA
| | | | | |
Collapse
|
14
|
Abstract
21 is a temperate lambdoid coliphage, and the genes that encode the head proteins of lambda and 21 are descended from a common ancestral bacteriophage. The sequencing of terminase genes 1 and 2 of 21 was completed, along with that of a segment at the right end of 21 DNA that includes the R4 sequence. The R4 sequence, a site that is likely involved in termination of DNA packaging, was found to be very similar to the R4 sequences of lambda and phi 80, suggesting that R4 is a recognition site that is not phage specific. DNA packaging by 21 is dependent on a host protein, integration host factor. A series of mutations in gene 1 (her mutations), which allow integration host factor-independent DNA packaging by 21, were found to be missense changes that affect predicted alpha-helixes in gp1. gp2, the large terminase subunit, is predicted to contain an ATP-binding domain and, perhaps, a second domain important for the cos-cutting activity of terminase. orf1, an open reading frame analogous in position to FI, a lambda gene involved in DNA packaging, shares some sequence identity with FI. orf1 was inactivated with nonsense and insertion mutations; these mutations were found not to affect phage growth. 21 was also not able to complement a lambda FI mutant.
Collapse
Affiliation(s)
- M P Smith
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City 52242
| | | |
Collapse
|
15
|
Hayashi T, Matsumoto H, Ohnishi M, Terawaki Y. Molecular analysis of a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa: structure of the attP-cos-ctx region and integration into the serine tRNA gene. Mol Microbiol 1993; 7:657-67. [PMID: 8469112 DOI: 10.1111/j.1365-2958.1993.tb01157.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Pseudomonas aeruginosa ctx gene encoding cytotoxin is carried by a temperate phage phi CTX. The genome of phi CTX is a 35.5 kb double-stranded DNA with cohesive ends (cos). It is unique in that the ctx gene and attP site of phi CTX exist very close to the respective cohesive ends. In this study, we determined the structure of this attP-cos-ctx region. The termini of phi CTX are 21-base 5' extended-single-stranded DNAs. The ctx gene is located 361 bp downstream of the left end (cosL). The attP core sequence of 30 bp exists only 647 bp apart from the right end (cosR). The attP-cos-ctx region contains six kinds of repeats and integration host factor-binding sequences and showed sequence-directed static bends, suggesting its potential to form a highly ordered structure. In addition, phi CTX was found to integrate into the serine tRNA gene which was mapped to the 43-45 min region on the P. aeruginosa chromosome.
Collapse
Affiliation(s)
- T Hayashi
- Department of Bacteriology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | |
Collapse
|
16
|
Tomka M, Catalano C. Physical and kinetic characterization of the DNA packaging enzyme from bacteriophage lambda. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53659-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Cue D, Feiss M. Genetic analysis of cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda. J Mol Biol 1992; 228:58-71. [PMID: 1447794 DOI: 10.1016/0022-2836(92)90491-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda, consists of three binding sites (called R3, R2 and R1) for gpNu1, the small subunit of terminase; and I1, a binding site for integration host factor (IHF), the DNA bending protein of Escherichia coli. cosB is located between cosN, the site where terminase introduces staggered nicks to generate cohesive ends, and the Nu1 gene; the order of sites is: cosN-R3-I1-R2-R1-Nu1. A series of lambda mutants have been constructed that have single base-pair C-to-T transition mutations in R3, R2 and R1. A single base-pair transition mutation within any one of the gpNul binding sites renders lambda dependent upon IHF for plaque formation. lambda phage with mutations in both R2 and R3 are incapable of plaque formation even in the presence of IHF. Phages that carry DNA insertions between R1 and R2, from 7 to 20 base-pairs long, are also IHF-dependent, demonstrating the requirement for a precise spacing of gpNu1 binding sites within cosB. The IHF-dependent phenotype of a lambda mutant carrying a deletion of the R1 sequence indicates that IHF obviates the need for terminase binding to the R1 site. In contrast, a lambda mutant deleted for R2 and R1 fails to form plaques on either IHF+ or IHF- cells, indicating terminase binding of R2 is involved in suppression of R mutants by IHF. A fourth R sequence, R4, is situated on the left side of cosN; a phage with a mutant R4 sequence shows a reduced burst size on both an IHF+ and an IHF- host. The inability of the R4- mutant to be suppressed by IHF, plus the fact that R4 does not bind gpNu1, suggests R4 is not part of cosB and may play a role in DNA packaging that is distinct from that of cosB.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
18
|
Xu SY, Feiss M. Structure of the bacteriophage lambda cohesive end site. Genetic analysis of the site (cosN) at which nicks are introduced by terminase. J Mol Biol 1991; 220:281-92. [PMID: 1830343 DOI: 10.1016/0022-2836(91)90013-v] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A collection of mutations affecting the site (cosN) at which the bacteriophage lambda DNA packaging enzyme, terminase, introduces nicks to generate mature lambda chromosomes has been studied. A good correlation was found for mutational effects on burst size, accumulation of unused proheads, packaging of DNA into heads and cos cutting by terminase in vitro, indicating that defective cosN cleavage by terminase is the molecular explanation for the phenotypic effects of the mutations. Although the base-pairs of cosN display partial twofold rotational symmetry, cosN was found to be asymmetric functionally. Certain mutations to the left side of the center of rotational symmetry have more pronounced phenotypic effects than rotationally symmetric mutations to the right. The cosN11G mutation has no phenotypic effects when present as a single mutation, but does affect DNA packaging and cosN cutting in the presence of the symmetrically disposed cosN2C mutation. Mutations that decrease cosN cleavage result in the accumulation of unexpanded proheads, indicating that prohead expansion depends on cosN cutting.
Collapse
Affiliation(s)
- S Y Xu
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
19
|
Boffini A, Prentki P. Identification of protein binding sites in genomic DNA by two-dimensional gel electrophoresis. Nucleic Acids Res 1991; 19:1369-74. [PMID: 1827523 PMCID: PMC333888 DOI: 10.1093/nar/19.7.1369] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe a simple two-dimensional electrophoresis procedure to identify the recognition sites of DNA-binding proteins within large DNA molecules. Using this approach, we have mapped E. coli IHF (Integration Host Factor) binding sites within phage Lambda (48 kb) and phage Mu (39 kb) DNA. We are also able to visualize IHF binding sites in E. coli chromosomal DNA (4,700 kb). We present an extension of this technique using direct amplification by PCR of the isolated restriction fragments, which should permit the cloning of a collection of recognition sequences for DNA binding proteins in complex genomes.
Collapse
Affiliation(s)
- A Boffini
- Department of Molecular Biology, University of Geneva, Switzerland
| | | |
Collapse
|
20
|
Mendelson I, Gottesman M, Oppenheim AB. HU and integration host factor function as auxiliary proteins in cleavage of phage lambda cohesive ends by terminase. J Bacteriol 1991; 173:1670-6. [PMID: 1825651 PMCID: PMC207316 DOI: 10.1128/jb.173.5.1670-1676.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HU and integration host factor (IHF) are small, basic heterodimeric DNA-binding proteins which participate in transcription initiation, DNA replication, and recombination. We constructed isogenic Escherichia coli strains in which HU, IHF, or both proteins were absent. Bacteriophage lambda did not grow in hosts lacking both HU and IHF. Phage DNA replication and late gene transcription were normal in the double mutants, but packaging of lambda DNA was defective. Mature phage DNA molecules were absent, indicating that terminase was unable to linearize lambda DNA. Phage variants carrying a small substitution near cos or the ohm1 mutation in the terminase gene, Nul, formed plaques on HU- IHF- strains. We propose that HU or IHF is required to establish the higher-order DNA-protein structure at cos that is the substrate for lambda terminase.
Collapse
Affiliation(s)
- I Mendelson
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
21
|
|
22
|
Abstract
A 641-bp cos-containing P2 DNA fragment was sequenced and compared to the P4 cos region. Alignment of the P2 and P4 cos regions shows a homologous region of 55 bp that has only three mismatches and contains a completely conserved region of dyad symmetry. A number of P4- and P2-derived cosmids were tested in an in vivo transduction assay in order to determine the minimal cos region required for packaging. These experiments show that the common region of 55 bp is sufficient for transduction with low frequency, but that a 125-bp cos-containing fragment contains all the information for transduction with optimal frequency.
Collapse
Affiliation(s)
- R Ziermann
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
23
|
Goodrich JA, Schwartz ML, McClure WR. Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites for Escherichia coli integration host factor (IHF). Nucleic Acids Res 1990; 18:4993-5000. [PMID: 2205834 PMCID: PMC332103 DOI: 10.1093/nar/18.17.4993] [Citation(s) in RCA: 239] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An analysis of the sequence information contained in a compilation of published binding sites for E. coli integration host factor (IHF) was performed. The sequences of twenty-seven IHF sites were aligned; the base occurrences at each position, the information content, and an extended consensus sequence were obtained for the IHF site. The base occurrences at each position of the IHF site were used with a program written for the Apple Macintosh computers in order to determine the similarity scores for published IHF sites. A linear correlation was found to exist between the logarithm of IHF binding and functional data (relative free energies) and similarity scores for two groups of IHF sites. The MacTargsearch program and its potential usefulness in searching for other sites and predicting their relative activities is discussed.
Collapse
Affiliation(s)
- J A Goodrich
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | | |
Collapse
|
24
|
Affiliation(s)
- A Becker
- Department of Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
25
|
Abstract
Escherichia coli integration host factor (IHF) is a small dimeric protein that binds to a specific DNA consensus sequence and produces DNA bending. Transcription from the bacteriophage lambda pL promoter is stimulated three- to fourfold by IHF both in vivo and in vitro. IHF binds with high-affinity to two tandem sites located just upstream from the pL promoter and enhances the formation of RNA polymerase-promoter closed complexes. The rate of isomerization to open complex is not influenced by IHF. IHF may stimulate recognition of pL by one or more of several mechanisms: (1) by bending DNA; (2) by making protein-protein contacts with RNA polymerase; or (3) by occluding a competing promoter upstream from pL.
Collapse
Affiliation(s)
- H Giladi
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
26
|
Yeo A, Kosturka LD, Feiss M. Structure of the bacteriophage lambda cohesive end site: bent DNA on both sides of the site, cosN, at which terminase introduces nicks during chromosome maturation. Virology 1990; 174:329-34. [PMID: 2136780 DOI: 10.1016/0042-6822(90)90085-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Packaging of lambda DNA is mediated by the phage-encoded enzyme, terminase, which acts at a site termed cos. cos consists of cosB, the site where terminase binds lambda DNA, and cosN, the site where nicks are introduced to generate the cohesive ends of virion DNA. cos contains multiple binding sites for gpNu1, the small subunit of terminase, and integration host factor (IHF), an Escherichia coli DNA binding protein. Polyacrylamide gel electrophoresis of circularly permuted segments of cos DNA has been used to locate major bend loci in cos. Two major bends have been located; one bend is ca 146 bp to the left of cosN while the second major bend is located ca 92 bp to the right of cosN. The major bend at 92 coincides roughly with I1, the strongest IHF binding site in cos. The possible roles of static bending in DNA packaging are discussed.
Collapse
Affiliation(s)
- A Yeo
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
27
|
Shinder G, Gold M. Integration host factor (IHF) stimulates binding of the gpNu1 subunit of lambda terminase to cos DNA. Nucleic Acids Res 1989; 17:2005-22. [PMID: 2522621 PMCID: PMC317539 DOI: 10.1093/nar/17.5.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The lambda terminase enzyme binds to the cohesive end sites (cos) of multimeric replicating lambda DNA and introduces staggered nicks to regenerate the 12 bp single-stranded cohesive ends of the mature phage genome. In vitro this endonucleolytic cleavage requires spermidine, magnesium ions, ATP and a host factor. One of the E. coli proteins which can fulfill this latter requirement is Integration Host Factor (IHF). IHF and the gpNu1 subunit of terminase can bind simultaneously to their own specific binding sites at cos. DNase I footprinting experiments suggest that IHF may promote gpNu1 binding. Although no specific gpNu1 binding to the left side of cos can be detected, this DNA segment does play a specific role since a cos fragment that does not include the left side or whose left side is replaced by non-cos sequences, is unable to bind gpNu1 unless either spermidine or IHF is present. Binding studies on the right side of cos using individual or combinations of gpNu1 binding sites I, II and III indicate that binding at sites I and II is not optimal unless site III is present.
Collapse
Affiliation(s)
- G Shinder
- Department of Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Kosturko LD, Daub E, Murialdo H. The interaction of E. coli integration host factor and lambda cos DNA: multiple complex formation and protein-induced bending. Nucleic Acids Res 1989; 17:317-34. [PMID: 2521383 PMCID: PMC331553 DOI: 10.1093/nar/17.1.317] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interaction of E. coli's integration Host Factor (IHF) with fragments of lambda DNA containing the cos site has been studied by gel-mobility retardation and electron microscopy. The cos fragment used in the mobility assays is 398 bp and spans a region from 48,298 to 194 on the lambda chromosome. Several different complexes of IHF with this fragment can be distinguished by their differential mobility on polyacrylamide gels. Relative band intensities indicate that the formation of a complex between IHF and this DNA fragment has an equilibrium binding constant of the same magnitude as DNA fragments containing lambda's attP site. Gel-mobility retardation and electron microscopy have been employed to show that IHF sharply bends DNA near cos and to map the bending site. The protein-induced bend is near an intrinsic bend due to DNA sequence. The position of the bend suggests that IHF's role in lambda DNA packaging may be the enhancement of terminase binding/cos cutting by manipulating DNA structure.
Collapse
Affiliation(s)
- L D Kosturko
- Department of Molecular Biology and Biochemistry, Hall-Atwater Laboratory, Wesleyan University, Middletown, CT 06457
| | | | | |
Collapse
|
29
|
Affiliation(s)
- D I Friedman
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor 48109-0620
| |
Collapse
|
30
|
Abstract
In the terminus-generating (ter) reaction of phage lambda, the phage enzyme terminase catalyzes the production of staggered nicks within the cohesive-end nicking site (cosN). Although the two nicks are related by a rotational symmetry axis that bisects cosN, the in vitro ter reaction is strikingly asymmetric at the nucleotide level. Nicking of the lambda r strand precedes nicking of the I strand. Furthermore, when the two nicking reactions are uncoupled, they have different nucleotide cofactor requirements. ATP plays critical roles during cos cleavage: First, nicking of both DNA strands is stimulated by the addition of ATP. Second, ATP is required for the correct specificity of r-strand nicking since, in the absence of nucleotide, the r-strand nick is shifted 8 bases to the left. Studies with nonhydrolyzable analogs indicate that ATP hydrolysis is not required for these functions. However, after the two nicks are made, terminase catalyzes a disengagement of the cohered ends in a reaction that requires ATP hydrolysis.
Collapse
|