1
|
Malygin EG, Hattman S. DNA methyltransferases: mechanistic models derived from kinetic analysis. Crit Rev Biochem Mol Biol 2012; 47:97-193. [PMID: 22260147 DOI: 10.3109/10409238.2011.620942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sequence-specific transfer of methyl groups from donor S-adenosyl-L-methionine (AdoMet) to certain positions of DNA-adenine or -cytosine residues by DNA methyltransferases (MTases) is a major form of epigenetic modification. It is virtually ubiquitous, except for some notable exceptions. Site-specific methylation can be regarded as a means to increase DNA information capacity and is involved in a large spectrum of biological processes. The importance of these functions necessitates a deeper understanding of the enzymatic mechanism(s) of DNA methylation. DNA MTases fall into one of two general classes; viz. amino-MTases and [C5-cytosine]-MTases. Amino-MTases, common in prokaryotes and lower eukaryotes, catalyze methylation of the exocyclic amino group of adenine ([N6-adenine]-MTase) or cytosine ([N4-cytosine]-MTase). In contrast, [C5-cytosine]-MTases methylate the cyclic carbon-5 atom of cytosine. Characteristics of DNA MTases are highly variable, differing in their affinity to their substrates or reaction products, their kinetic parameters, or other characteristics (order of substrate binding, rate limiting step in the overall reaction). It is not possible to present a unifying account of the published kinetic analyses of DNA methylation because different authors have used different substrate DNAs and/or reaction conditions. Nevertheless, it would be useful to describe those kinetic data and the mechanistic models that have been derived from them. Thus, this review considers in turn studies carried out with the most consistently and extensively investigated [N6-adenine]-, [N4-cytosine]- and [C5-cytosine]-DNA MTases.
Collapse
Affiliation(s)
- Ernst G Malygin
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology Vector, Novosibirsk, Russia
| | | |
Collapse
|
2
|
Naderer M, Brust JR, Knowle D, Blumenthal RM. Mobility of a restriction-modification system revealed by its genetic contexts in three hosts. J Bacteriol 2002; 184:2411-9. [PMID: 11948154 PMCID: PMC135005 DOI: 10.1128/jb.184.9.2411-2419.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The flow of genes among prokaryotes plays a fundamental role in shaping bacterial evolution, and restriction-modification systems can modulate this flow. However, relatively little is known about the distribution and movement of restriction-modification systems themselves. We have isolated and characterized the genes for restriction-modification systems from two species of Salmonella, S. enterica serovar Paratyphi A and S. enterica serovar Bareilly. Both systems are closely related to the PvuII restriction-modification system and share its target specificity. In the case of S. enterica serovar Paratyphi A, the restriction endonuclease is inactive, apparently due to a mutation in the subunit interface region. Unlike the chromosomally located Salmonella systems, the PvuII system is plasmid borne. We have completed the sequence characterization of the PvuII plasmid pPvu1, originally from Proteus vulgaris, making this the first completely sequenced plasmid from the genus Proteus. Despite the pronounced similarity of the three restriction-modification systems, the flanking sequences in Proteus and Salmonella are completely different. The SptAI and SbaI genes lie between an equivalent pair of bacteriophage P4-related open reading frames, one of which is a putative integrase gene, while the PvuII genes are adjacent to a mob operon and a XerCD recombination (cer) site.
Collapse
Affiliation(s)
- Marc Naderer
- Department of Microbiology & Immunology and Program in Bioinformatics & Proteomics/Genomics, Medical College of Ohio, Toledo, Ohio 43614-5806, USA
| | | | | | | |
Collapse
|
3
|
Vijesurier RM, Carlock L, Blumenthal RM, Dunbar JC. Role and mechanism of action of C. PvuII, a regulatory protein conserved among restriction-modification systems. J Bacteriol 2000; 182:477-87. [PMID: 10629196 PMCID: PMC94299 DOI: 10.1128/jb.182.2.477-487.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1999] [Accepted: 10/27/1999] [Indexed: 11/20/2022] Open
Abstract
The PvuII restriction-modification system is a type II system, which means that its restriction endonuclease and modification methyltransferase are independently active proteins. The PvuII system is carried on a plasmid, and its movement into a new host cell is expected to be followed initially by expression of the methyltransferase gene alone so that the new host's DNA is protected before endonuclease activity appears. Previous studies have identified a regulatory gene (pvuIIC) between the divergently oriented genes for the restriction endonuclease (pvuIIR) and modification methyltransferase (pvuIIM), with pvuIIC in the same orientation as and partially overlapping pvuIIR. The product of pvuIIC, C. PvuII, was found to act in trans and to be required for expression of pvuIIR. In this study we demonstrate that premature expression of pvuIIC prevents establishment of the PvuII genes, consistent with the model that requiring C. PvuII for pvuIIR expression provides a timing delay essential for protection of the new host's DNA. We find that the opposing pvuIIC and pvuIIM transcripts overlap by over 60 nucleotides at their 5' ends, raising the possibility that their hybridization might play a regulatory role. We furthermore characterize the action of C. PvuII, demonstrating that it is a sequence-specific DNA-binding protein that binds to the pvuIIC promoter and stimulates transcription of both pvuIIC and pvuIIR into a polycistronic mRNA. The apparent location of C. PvuII binding, overlapping the -10 promoter hexamer and the pvuIICR transcriptional starting points, is highly unusual for transcriptional activators.
Collapse
Affiliation(s)
- R M Vijesurier
- Center for Molecular Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
4
|
Lubys A, Jurenaite S, Janulaitis A. Structural organization and regulation of the plasmid-borne type II restriction-modification system Kpn2I from Klebsiella pneumoniae RFL2. Nucleic Acids Res 1999; 27:4228-34. [PMID: 10518615 PMCID: PMC148698 DOI: 10.1093/nar/27.21.4228] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kpn 2I enzymes of a type II restriction-modification (R-M) system from the bacterium Klebsiella pneumoniae strain RFL2 recognize the sequence 5'-TCCGGA-3'. The Kpn 2I R-M genes have been cloned and expressed in Escherichia coli. DNA sequence analysis revealed the presence of two convergently transcribed open reading frames (ORFs) coding for a restriction endonuclease (Enase) of 301 amino acids (34. 8 kDa) and methyltransferase (Mtase) of 375 amino acids (42.1 kDa). The 3'-terminal ends of these genes ( kpn2IR and kpn2IM, respectively) overlap by 11 bp. In addition, a small ORF (gene kpn2IC ) capable of coding for a protein of 96 amino acids in length (10.6 kDa) was found upstream of kpn2IM. The direction of kpn2IC transcription is opposite to that of kpn2IM. The predicted amino acid sequence of this ORF includes a probable helix-turn-helix motif. We show that the product of kpn2IC represses expression of the Kpn 2I Mtase but has no influence on expression of the Enase gene. Such a mode of regulation is unique among R-M systems analyzed so far. The Kpn 2I R-M is located on the K.pneumoniae RFL2 plasmid pKp4.3, which is able to replicate in E.coli cells.
Collapse
Affiliation(s)
- A Lubys
- Institute of Biotechnology, Graiciuno 8, 2028 Vilnius, Lithuania
| | | | | |
Collapse
|
5
|
O'Gara M, Adams GM, Gong W, Kobayashi R, Blumenthal RM, Cheng X. Expression, purification, mass spectrometry, crystallization and multiwavelength anomalous diffraction of selenomethionyl PvuII DNA methyltransferase (cytosine-N4-specific). EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1009-18. [PMID: 9288926 DOI: 10.1111/j.1432-1033.1997.01009.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The type II DNA-methyltransferase (cytosine N4-specific) M.PvuII was overexpressed in Escherichia coli, starting from the internal translation initiator at Met14. Selenomethionine was efficiently incorporated into this short form of M.PvuII by a strain prototrophic for methionine. Both native and selenomethionyl M.PvuII were purified to apparent homogeneity by a two-column chromatography procedure. The yield of purified protein was approximately 1.8 mg/g bacterial paste. Mass spectrometry analysis of selenomethionyl M.PvuII revealed three major forms that probably differ in the degree of selenomethionine incorporation and the extent of selenomethionine oxidation. Amino acid sequencing and mass spectrometry analysis of selenomethionine-containing peptides suggests that Met30, Met51, and Met261 were only partially replaced by selenomethionine. Furthermore, amino acid 261 may be preferentially oxidized in both native and selenomethionyl form. Selenomethionyl and native M.PvuII were crystallized separately as binary complexes of the methyl donor S-adenosyl-L-methionine in the monoclinic space group P2(1). Two complexes were present per asymmetric unit. Six out of nine selenium positions (per molecule), including the three that were found to be partially substituted, were identified crystallographically.
Collapse
Affiliation(s)
- M O'Gara
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, NY, USA
| | | | | | | | | | | |
Collapse
|
6
|
Gong W, O'Gara M, Blumenthal RM, Cheng X. Structure of pvu II DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein fold assignment. Nucleic Acids Res 1997; 25:2702-15. [PMID: 9207015 PMCID: PMC146797 DOI: 10.1093/nar/25.14.2702] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have determined the structure of Pvu II methyltransferase (M. Pvu II) complexed with S -adenosyl-L-methionine (AdoMet) by multiwavelength anomalous diffraction, using a crystal of the selenomethionine-substituted protein. M. Pvu II catalyzes transfer of the methyl group from AdoMet to the exocyclic amino (N4) nitrogen of the central cytosine in its recognition sequence 5'-CAGCTG-3'. The protein is dominated by an open alpha/beta-sheet structure with a prominent V-shaped cleft: AdoMet and catalytic amino acids are located at the bottom of this cleft. The size and the basic nature of the cleft are consistent with duplex DNA binding. The target (methylatable) cytosine, if flipped out of the double helical DNA as seen for DNA methyltransferases that generate 5-methylcytosine, would fit into the concave active site next to the AdoMet. This M. Pvu IIalpha/beta-sheet structure is very similar to those of M. Hha I (a cytosine C5 methyltransferase) and M. Taq I (an adenine N6 methyltransferase), consistent with a model predicting that DNA methyltransferases share a common structural fold while having the major functional regions permuted into three distinct linear orders. The main feature of the common fold is a seven-stranded beta-sheet (6 7 5 4 1 2 3) formed by five parallel beta-strands and an antiparallel beta-hairpin. The beta-sheet is flanked by six parallel alpha-helices, three on each side. The AdoMet binding site is located at the C-terminal ends of strands beta1 and beta2 and the active site is at the C-terminal ends of strands beta4 and beta5 and the N-terminal end of strand beta7. The AdoMet-protein interactions are almost identical among M. Pvu II, M. Hha I and M. Taq I, as well as in an RNA methyltransferase and at least one small molecule methyltransferase. The structural similarity among the active sites of M. Pvu II, M. Taq I and M. Hha I reveals that catalytic amino acids essential for cytosine N4 and adenine N6 methylation coincide spatially with those for cytosine C5 methylation, suggesting a mechanism for amino methylation.
Collapse
Affiliation(s)
- W Gong
- W.M.Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
7
|
van Soolingen D, de Haas PE, Blumenthal RM, Kremer K, Sluijter M, Pijnenburg JE, Schouls LM, Thole JE, Dessens-Kroon MW, van Embden JD, Hermans PW. Host-mediated modification of PvuII restriction in Mycobacterium tuberculosis. J Bacteriol 1996; 178:78-84. [PMID: 8550446 PMCID: PMC177623 DOI: 10.1128/jb.178.1.78-84.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Restriction endonuclease PvuII plays a central role in restriction fragment length polymorphism analysis of Mycobacterium tuberculosis complex isolates with IS6110 as a genetic marker. We have investigated the basis for an apparent dichotomy in PvuII restriction fragment pattersn observed among strains of the M. tuberculosis complex. The chromosomal regions of two modified PvuII restriction sites, located upstream of the katG gene and downstream of an IS1081 insertion sequence, were studied in more detail. An identical 10-bp DNA sequence (CAGCTGGAGC) containing a PvuII site was found in both regions, and site-directed mutagenesis analysis revealed that this sequence was a target for modification. Strain-specific modification of PvuII sites was identified in DNA from over 80% of the nearly 800 isolates examined. Furthermore, the proportion of modifying and nonmodifying strains differs significantly from country to country.
Collapse
Affiliation(s)
- D van Soolingen
- Laboratory for Bacteriology and Antimicrobial Agents, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The PvuII restriction-modification system has been found to contain three genes which code for a DNA methyltransferase (MTase), a restriction endonuclease (ENase) and a small protein required for expression of the ENase-encoding gene. In addition, there is a small open reading frame (ORF) within and opposite to the MTase-encoding gene. The region containing this ORF is transcribed, and the ORF has an excellent Shine-Dalgarno sequence with an ATA start codon. A closely related ORF is present in the SmaI system. The 28-amino-acid (aa) predicted peptide from the PvuII ORF resembles a region of the PvuII ENase at the dimer interface. We have cloned this ORF, giving it an ATG start codon and putting it under the control of an inducible promoter: induction leads to a slight but significant decrease in restriction of bacteriophage lambda. We also have obtained the 28-aa synthetic peptide, and are exploring the possibility that it modulates ENase subunit association. While this peptide has no detectable effect on dimeric PvuII ENase, it inhibits renaturation of urea-denatured ENase in a concentration-dependent manner. The ORF may represent an additional safeguard during establishment of the PvuII restriction-modification system in a new host cell, helping to delay the appearance of active ENase dimers, while the MTase accumulates and protects the host chromosome.
Collapse
Affiliation(s)
- G M Adams
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008, USA
| | | |
Collapse
|
9
|
Calvin Koons MD, Blumenthal RM. Characterization of pPvu1, the autonomous plasmid from Proteus vulgaris that carries the genes of the PvuII restriction-modification system. Gene 1995; 157:73-9. [PMID: 7607530 DOI: 10.1016/0378-1119(94)00618-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plasmid pPvu1 from Proteus vulgaris carries the genes of the PvuII restriction-modification system [Blumenthal et al., J. Bacteriol. 164 (1985) 501-509]. This report focuses on physical and functional features of the 4.84-kb plasmid, which shows a composite genetic architecture. Plasmid pPvu1 has a replication origin and an incompatibility locus that each function in Escherichia coli, and an apparent cer recombination site. The replication origin includes a possible RNA I gene, and the incompatibility locus closely resembles a rom gene. These loci show substantial sequence similarity to corresponding loci from the E. coli plasmids P15A, ColEI and pSC101, and closely flank the PvuII genes. The close association between a recombinational locus and the PvuII genes has implications for their mobility.
Collapse
Affiliation(s)
- M D Calvin Koons
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008, USA
| | | |
Collapse
|
10
|
Abstract
Enzymatic methylation of DNA plays important roles in both prokaryotes and eukaryotes. Structural study of the HhaI DNA methyltransferase has provided considerable insight into the chemistry of C5-cytosine methylation. The DNA-protein complex reveals a substrate cytosine flipped out of the double helix during the reaction, and a novel two-loop DNA-binding motif used for both sequence recognition and flipping the base. Structural comparison of HhaI C5-cytosine methyltransferase, TaqI N6-adenine methyltransferase, and catechol O-methyltransferase reveals a common catalytic domain structure, which might be universal among S-adenosyl-L-methionine (SAM)-dependent methyltransferases.
Collapse
Affiliation(s)
- X Cheng
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, New York 11724, USA
| |
Collapse
|
11
|
McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 1994; 22:3640-59. [PMID: 7937074 PMCID: PMC308336 DOI: 10.1093/nar/22.17.3640] [Citation(s) in RCA: 300] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes.
Collapse
Affiliation(s)
- M McClelland
- California Institute of Biological Research, La Jolla 92037
| | | | | |
Collapse
|
12
|
Zakharova MV, Kravetz AN, Beletzkaja IV, Repyk AV, Solonin AS. Cloning and sequences of the genes encoding the CfrBI restriction-modification system from Citrobacter freundii. Gene 1993; 129:77-81. [PMID: 8335262 DOI: 10.1016/0378-1119(93)90698-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The genes encoding the CfrBI restriction and modification (R-M) systems from Citrobacter freundii and recognizing the sequence 5'-CCWWGG-3' (W = A or T) were cloned in Escherichia coli McrBC- cells. The nucleotide (nt) sequences of the genes were determined. Two large open reading frames were found. Deletion analysis showed that one of them [1128 nt coding for 376 amino acids (aa)] corresponds to a methyltransferase (MTase)-encoding gene and the other (1065 nt coding for 355 aa) to a restriction endonuclease-encoding gene. The genes are oriented divergently and separated by 76 bp. A CfrBI site (5'-m4CCATGG) was found in the intergenic region of the cfrBIRM genes. Analysis of the deduced aa sequence of M.CfrBI made it possible to determine the typical features of a m4C-specific MTase. Limited homology between the M.CfrBI and R.CfrBI proteins was also found.
Collapse
Affiliation(s)
- M V Zakharova
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | | | | | |
Collapse
|
13
|
Nelson M, Raschke E, McClelland M. Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 1993; 21:3139-54. [PMID: 8392715 PMCID: PMC309743 DOI: 10.1093/nar/21.13.3139] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- M Nelson
- California Institute of Biological Research, La Jolla 92037
| | | | | |
Collapse
|
14
|
Abstract
Our understanding of the evolution of DNA restriction and modification systems, the control of the expression of the structural genes for the enzymes, and the importance of DNA restriction in the cellular economy has advanced by leaps and bounds in recent years. This review documents these advances for the three major classes of classical restriction and modification systems, describes the discovery of a new class of restriction systems that specifically cut DNA carrying the modification signature of foreign cells, and deals with the mechanisms developed by phages to avoid the restriction systems of their hosts.
Collapse
Affiliation(s)
- T A Bickle
- Department of Microbiology, Biozentrum, Basel University, Switzerland
| | | |
Collapse
|
15
|
|
16
|
|
17
|
Heitman J. On the origins, structures and functions of restriction-modification enzymes. GENETIC ENGINEERING 1993; 15:57-108. [PMID: 7764063 DOI: 10.1007/978-1-4899-1666-2_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Heitman
- Section of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
18
|
Janulaitis A, Vaisvila R, Timinskas A, Klimasauskas S, Butkus V. Cloning and sequence analysis of the genes coding for Eco57I type IV restriction-modification enzymes. Nucleic Acids Res 1992; 20:6051-6. [PMID: 1334261 PMCID: PMC334472 DOI: 10.1093/nar/20.22.6051] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A 6.3 kb fragment of E.coli RFL57 DNA coding for the type IV restriction-modification system Eco57I was cloned and expressed in E.coli RR1. A 5775 bp region of the cloned fragment was sequenced which contains three open reading frames (ORF). The methylase gene is 1623 bp long, corresponding to a protein of 543 amino acids (62 kDa); the endonuclease gene is 2991 bp in length (997 amino acids, 117 kDa). The two genes are transcribed convergently from different strands with their 3'-ends separated by 69 bp. The third short open reading frame (186 bp, 62 amino acids) has been identified, that precedes and overlaps by 7 nucleotides the ORF encoding the methylase. Comparison of the deduced Eco57I endonuclease and methylase amino acid sequences revealed three regions of significant similarity. Two of them resemble the conserved sequence motifs characteristic of the DNA[adenine-N6] methylases. The third one shares similarity with corresponding regions of the PaeR7I, TaqI, CviBIII, PstI, BamHI and HincII methylases. Homologs of this sequence are also found within the sequences of the PaeR7I, PstI and BamHI restriction endonucleases. This is the first example of a family of cognate restriction endonucleases and methylases sharing homologous regions. Analysis of the structural relationship suggests that the type IV enzymes represent an intermediate in the evolutionary pathway between the type III and type II enzymes.
Collapse
Affiliation(s)
- A Janulaitis
- Institute of Biotechnology FERMENTAS, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
19
|
Nölling J, de Vos WM. Identification of the CTAG-recognizing restriction-modification systems MthZI and MthFI from Methanobacterium thermoformicicum and characterization of the plasmid-encoded mthZIM gene. Nucleic Acids Res 1992; 20:5047-52. [PMID: 1408820 PMCID: PMC334282 DOI: 10.1093/nar/20.19.5047] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two CTAG-recognizing restriction and modification (R/M) systems, designated MthZI and MthFI, were identified in the thermophilic archaeon Methanobacterium thermoformicicum strains Z-245 and FTF, respectively. Further analysis revealed that the methyltransferase (MTase) genes are plasmid-located in both strains. The plasmid pFZ1-encoded mthZIM gene of strain Z-245 was further characterized by subcloning and expression studies in Escherichia coli followed by nucleotide sequence analysis. The mthZIM gene is 1065 bp in size and may code for a protein of 355 amino acids (M(r) 42,476 Da). The deduced amino acid sequence of the M.MthZI enzyme shares substantial similarity with four distinct regions from several m4C- and m6A-MTases, and contains the TSPPY motif that is so far only found in m4C-MTases. Partially overlapping with the mthZIM gene and in reverse orientation, an additional ORF was identified with a size of 606 bp potentially coding for a protein of 202 amino acids (M(r) 23.710 Da). This ORF is suggested to encode the corresponding endonuclease R.MthZI.
Collapse
Affiliation(s)
- J Nölling
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | |
Collapse
|
20
|
McClelland M, Nelson M. Effect of site-specific methylation on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1992; 20 Suppl:2145-57. [PMID: 1317957 PMCID: PMC333989 DOI: 10.1093/nar/20.suppl.2145] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- M McClelland
- California Institute of Biological Research, La Jolla, CA 92037
| | | |
Collapse
|
21
|
Tao T, Blumenthal RM. Sequence and characterization of pvuIIR, the PvuII endonuclease gene, and of pvuIIC, its regulatory gene. J Bacteriol 1992; 174:3395-8. [PMID: 1577705 PMCID: PMC206011 DOI: 10.1128/jb.174.10.3395-3398.1992] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An open reading frame partially overlaps pvuIIR, and genetic evidence implies that this open reading frame, named pvuIIC, specifies a positive regulator of pvuIIR (T. Tao, J. C. Bourne, and R. M. Blumenthal, J. Bacteriol. 173:1367-1375, 1991). Inducible constructs of pvuIIC produced a protein of the expected size. The site of C.PvuII action appears to lie within pvuIIC itself; thus, pvuIIC may be a self-contained regulatory cassette.
Collapse
Affiliation(s)
- T Tao
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008
| | | |
Collapse
|
22
|
Ito H, Shimato H, Sadaoka A, Kotani H, Kimizuka F, Kato I. Cloning and expression of the HpaI restriction-modification genes. Nucleic Acids Res 1992; 20:705-9. [PMID: 1542567 PMCID: PMC312008 DOI: 10.1093/nar/20.4.705] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genes from Haemophilus parainfluenzae encoding the HpaI restriction-modification system were cloned and expressed in Escherichia coli. From the DNA sequence, we predicted the HpaI endonuclease (R.HpaI) to have 254 amino acid residues (Mr 29,630) and the HpaI methyltransferase (M.HpaI) to have 314 amino acid residues (37,390). The R.HpaI and M.HpaI genes overlapped by 16 base pairs on the chromosomal DNA. The genes had the same orientation. The clone, named E. coli HB101-HPA2, overproduced R.HpaI. R.HpaI activity from the clone was 100-fold that from H. parainfluenzae. The amino acid sequence of M.HpaI was compared with those of other type II methyltransferases.
Collapse
Affiliation(s)
- H Ito
- Bioproducts Development Center, Takara Shuzo Co., Ltd, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- G G Wilson
- New England Biolabs Inc., Beverly, Massachusetts 01915
| |
Collapse
|
24
|
Chatterjee DK, Hammond AW, Blakesley RW, Adams SM, Gerard GF. Genetic organization of the KpnI restriction--modification system. Nucleic Acids Res 1991; 19:6505-9. [PMID: 1754388 PMCID: PMC329207 DOI: 10.1093/nar/19.23.6505] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The KpnI restriction-modification (KpnI RM) system was previously cloned and expressed in E. coli. The nucleotide sequences of the KpnI endonuclease (R.KpnI) and methylase (M. KpnI) genes have now been determined. The sequence of the amino acid residues predicted from the endonuclease gene DNA sequence and the sequence of the first 12 NH2-terminal amino acids determined from the purified endonuclease protein were identical. The kpnIR gene specifies a protein of 218 amino acids (MW: 25,115), while the kpnIM gene codes for a protein of 417 amino acids (MW: 47,582). The two genes transcribe divergently with a intergeneic region of 167 nucleotides containing the putative promoter regions for both genes. No protein sequence similarity was detected between R.KpnI and M.KpnI. Comparison of the amino acid sequence of M.KpnI with sequences of various methylases revealed a significant homology to N6-adenine methylases, a partial homology to N4-cytosine methylases, and no homology to C5-methylases.
Collapse
|
25
|
Hill C, Miller LA, Klaenhammer TR. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J Bacteriol 1991; 173:4363-70. [PMID: 1906061 PMCID: PMC208097 DOI: 10.1128/jb.173.14.4363-4370.1991] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The conjugative plasmid pTR2030 confers bacteriophage resistance to lactococci by two independent mechanisms, an abortive infection mechanism (Hsp+) and a restriction and modification system (R+/M+). pTR2030 transconjugants of lactococcal strains are used in the dairy industry to prolong the usefulness of mesophilic starter cultures. One bacteriophage which has emerged against a pTR2030 transconjugant is not susceptible to either of the two defense systems encoded by the plasmid. Phage nck202.50 (phi 50) is completely resistant to restriction by pTR2030. A region of homology between pTR2030 and phi 50 was subcloned, physically mapped, and sequenced. A region of 1,273 bp was identical in both plasmid and phage, suggesting that the fragment had recently been transferred between the two genomes. Sequence analysis confirmed that the transferred region encoded greater than 55% of the amino domain of the structural gene for a type II methylase designated LlaI. The LlaI gene is 1,869 bp in length and shows organizational similarities to the type II A methylase FokI. In addition to the amino domain, upstream sequences, possibly containing the expression signals, were present on the phage genome. The phage phi 50 fragment containing the methylase amino domain, designated LlaPI, when cloned onto the shuttle vector pSA3 was capable of modifying another phage genome in trans. This is the first report of the genetic exchange between a bacterium and a phage which confers a selective advantage on the phage. Definition of the LlaI system on pTR2030 provides the first evidence that type II systems contribute to restriction and modification phenotypes during host-dependent replication of phages in lactococci.
Collapse
Affiliation(s)
- C Hill
- Department of Food Science, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695-7624
| | | | | |
Collapse
|
26
|
Abstract
The genes for over 100 restriction-modification systems have now been cloned, and approximately one-half have been sequenced. Despite their similar function, they are exceedingly heterogeneous. The heterogeneity is evident at three levels: in the gene arrangements; in the enzyme compositions; and in the protein sequences. This paper summarizes the main features of the R-M systems that have been cloned.
Collapse
Affiliation(s)
- G G Wilson
- New England Biolabs, Inc., Beverly, MA 01915
| |
Collapse
|
27
|
Nelson M, McClelland M. Site-specific methylation: effect on DNA modification methyltransferases and restriction endonucleases. Nucleic Acids Res 1991; 19 Suppl:2045-71. [PMID: 1645875 PMCID: PMC331346 DOI: 10.1093/nar/19.suppl.2045] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- M Nelson
- California Institute of Biological Research, La Jolla 92037
| | | |
Collapse
|
28
|
Brooks JE, Nathan PD, Landry D, Sznyter LA, Waite-Rees P, Ives CL, Moran LS, Slatko BE, Benner JS. Characterization of the cloned BamHI restriction modification system: its nucleotide sequence, properties of the methylase, and expression in heterologous hosts. Nucleic Acids Res 1991; 19:841-50. [PMID: 1901989 PMCID: PMC333720 DOI: 10.1093/nar/19.4.841] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The BamHI restriction modification system was previously cloned into E. coli and maintained with an extra copy of the methylase gene on a high copy vector (Brooks et al., (1989) Nucl. Acids Res. 17, 979-997). The nucleotide sequence of a 3014 bp region containing the endonuclease (R) and methylase (M) genes has now been determined. The sequence predicts a methylase protein of 423 amino acids, Mr 49,527, and an endonuclease protein of 213 amino acids, Mr 24,570. Between the two genes is a small open reading frame capable of encoding a 102 amino acid protein, Mr 13,351. The M. BamHI enzyme has been purified from a high expression clone, its amino terminal sequence determined, and the nature of its substrate modification studied. The BamHI methylase modifies the internal C within its recognition sequence at the N4 position. Comparisons of the deduced amino acid sequence of M. BamHI have been made with those available for other DNA methylases: among them, several contain five distinct regions, 12 to 22 amino acids in length, of pronounced sequence similarity. Finally, stability and expression of the BamHI system in both E. coli and B. subtilis have been studied. The results suggest R and M expression are carefully regulated in a 'natural' host like B. subtilis.
Collapse
|
29
|
Abstract
Restriction-modification systems must be regulated to avoid autorestriction and death of the host cell. An open reading frame (ORF) in the PvuII restriction-modification system appears to code for a regulatory protein from a previously unrecognized family. First, interruptions of this ORF result in a nonrestricting phenotype. Second, this ORF can restore restriction competence to such interrupted mutants in trans. Third, the predicted amino acid sequence of this ORF resembles those of known DNA-binding proteins and includes a probable helix-turn-helix motif. A survey of unattributed ORFs in 15 other type II restriction-modification systems revealed three that closely resemble the PvuII ORF. All four members of this putative regulatory gene family have a common position relative to the endonuclease genes, suggesting a common regulatory mechanism.
Collapse
|
30
|
Athanasiadis A, Gregoriu M, Thanos D, Kokkinidis M, Papamatheakis J. Complete nucleotide sequence of the PvuII restriction enzyme gene from Proteus vulgaris. Nucleic Acids Res 1990; 18:6434. [PMID: 2243794 PMCID: PMC332547 DOI: 10.1093/nar/18.21.6434] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
31
|
Everett EA, Falick AM, Reich NO. Identification of a critical cysteine in EcoRI DNA methyltransferase by mass spectrometry. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38222-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Labbé D, Höltke HJ, Lau PC. Cloning and characterization of two tandemly arranged DNA methyltransferase genes of Neisseria lactamica: an adenine-specific M.NlaIII and a cytosine-type methylase. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:101-10. [PMID: 2277628 DOI: 10.1007/bf00259456] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The gene encoding the Neisseria lactamica III DNA methyltransferase (M.NlaIII) which recognizes the sequence CATG has been cloned and expressed in Escherichia coli. DNA sequencing of a 3.125 kb EcoRI-PstI fragment localizes the M. NlaIII gene to a 334 codon open reading frame (ORF) and identifies, 468 bp downstream, a second ORF of 313 amino acids, which is referred to as M.NlaX. Both proteins are detectable in the E. coli coupled in vitro transcription-translation system; they are apparently expressed from separate N. lactamica promoters. The N-terminal half of the previously characterized M.FokI, which methylates adenine in one of the DNA strands with its asymmetric recognition sequence (GGATG), is found to have 41% sequence identity and a further 11.7% sequence similarity with M.NlaIII. Among the conserved amino acids is the wellknown DPPY sequence motif. With one exception, analysis of the nucleotides coding for the DP dipeptide in all known DPPY sequences shows the presence of an inherent DNA adenine methylation (dam) recognition site of GATC. A low level of expression of M.NlaX in E. coli prevents the elucidation of its sequence recognition specificity. Sequence analysis of M.NlaX shows that it is closely related to the group of monospecific 5-methylcytosine DNA methyltransferases (M.EcoRII, Dcm, M.HpaII and M.HhaI) which all have a modified cytosine at the second position of the recognition sequences. Both M.EcoRII and Dcm amino acid sequences are about 50% identical with M.NlaX; a considerable degree of sequence identity is found in the so-called variable region which is believed to be responsible for sequence recognition specificity. M.NlaX is probably the counterpart to the E. coli Dcm in N. lactamica.
Collapse
Affiliation(s)
- D Labbé
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec
| | | | | |
Collapse
|
33
|
Brenner V, Venetianer P, Kiss A. Cloning and nucleotide sequence of the gene encoding the Ecal DNA methyltransferase. Nucleic Acids Res 1990; 18:355-9. [PMID: 2183182 PMCID: PMC330275 DOI: 10.1093/nar/18.2.355] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gene coding for the GGTNACC specific Ecal DNA methyltransferase (M.Ecal) has been cloned in E. coli from Enterobacter cloacae and its nucleotide sequence has been determined. The ecalM gene codes for a protein of 452 amino acids (Mr: 51,111). It was determined that M.Ecal is an adenine methyltransferase. M.Ecal shows limited amino acid sequence similarity to other adenine methyltransferases. A clone that expresses Ecal methyltransferase at high level was constructed.
Collapse
Affiliation(s)
- V Brenner
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged
| | | | | |
Collapse
|
34
|
Smith HO, Annau TM, Chandrasegaran S. Finding sequence motifs in groups of functionally related proteins. Proc Natl Acad Sci U S A 1990; 87:826-30. [PMID: 1689055 PMCID: PMC53359 DOI: 10.1073/pnas.87.2.826] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have developed a method for rapidly finding patterns of conserved amino acid residues (motifs) in groups of functionally related proteins. All 3-amino acid patterns in a group of proteins of the type aa1 d1 aa2 d2 aa3, where d1 and d2 are distances that can be varied in a range up to 24 residues, are accumulated into an array. Segments of the proteins containing those patterns that occur most frequently are aligned on each other by a scoring method that obtains an average relatedness value for all the amino acids in each column of the aligned sequence block based on the Dayhoff relatedness odds matrix. The automated method successfully finds and displays nearly all of the sequence motifs that have been previously reported to occur in 33 reverse transcriptases, 18 DNA integrases, and 30 DNA methyltransferases.
Collapse
Affiliation(s)
- H O Smith
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | | | | |
Collapse
|
35
|
Kaszubska W, Aiken C, O'Connor CD, Gumport RI. Purification, cloning and sequence analysis of RsrI DNA methyltransferase: lack of homology between two enzymes, RsrI and EcoRI, that methylate the same nucleotide in identical recognition sequences. Nucleic Acids Res 1989; 17:10403-25. [PMID: 2690017 PMCID: PMC335309 DOI: 10.1093/nar/17.24.10403] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RsrI DNA methyltransferase (M-RsrI) from Rhodobacter sphaeroides has been purified to homogeneity, and its gene cloned and sequenced. This enzyme catalyzes methylation of the same central adenine residue in the duplex recognition sequence d(GAATTC) as does M-EcoRI. The reduced and denatured molecular weight of the RsrI methyltransferase (MTase) is 33,600 Da. A fragment of R. sphaeroides chromosomal DNA exhibited M.RsrI activity in E. coli and was used to sequence the rsrIM gene. The deduced amino acid sequence of M.RsrI shows partial homology to those of the type II adenine MTases HinfI and DpnA and N4-cytosine MTases BamHI and PvuII, and to the type III adenine MTases EcoP1 and EcoP15. In contrast to their corresponding isoschizomeric endonucleases, the deduced amino acid sequences of the RsrI and EcoRI MTases show very little homology. Either the EcoRI and RsrI restriction-modification systems assembled independently from closely related endonuclease and more distantly related MTase genes, or the MTase genes diverged more than their partner endonuclease genes. The rsrIM gene sequence has also been determined by Stephenson and Greene (Nucl. Acids Res. (1989) 17, this issue).
Collapse
Affiliation(s)
- W Kaszubska
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | | | | | |
Collapse
|
36
|
Klimasauskas S, Timinskas A, Menkevicius S, Butkienè D, Butkus V, Janulaitis A. Sequence motifs characteristic of DNA[cytosine-N4]methyltransferases: similarity to adenine and cytosine-C5 DNA-methylases. Nucleic Acids Res 1989; 17:9823-32. [PMID: 2690010 PMCID: PMC335216 DOI: 10.1093/nar/17.23.9823] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The sequences coding for DNA[cytosine-N4]methyltransferases MvaI (from Micrococcus varians RFL19) and Cfr9I (from Citrobacter freundii RFL9) have been determined. The predicted methylases are proteins of 454 and 300 amino acids, respectively. Primary structure comparison of M.Cfr9I and another m4C-forming methylase, M.Pvu II, revealed extended regions of homology. The sequence comparison of the three DNA[cytosine-N4]-methylases using originally developed software revealed two conserved patterns, DPF-GSGT and TSPPY, which were found similar also to those of adenine and DNA[cytosine-C5]-methylases. These data provided a basis for global alignment and classification of DNA-methylase sequences. Structural considerations led us to suggest that the first region could be the binding site of AdoMet, while the second is thought to be directly involved in the modification of the exocyclic amino group.
Collapse
Affiliation(s)
- S Klimasauskas
- Institute of Applied Enzymology, Vilnius, Lithuania, USSR
| | | | | | | | | | | |
Collapse
|
37
|
Heidmann S, Seifert W, Kessler C, Domdey H. Cloning, characterization and heterologous expression of the SmaI restriction-modification system. Nucleic Acids Res 1989; 17:9783-96. [PMID: 2690008 PMCID: PMC335213 DOI: 10.1093/nar/17.23.9783] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The genes coding for the class-II Serratia marcescens restriction-modification system have been cloned and expressed in E. coli. Recombinant clones, restricted incoming phage only poorly; the recombinant plasmids, however, became fully modified in vivo, i.e. completely resistant against digestion with R.SmaI. The determined nucleotide sequence of the cloned system revealed three open reading frames with lengths of 252 bp, 741 bp, and 876 bp. Through various deletion experiments and an insertion-mutation experiment the 876 bp open reading frame could be assigned to the SmaI DNA modification enzyme and the 741 bp open reading frame to the SmaI restriction endonuclease. Mapping of the transcription start sites of the genes revealed that the SmaI endonuclease is transcribed as polycistronic mRNA together with a 252 bp long preceding open reading frame of unknown function. No homology was found when comparing the amino acid sequence of M.SmaI with the published sequences of m5C-specific DNA modification methyltransferases. On the other hand, a stretch of 14 amino acids in the C-proximal region of M.SmaI shows a significant homology to the C-proximal amino acid sequences of the N6A-methyltransferases M.HinfI and M.DpnIIA and the N4C-methyltransferase M.PvuII.
Collapse
Affiliation(s)
- S Heidmann
- Laboratorium für Molekulare Biologie, Genzentrum, der Ludwig-Maximilians-Universität München, FRG
| | | | | | | |
Collapse
|