1
|
Usami K, Tezuka T, Ohnishi Y, Shigeto S. Multimodal Molecular Imaging Reveals a Novel Membrane Component in Sporangia of the Rare Actinomycete Actinoplanes missouriensis. ACS OMEGA 2024; 9:39956-39964. [PMID: 39346884 PMCID: PMC11425705 DOI: 10.1021/acsomega.4c05706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
The bacterium Actinoplanes missouriensis belongs to the genus Actinoplanes, a prolific source of useful natural products. This microbe forms globular structures called sporangia, which contain many dormant spores. Recent studies using transmission electron microscopy have shown that the A. missouriensis sporangium membrane has an unprecedented three-layer structure, but its molecular components remain unclear. Here, we present multimodal (spontaneous Raman scattering, coherent anti-Stokes Raman scattering, second harmonic generation, sum frequency generation, and third-order sum frequency generation) label-free molecular imaging of intact A. missouriensis sporangia. Spontaneous Raman imaging assisted with multivariate curve resolution-alternating least-squares analysis revealed a novel component in the sporangium membrane that exhibits unique Raman bands at 1550 and 1615 cm-1 in addition to those characteristic of lipids. A plausible candidate for this component is an unsaturated carbonyl compound with an aliphatic moiety derived from fatty acid. Furthermore, second harmonic generation imaging revealed that a layer(s) of the sporangium membrane containing this unknown component has an ordered, noncentrosymmetric structure like fibrillar proteins and amylopectin. Our results suggest that the sporangium membrane is a new type of biological membrane, not only in terms of architecture but also in terms of components. We demonstrate that multimodal molecular imaging with Raman scattering as the core technology will provide a promising platform for interrogating the chemical components, whether known or unknown, of diverse biological structures produced by microbes.
Collapse
Affiliation(s)
- Keisuke Usami
- Department
of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda 669-1330, Japan
| | - Takeaki Tezuka
- Department
of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative
Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department
of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative
Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinsuke Shigeto
- Department
of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda 669-1330, Japan
| |
Collapse
|
2
|
Ropers D, Couté Y, Faure L, Ferré S, Labourdette D, Shabani A, Trouilh L, Vasseur P, Corre G, Ferro M, Teste MA, Geiselmann J, de Jong H. Multiomics Study of Bacterial Growth Arrest in a Synthetic Biology Application. ACS Synth Biol 2021; 10:2910-2926. [PMID: 34739215 DOI: 10.1021/acssynbio.1c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the scalability of a previously developed growth switch based on external control of RNA polymerase expression. Our results indicate that, in liter-scale bioreactors operating in fed-batch mode, growth-arrested Escherichia coli cells are able to convert glucose to glycerol at an increased yield. A multiomics quantification of the physiology of the cells shows that, apart from acetate production, few metabolic side effects occur. However, a number of specific responses to growth slow-down and growth arrest are launched at the transcriptional level. These notably include the downregulation of genes involved in growth-associated processes, such as amino acid and nucleotide metabolism and translation. Interestingly, the transcriptional responses are buffered at the proteome level, probably due to the strong decrease of the total mRNA concentration after the diminution of transcriptional activity and the absence of growth dilution of proteins. Growth arrest thus reduces the opportunities for dynamically adjusting the proteome composition, which poses constraints on the design of biotechnological production processes but may also avoid the initiation of deleterious stress responses.
Collapse
Affiliation(s)
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | | | - Sabrina Ferré
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Delphine Labourdette
- GeT-Biopuces, TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Arieta Shabani
- Université Grenoble Alpes, Inria, 38000 Grenoble, France
| | - Lidwine Trouilh
- GeT-Biopuces, TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | | | | | - Myriam Ferro
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Marie-Ange Teste
- GeT-Biopuces, TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Johannes Geiselmann
- Université Grenoble Alpes, Inria, 38000 Grenoble, France
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Hidde de Jong
- Université Grenoble Alpes, Inria, 38000 Grenoble, France
| |
Collapse
|
3
|
Hou J, Qiu C, Shen Y, Li H, Bao X. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS Yeast Res 2017; 17:3861258. [DOI: 10.1093/femsyr/fox034] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jin Hou
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
| | - Chenxi Qiu
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
| | - Hongxing Li
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353, China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, The School of Life Science, Shandong University, Jinan, 250100, China
- Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353, China
| |
Collapse
|
4
|
Hou J, Jiao C, Peng B, Shen Y, Bao X. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae. Metab Eng 2016; 38:241-250. [DOI: 10.1016/j.ymben.2016.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/05/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|
5
|
Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum. J Ind Microbiol Biotechnol 2014; 41:1581-9. [PMID: 25139657 DOI: 10.1007/s10295-014-1478-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/18/2014] [Indexed: 10/24/2022]
Abstract
A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co(2+) or Mg(2+) for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme.
Collapse
|
6
|
Deng H, Chen S, Wu D, Chen J, Wu J. Heterologous expression and biochemical characterization of glucose isomerase from Thermobifida fusca. Bioprocess Biosyst Eng 2013; 37:1211-9. [DOI: 10.1007/s00449-013-1093-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022]
|
7
|
Karaoglu H, Yanmis D, Sal FA, Celik A, Canakci S, Belduz AO. Biochemical characterization of a novel glucose isomerase from Anoxybacillus gonensis G2T that displays a high level of activity and thermal stability. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Yamamura H, Ohnishi Y, Ishikawa J, Ichikawa N, Ikeda H, Sekine M, Harada T, Horinouchi S, Otoguro M, Tamura T, Suzuki KI, Hoshino Y, Arisawa A, Nakagawa Y, Fujita N, Hayakawa M. Complete genome sequence of the motile actinomycete Actinoplanes missouriensis 431(T) (= NBRC 102363(T)). Stand Genomic Sci 2012; 7:294-303. [PMID: 23407331 PMCID: PMC3569393 DOI: 10.4056/sigs.3196539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinoplanes missouriensis Couch 1963 is a well-characterized member of the genus Actinoplanes, which is of morphological interest because its members typically produce sporangia containing motile spores. The sporangiospores are motile by means of flagella and exhibit chemotactic properties. It is of further interest that members of Actinoplanes are prolific sources of novel antibiotics, enzymes, and other bioactive compounds. Here, we describe the features of A. missouriensis 431T, together with the complete genome sequence and annotation. The 8,773,466 bp genome contains 8,125 protein-coding and 79 RNA genes.
Collapse
Affiliation(s)
- Hideki Yamamura
- Division of Applied Biological Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yamamura H, Shimizu A, Nakagawa Y, Hamada M, Otoguro M, Tamura T, Hayakawa M. Actinoplanes rishiriensis sp. nov., a novel motile actinomycete isolated by rehydration and centrifugation method. J Antibiot (Tokyo) 2012; 65:249-53. [DOI: 10.1038/ja.2012.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Parachin NS, Bergdahl B, van Niel EW, Gorwa-Grauslund MF. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng 2011; 13:508-17. [DOI: 10.1016/j.ymben.2011.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 05/16/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
|
11
|
Parachin NS, Gorwa-Grauslund MF. Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:9. [PMID: 21545702 PMCID: PMC3113934 DOI: 10.1186/1754-6834-4-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/05/2011] [Indexed: 05/15/2023]
Abstract
BACKGROUND Xylose isomerase (XI) catalyses the isomerisation of xylose to xylulose in bacteria and some fungi. Currently, only a limited number of XI genes have been functionally expressed in Saccharomyces cerevisiae, the microorganism of choice for lignocellulosic ethanol production. The objective of the present study was to search for novel XI genes in the vastly diverse microbial habitat present in soil. As the exploitation of microbial diversity is impaired by the ability to cultivate soil microorganisms under standard laboratory conditions, a metagenomic approach, consisting of total DNA extraction from a given environment followed by cloning of DNA into suitable vectors, was undertaken. RESULTS A soil metagenomic library was constructed and two screening methods based on protein sequence similarity and enzyme activity were investigated to isolate novel XI encoding genes. These two screening approaches identified the xym1 and xym2 genes, respectively. Sequence and phylogenetic analyses revealed that the genes shared 67% similarity and belonged to different bacterial groups. When xym1 and xym2 were overexpressed in a xylA-deficient Escherichia coli strain, similar growth rates to those in which the Piromyces XI gene was expressed were obtained. However, expression in S. cerevisiae resulted in only one-fourth the growth rate of that obtained for the strain expressing the Piromyces XI gene. CONCLUSIONS For the first time, the screening of a soil metagenomic library in E. coli resulted in the successful isolation of two active XIs. However, the discrepancy between XI enzyme performance in E. coli and S. cerevisiae suggests that future screening for XI activity from soil should be pursued directly using yeast as a host.
Collapse
Affiliation(s)
- Nádia Skorupa Parachin
- Department of Applied Microbiology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- Present affiliation - Laboratório de Biologia Molecular, Universidade de Brasília, 70910-900 Brasília (DF), Brazil
| | - Marie F Gorwa-Grauslund
- Department of Applied Microbiology, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
12
|
Kasumi T, Mori S, Kaneko S, Koyama Y. Molecular Cloning and Characterization of D-Xylose Isomerase from A Novel Actinobacteria, Thermobifida fusca MBL 10003. J Appl Glycosci (1999) 2011. [DOI: 10.5458/jag.jag.jag-2011_014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
13
|
Yoshida H, Takeda K, Izumori K, Kamitori S. Elucidation of the role of Ser329 and the C-terminal region in the catalytic activity of Pseudomonas stutzeri L-rhamnose isomerase. Protein Eng Des Sel 2010; 23:919-27. [PMID: 20977999 DOI: 10.1093/protein/gzq077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas stutzeri l-rhamnose isomerase (l-RhI) is capable of catalyzing the isomerization between various aldoses and ketoses, showing high catalytic activity with broad substrate-specificity compared with Escherichia coli l-RhI. In a previous study, the crystal structure of P. stutzeri l-RhI revealed an active site comparable with that of E. coli l-RhI and d-xylose isomerases (d-XIs) with structurally conserved amino acids, but also with a different residue seemingly responsible for the specificity of P. stutzeri l-RhI, though the residue itself does not interact with the bound substrate. This residue, Ser329, corresponds to Phe336 in E. coli l-RhI and Lys294 in Actinoplanes missouriensis d-XI. To elucidate the role of Ser329 in P. stutzeri l-RhI, we constructed mutants, S329F (E. coli l-RhI type), S329K (A. missouriensis d-XI type), S329L and S329A. Analyses of the catalytic activity and crystal structure of the mutants revealed a hydroxyl group of Ser329 to be crucial for catalytic activity via interaction with a water molecule. In addition, in complexes with substrate, the mutants S329F and S329L exhibited significant electron density in the C-terminal region not observed in the wild-type P. stutzeri l-RhI. The C-terminal region of P. stutzeri l-RhI has flexibility and shows a flip-flop movement at the inter-molecular surface of the dimeric form.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Division of Structural Biology, Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | |
Collapse
|
14
|
Metabolic engineering of the initial stages of xylose catabolism in yeast for the purpose of constructing efficient producers of ethanol from lignocellulosics. CYTOL GENET+ 2008. [DOI: 10.1007/s11956-008-2011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Yoshida H, Yamada M, Ohyama Y, Takada G, Izumori K, Kamitori S. The structures of L-rhamnose isomerase from Pseudomonas stutzeri in complexes with L-rhamnose and D-allose provide insights into broad substrate specificity. J Mol Biol 2006; 365:1505-16. [PMID: 17141803 DOI: 10.1016/j.jmb.2006.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 10/27/2006] [Accepted: 11/01/2006] [Indexed: 11/26/2022]
Abstract
Pseudomonas stutzeri L-rhamnose isomerase (P. stutzeri L-RhI) can efficiently catalyze the isomerization between various aldoses and ketoses, showing a broad substrate specificity compared to L-RhI from Escherichia coli (E. coli L-RhI). To understand the relationship between structure and substrate specificity, the crystal structures of P. stutzeri L-RhI alone and in complexes with L-rhamnose and D-allose which has different configurations of C4 and C5 from L-rhamnose, were determined at a resolution of 2.0 A, 1.97 A, and 1.97 A, respectively. P. stutzeri L-RhI has a large domain with a (beta/alpha)(8) barrel fold and an additional small domain composed of seven alpha-helices, forming a homo tetramer, as found in E. coli L-RhI and D-xylose isomerases (D-XIs) from various microorganisms. The beta1-alpha1 loop (Gly60-Arg76) of P. stutzeri L-RhI is involved in the substrate binding of a neighbouring molecule, as found in D-XIs, while in E. coli L-RhI, the corresponding beta1-alpha1 loop is extended (Asp52-Arg78) and covers the substrate-binding site of the same molecule. The complex structures of P. stutzeri L-RhI with L-rhamnose and D-allose show that both substrates are nicely fitted to the substrate-binding site. The part of the substrate-binding site interacting with the substrate at the 1, 2, and 3 positions is equivalent to E. coli L-RhI, and the other part interacting with the 4, 5, and 6 positions is similar to D-XI. In E. coli L-RhI, the beta1-alpha1 loop creates an unique hydrophobic pocket at the the 4, 5, and 6 positions, leading to the strictly recognition of L-rhamnose as the most suitable substrate, while in P. stutzeri L-RhI, there is no corresponding hydrophobic pocket where Phe66 from a neighbouring molecule merely forms hydrophobic interactions with the substrate, leading to the loose substrate recognition at the 4, 5, and 6 positions.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Molecular Structure Research Group, Information Technology Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 2002; 68:1604-9. [PMID: 11916674 PMCID: PMC123863 DOI: 10.1128/aem.68.4.1604-1609.2002] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2001] [Accepted: 01/07/2002] [Indexed: 11/20/2022] Open
Abstract
In recombinant, xylose-fermenting Saccharomyces cerevisiae, about 30% of the consumed xylose is converted to xylitol. Xylitol production results from a cofactor imbalance, since xylose reductase uses both NADPH and NADH, while xylitol dehydrogenase uses only NAD(+). In this study we increased the ethanol yield and decreased the xylitol yield by lowering the flux through the NADPH-producing pentose phosphate pathway. The pentose phosphate pathway was blocked either by disruption of the GND1 gene, one of the isogenes of 6-phosphogluconate dehydrogenase, or by disruption of the ZWF1 gene, which encodes glucose 6-phosphate dehydrogenase. Decreasing the phosphoglucose isomerase activity by 90% also lowered the pentose phosphate pathway flux. These modifications all resulted in lower xylitol yield and higher ethanol yield than in the control strains. TMB3255, carrying a disruption of ZWF1, gave the highest ethanol yield (0.41 g g(-1)) and the lowest xylitol yield (0.05 g g(-1)) reported for a xylose-fermenting recombinant S. cerevisiae strain, but also an 84% lower xylose consumption rate. The low xylose fermentation rate is probably due to limited NADPH-mediated xylose reduction. Metabolic flux modeling of TMB3255 confirmed that the NADPH-producing pentose phosphate pathway was blocked and that xylose reduction was mediated only by NADH, leading to a lower rate of xylose consumption. These results indicate that xylitol production is strongly connected to the flux through the oxidative part of the pentose phosphate pathway.
Collapse
Affiliation(s)
- Marie Jeppsson
- Department of Applied Microbiology, Lund University, 221 00 Lund, Sweden
| | | | | | | |
Collapse
|
17
|
Raykovska V, Dolashka-Angelova P, Paskaleva D, Stoeva S, Abashev J, Kirkov L, Voelter W. Isolation and characterization of a xylose-glucose isomerase from a new strain Streptomyces thermovulgaris 127, var. 7-86. Biochem Cell Biol 2001. [DOI: 10.1139/o00-100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A thermostable D-xyloseglucose isomerase was isolated from the thermophilic strain Streptomyces thermovulgaris 127, var. 7-86, as a result of mutagenic treatment by γ-irradiation of the parent strain, by precipitation and sequential chromatographies on DEAESephadex A50, TSK-gel, FPLC-Mono Q/HR, and Superose 12 columns. The N-terminal amino acid sequence and amino acid analysis shows 7392% homology with xyloseglucose isomerases from other sources. The native molecular mass, determined by gel filtration on a Superose 12 column, is 180 kDa, and 44.6 and 45 kDa were calculated, based on amino acid analysis and 10% SDS-PAGE, respectively. Both, the activity and stability of the enzyme were investigated toward pH, temperature, and denaturation with guanidine hydrochloride. The enzyme activity showed a clear pH optimum between pH 7.2 and 9.0 with D-glucose and 7.4 and 8.3 with D-xylose as substrates, respectively. The enzyme is active up to 6085°C at pH 7.0, using D-glucose, and up to 5060°C at pH 7.6, using D-xylose as substrates. The activation energy (Ea = 46 kJ·mol1) and the critical temperature (Tc = 60°C) were determined by fluorescence spectroscopy. Tc is in close coincidence with the melting temperature of denaturation (Tm = 59°C), determined by circular dichroism (CD) spectroscopy. The free energy of stabilization in water after denaturation with Gdn.HCl was calculated to be 12 kJ·mol1. The specific activity (km values) for D-xylose-glucose isomerase at 70°C toward different substrates, D-xylose, D-glucose, and D-ribose, were determined to be 4.4, 55.5, and 13.3 mM, recpectively.Key words: D-xylose-glucose isomerase, protein sequencing, protein stability, protein denaturation.
Collapse
|
18
|
Hartley BS, Hanlon N, Jackson RJ, Rangarajan M. Glucose isomerase: insights into protein engineering for increased thermostability. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1543:294-335. [PMID: 11150612 DOI: 10.1016/s0167-4838(00)00246-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thermostable glucose isomerases are desirable for production of 55% fructose syrups at >90 degrees C. Current commercial enzymes operate only at 60 degrees C to produce 45% fructose syrups. Protein engineering to construct more stable enzymes has so far been relatively unsuccessful, so this review focuses on elucidation of the thermal inactivation pathway as a future guide. The primary and tertiary structures of 11 Class 1 and 20 Class 2 enzymes are compared. Within each class the structures are almost identical and sequence differences are few. Structural differences between Class 1 and Class 2 are less than previously surmised. The thermostabilities of Class 1 enzymes are essentially identical, in contrast to previous reports, but in Class 2 they vary widely. In each class, thermal inactivation proceeds via the tetrameric apoenzyme, so metal ion affinity dominates thermostability. In Class 1 enzymes, subunit dissociation is not involved, but there is an irreversible conformational change in the apoenzyme leading to a more thermostable inactive tetramer. This may be linked to reversible conformational changes in the apoenzyme at alkaline pH arising from electrostatic repulsions in the active site, which break a buried Arg-30-Asp-299 salt bridge and bring Arg-30 to the surface. There is a different salt bridge in Class 2 enzymes, which might explain their varying thermostability. Previous protein engineering results are reviewed in light of these insights.
Collapse
Affiliation(s)
- B S Hartley
- Department of Biochemistry, Imperial College, SW7 2AZ, London, UK.
| | | | | | | |
Collapse
|
19
|
Abstract
beta-Xylosidase (1,4-beta-D-xylan xylohydrolase EC 3.2.1.37) and xylose isomerase (D-xylose ketol-isomerase EC 5.3.1.5) produced by Streptomyces sp. strain EC 10, were cell-bound enzymes induced by xylan, straw, and xylose. Enzyme production was subjected to a form of carbon catabolite repression by glycerol. beta-Xylosidase and xylose isomerase copurified strictly, and the preparation was found homogeneous by gel electrophoresis after successive chromatography on DEAE-Sephacel and gel filtration on Biogel A. Streptomyces sp. produced apparently a bifunctional beta-xylosidase-xylose isomerase enzyme. The molecular weight of the enzyme was measured to be 163,000 by gel filtration and 42,000 by SDS-PAGE, indicating that the enzyme behaved as a tetramer of identical subunits. The Streptomyces sp. beta-xylosidase was a typical glycosidase acting as an exoenzyme on xylooligosaccharides, and working optimally at pH 7.5 and 45 degrees C. The xylose isomerase optimal temperature was 70 degrees C and maximal activity was observed in a broad range pH (5-8). Enhanced saccharification of arabinoxylan caused by the addition of the enzyme to endoxylanase suggested a cooperative enzyme action. The first 35 amino acids of the N-terminal sequence of the enzyme showed strong analogies with N-terminal sequences of xylose isomerase produced by other microorganisms but not with other published N-terminal sequences of beta-xylosidases.
Collapse
|
20
|
Park BC, Koh S, Chang C, Suh SW, Lee DS, Byun SM. Cloning and expression of the gene for xylose isomerase from Thermus flavus AT62 in Escherichia coli. Appl Biochem Biotechnol 1997; 62:15-27. [PMID: 9103605 DOI: 10.1007/bf02787980] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gene encoding xylose isomerase (xylA) was cloned from Thermus flavus AT62 and the DNA sequence was determined. The xylA gene encodes the enzyme xylose isomerase (XI or xylA) consisting of 387 amino acids (calculated Mr of 44,941). Also, there was a partial xylulose kinase gene that was 4 bp overlapped in the end of XI gene. The XI gene was stably expressed in E. coli under the control of tac promoter. XI produced in E. coli was simply purified by heat treatment at 90 degrees C for 10 min and column chromatography of DEAE-Sephacel. The Mr of the purified enzyme was estimated to be 45 kDa on SDS-polyacrylamide gel electrophoresis. However, Mr of the cloned XI was 185 kDa on native condition, indicating that the XI consists of homomeric tetramer. The enzyme has an optimum temperature at 90 degrees C. Thermostability tests revealed that half life at 85 degrees C was 2 mo and 2 h at 95 degrees C. The optimum pH is around 7.0, close to where by-product formation is minimal. The isomerization yield of the cloned XI was about 55% from glucose, indicating that the yield is higher than those of reported enzymes. The K(m) values for various sugar substrates were calculated as 106 mM for glucose. Divalent cations such as Mn2+, Co2+, and Mg2+ are required for the enzyme activity and 100 mM EDTA completely inhibited the enzyme activity.
Collapse
Affiliation(s)
- B C Park
- Korea Research Institute of Bioscience and Biotechnology, KIST, Yusong, Taejon, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Liu SY, Wiegel J, Gherardini FC. Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic pH optimum from Thermoanaerobacterium strain JW/SL-YS 489. J Bacteriol 1996; 178:5938-45. [PMID: 8830690 PMCID: PMC178450 DOI: 10.1128/jb.178.20.5938-5945.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An unusual xylose isomerase produced by Thermoanaerobacterium strain JW/SL-YS 489 was purified 28-fold to gel electrophoretic homogeneity, and the biochemical properties were determined. Its pH optimum distinguishes this enzyme from all other previously described xylose isomerases. The purified enzyme had maximal activity at pH 6.4 (60 degrees C) or pH 6.8 (80 degrees C) in a 30-min assay, an isoelectric point at 4.7, and an estimated native molecular mass of 200 kDa, with four identical subunits of 50 kDa. Like other xylose isomerases, this enzyme required Mn2+, Co2+, or Mg2+ for thermal stability (stable for 1 h at 82 degrees C in the absence of substrate) and isomerase activity, and it preferred xylose as a substrate. The gene encoding the xylose isomerase was cloned and expressed in Escherichia coli, and the complete nucleotide sequence was determined. Analysis of the sequence revealed an open reading frame of 1,317 bp that encoded a protein of 439 amino acid residues with a calculated molecular mass of 50 kDa. The biochemical properties of the cloned enzyme were the same as those of the native enzyme. Comparison of the deduced amino acid sequence with sequences of other xylose isomerases in the database showed that the enzyme had 98% homology with a xylose isomerase from a closely related bacterium, Thermoanaerobacterium saccharolyticum B6A-RI. In fact, only seven amino acid differences were detected between the two sequences, and the biochemical properties of the two enzymes, except for the pH optimum, are quite similar. Both enzymes had a temperature optimum at 80 degrees C, very similar isoelectric points (pH 4.7 for strain JW/SL-YS 489 and pH 4.8 for T. saccharolyticum B6A-RI), and slightly different thermostabilities (stable for 1 h at 80 and 85 degrees C, respectively). The obvious difference was the pH optimum (6.4 to 6.8 and 7.0 to 7.5, respectively). The fact that the pH optimum of the enzyme from strain JW/SL-YS 489 was the property that differed significantly from the T. saccharolyticum B6A-RI xylose isomerase suggested that one or more of the observed amino acid changes was responsible for this observed difference.
Collapse
Affiliation(s)
- S Y Liu
- Department of Microbiology and Center for Biological Resources Recovery, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
22
|
Abstract
Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the presence of two signature sequences, VXW(GP)GREG(YSTAE)E and (LIVM)EPKPX(EQ)P. The use of an inexpensive inducer in the fermentation medium devoid of Co2+ and redesigning of a tailor-made GI with increased thermostability, higher affinity for glucose, and lower pH optimum will contribute significantly to the development of an economically feasible commercial process for enzymatic isomerization of glucose to fructose. Manipulation of the GI gene by site-directed mutagenesis holds promise that a GI suitable for biotechnological applications will be produced in the foreseeable future.
Collapse
Affiliation(s)
- S H Bhosale
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | | |
Collapse
|
23
|
Abstract
Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the presence of two signature sequences, VXW(GP)GREG(YSTAE)E and (LIVM)EPKPX(EQ)P. The use of an inexpensive inducer in the fermentation medium devoid of Co2+ and redesigning of a tailor-made GI with increased thermostability, higher affinity for glucose, and lower pH optimum will contribute significantly to the development of an economically feasible commercial process for enzymatic isomerization of glucose to fructose. Manipulation of the GI gene by site-directed mutagenesis holds promise that a GI suitable for biotechnological applications will be produced in the foreseeable future.
Collapse
Affiliation(s)
- S H Bhosale
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | | |
Collapse
|
24
|
Inyang CU, Gebhart U, Obi SKC, Bisswanger H. Isolation and characterization of a d-glucose/xylose isomerase from a new thermophilic strain Streptomyces sp. (PLC). Appl Microbiol Biotechnol 1995. [DOI: 10.1007/bf00164766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Varsani L, Cui T, Rangarajan M, Hartley BS, Goldberg J, Collyer C, Blow DM. Arthrobacter D-xylose isomerase: protein-engineered subunit interfaces. Biochem J 1993; 291 ( Pt 2):575-83. [PMID: 8484737 PMCID: PMC1132563 DOI: 10.1042/bj2910575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutants of Arthrobacter D-xylose isomerase were constructed in which one or two disulphide bridges or additional salt bridges were introduced at the A-A* subunit interfaces. These showed no change in enzyme activity or stability compared with the wild-type enzyme. However, a Tyr253 mutant in which a disulphide bridge was introduced at the A-B* subunit interface showed reduced thermostability that was identical in both oxidized and reduced forms, and also reduced stability in urea. X-ray-crystallographic analysis of the Mn(2+)-xylitol form of oxidized Y253C (the Tyr253-->Cys mutant) showed a changed conformation of Glu185 and also alternative conformations for Asp254, which is a ligand to the Site-[2] metal ion. With fructose, Mg(2+)-Y253C has a similar Km to that of the wild-type, and its Vmax. is also similar below pH 6.4, but declined thereafter. In the presence of Co2+, Y253C has lower activity than wild-type at all pH values, but its activity also declines at alkaline pH. These results suggest that electrostatic repulsion from the new position of Glu185 causes Asp254 to move when His219 is unprotonated, thereby preventing M2+ binding at Site [2]. These results also suggest that subunit dissociation does not lie on the pathway of thermal inactivation of D-xylose isomerase, but that movements of active-site groups are a trigger for conformational changes that initiate the unfolding process.
Collapse
Affiliation(s)
- L Varsani
- Centre for Biotechnology, Imperial College of Science, Technology and Medicine, London, U.K
| | | | | | | | | | | | | |
Collapse
|
26
|
Bor YC, Moraes C, Lee SP, Crosby WL, Sinskey AJ, Batt CA. Cloning and sequencing the Lactobacillus brevis gene encoding xylose isomerase. Gene 1992; 114:127-32. [PMID: 1587475 DOI: 10.1016/0378-1119(92)90718-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene (xylA) coding for the Lactobacillus brevis xylose isomerase (Xi) has been isolated and its complete nucleotide sequence determined. L. brevis Xi was purified and the N-terminal sequence determined. All attempts to directly clone the intact xylA using a degenerative primer deduced from amino acids (aa) 10-14 were not successful. A fragment coding for the first 462 bp from the 5' end of xylA was isolated by PCR with two primers, one coding for aa M36 to W43 and the second coding for an aa sequence (WGGREG) conserved in a number of Xi's isolated from other bacteria. From the sequence of this fragment, two additional PCR primers were synthesized, which were used in an 'outward' reaction to clone a 546-bp fragment including a region upstream from the N terminus. Finally, the complete xylA gene was cloned in a 0.43-kb NlaIII-SalI fragment and a 1.9-kb SalI-EcoRI fragment. The 449-aa sequence for the L. brevis Xi shows homology with Xis isolated from other bacteria, especially within the primary catalytic domains of the enzyme.
Collapse
Affiliation(s)
- Y C Bor
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | | | | | | | | | | |
Collapse
|
27
|
Lokman BC, van Santen P, Verdoes JC, Krüse J, Leer RJ, Posno M, Pouwels PH. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:161-9. [PMID: 1660563 DOI: 10.1007/bf00290664] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cluster of three genes involved in D-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilis D-xylose isomerase (68% and 77%, respectively), and to E. coli D-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment D-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of D-xylose isomerases of different bacteria suggests that L. pentosus D-xylose isomerase belongs to the same similarity group as B. subtilis and E. coli D-xylose isomerase and not to a second similarity group comprising D-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5'-xylR (1167 bp, repressor) - xylA (1350 bp, D-xylose isomerase) - xylB (1506 bp, D-xylulose kinase) - 3' is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.
Collapse
Affiliation(s)
- B C Lokman
- TNO Medical Biological Laboratory, Rijswijk, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Quax WJ, Mrabet NT, Luiten RG, Schuurhuizen PW, Stanssens P, Lasters I. Enhancing the Thermostability of Glucose Isomerase by Protein Engineering. Nat Biotechnol 1991; 9:738-42. [PMID: 1367634 DOI: 10.1038/nbt0891-738] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have engineered recombinant glucose isomerase (GI) from Actinoplanes missouriensis by site-directed mutagenesis to enhance its thermal stability in both the soluble and immobilized forms. Substitution of arginine for lysine at position 253, which lies at the dimer/dimer interface of the GI tetramer, produced the largest stabilization under model industrial conditions. We discuss our results in terms of a model in which chemical glycation of lysines by sugars in the industrial corn syrup substrate represents a major pathway of destabilization.
Collapse
Affiliation(s)
- W J Quax
- Gist-brocades, Research & Development, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Dekker K, Yamagata H, Sakaguchi K, Udaka S. Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. J Bacteriol 1991; 173:3078-83. [PMID: 2022613 PMCID: PMC207900 DOI: 10.1128/jb.173.10.3078-3083.1991] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The xylose isomerase gene from the thermophile Thermus thermophilus was cloned by using a fragment of the Streptomyces griseofuscus gene as a probe. The complete nucleotide sequence of the gene was determined. T. thermophilus is the most thermophilic organism from which a xylose isomerase gene has been cloned and characterized. The gene codes for a polypeptide of 387 amino acids with a molecular weight of 44,000. The Thermus xylose isomerase is considerably more thermostable than other described xylose isomerases. Production of the enzyme in Escherichia coli, by using the tac promoter, increases the xylose isomerase yield 45-fold compared with production in T. thermophilus. Moreover, the enzyme from E. coli can be purified 20-fold by simply heating the cell extract at 85 degrees C for 10 min. The characteristics of the enzyme made in E. coli are the same as those of enzyme made in T. thermophilus. Comparison of the Thermus xylose isomerase amino acid sequence with xylose isomerase sequences from other organisms showed that amino acids involved in substrate binding and isomerization are well conserved. Analysis of amino acid substitutions that distinguish the Thermus xylose isomerase from other thermostable xylose isomerases suggests that the further increase in thermostability in T. thermophilus is due to substitution of amino acids which react during irreversible inactivation and results also from increased hydrophobicity.
Collapse
Affiliation(s)
- K Dekker
- Faculty of Agriculture, Nagoya University, Japan
| | | | | | | |
Collapse
|
30
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1989; 17:8905-12. [PMID: 2587247 PMCID: PMC335096 DOI: 10.1093/nar/17.21.8905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|