1
|
Glover KE, Spencer DF, Gray MW. Identification and structural characterization of nucleus-encoded transfer RNAs imported into wheat mitochondria. J Biol Chem 2001; 276:639-48. [PMID: 11027690 DOI: 10.1074/jbc.m007708200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite its large size (200-2400 kilobase pairs), the mitochondrial genome of angiosperms does not encode the minimal set of tRNAs required to support mitochondrial protein synthesis. Here we report the identification of cytosolic-like tRNAs in wheat mitochondria using a method involving quantitative hybridization to distinguish among three tRNA classes: (i) those encoded by mitochondrial DNA (mtDNA) and localized in mitochondria, (ii) those encoded by nuclear DNA and located in the cytosol, and (iii) those encoded by nuclear DNA and found in both the cytosol and mitochondria. The latter class comprises tRNA species that are considered to be imported into mitochondria to compensate for the deficiency of mtDNA-encoded tRNAs. In a comprehensive survey of the wheat mitochondrial tRNA population, we identified 14 such imported tRNAs, the structural characterization of which is presented here. These imported tRNAs complement 16 mtDNA-encoded tRNAs, for a total of at least 30 distinct tRNA species in wheat mitochondria. Considering differences in the set of mtDNA-encoded and imported tRNAs in the mitochondria of various land plants, the import system must be able to adapt relatively rapidly over evolutionary time with regard to the particular cytosolic-like tRNAs that are brought into mitochondria.
Collapse
MESH Headings
- Base Sequence
- Biological Transport
- Cell Nucleus/genetics
- Codon/genetics
- Cytoplasm/genetics
- DNA, Mitochondrial/genetics
- Electrophoresis, Gel, Two-Dimensional
- Evolution, Molecular
- Mitochondria/genetics
- Mitochondria/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Probes
- RNA, Mitochondrial
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Asp/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, RNA
- Triticum/cytology
- Triticum/genetics
- Triticum/metabolism
Collapse
Affiliation(s)
- K E Glover
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
2
|
Kumar R, Maréchal-Drouard L, Akama K, Small I. Striking differences in mitochondrial tRNA import between different plant species. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:404-11. [PMID: 8879241 DOI: 10.1007/bf02173005] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A systematic comparison of the tRNAs imported into the mitochondria of larch, maize and potato reveals considerable differences among the three species. Larch mitochondria import at least eleven different tRNAs (more than half of those tested) corresponding to ten different amino acids. For five of these tRNAs [tRNA(Phe(GAA)), tRNA(Lys(CUU)), tRNA(Pro(UGG)), tRNA(Ser(GCU)) and tRNA(Ser(UGA))] this is the first report of import into mitochondria in any plant species. There are also differences in import between relatively closely related plants; wheat mitochondria, unlike maize mitochondria import tRNA(His), and sunflower mitochondria, unlike mitochondria from other angiosperms tested, import tRNA(Ser(GCU)) and tRNA(Ser(UGA)). These results suggest that the ability to import each tRNA has been acquired independently at different times during the evolution of higher plants, and that there are few apparent restrictions on which tRNAs can or cannot be imported. The implications for the mechanisms of mitochondrial tRNA import in plants are discussed.
Collapse
MESH Headings
- Base Sequence
- Biological Transport
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- DNA Probes
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Evolution, Molecular
- Genes, Plant
- Mitochondria/metabolism
- Molecular Sequence Data
- Plants/genetics
- RNA/genetics
- RNA/isolation & purification
- RNA/metabolism
- RNA, Mitochondrial
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Trees/genetics
- Trees/metabolism
- Triticum/genetics
- Triticum/metabolism
- Zea mays/genetics
- Zea mays/metabolism
Collapse
Affiliation(s)
- R Kumar
- Station de Génétique et d'Amélioration des Plantes, INRA, Versailles, France
| | | | | | | |
Collapse
|
3
|
Veronico P, Gallerani R, Ceci LR. Compilation and classification of higher plant mitochondrial tRNA genes. Nucleic Acids Res 1996; 24:2199-203. [PMID: 8710486 PMCID: PMC145940 DOI: 10.1093/nar/24.12.2199] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This compilation reports the tRNA genes detected on higher plant mitochondrial genomes subdivided into the widely accepted categories of 'genuine' and 'chloroplast-like' genes. Moreover, it includes a list of pseudo or truncated genes divided in the same way.
Collapse
Affiliation(s)
- P Veronico
- Centro di Studio sui Mitocondri e Metabolismo Energetico, Sezione di Trani, Italy
| | | | | |
Collapse
|
4
|
Dietrich A, Small I, Cosset A, Weil JH, Maréchal-Drouard L. Editing and import: strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie 1996; 78:518-29. [PMID: 8915541 DOI: 10.1016/0300-9084(96)84758-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The recombinations and mutations that plant mitochondrial DNA has undergone during evolution have led to the inactivation or complete loss of a number of the 'native' transfer RNA genes deriving from the genome of the ancestral endosymbiont. Following sequence divergence in their genes, some native mitochondrial tRNAs are 'rescued' by editing, a post-transcriptional process which changes the RNA primary sequence. According to in vitro studies with the native mitochondrial tRNA(Phe) from potato and tRNA(His) from larch, editing is required for efficient processing. Some of the native tRNA genes which have been inactivated or lost have been replaced by tRNA genes present in plastid DNA sequences acquired by the mitochondrial genome during evolution, which raises the problem of the transcriptional regulation of tRNA genes in plant mitochondria. Finally, tRNAs for which no gene is present in the mitochondrial genome are imported from the cytosol. This process is highly specific for certain tRNAs, and it has been suggested that the cognate aminoacyl-tRNA synthetases may be responsible for this specificity. Indeed, a mutation which blocks recognition of the cytosolic Arabidopsis thaliana tRNA(Ala) by the corresponding alanyl-tRNA synthetase also prevents mitochondrial import of this tRNA in transgenic plants. Conversely, no significant mitochondrial co-import of the normally cytosol-specific tRNA(Asp) was detected in transgenic plants expressing the yeast cytosolic aspartyl-tRNA synthetase fused to a mitochondrial targeting sequence, suggesting that, although necessary, recognition by a cognate aminoacyl-tRNA synthetase might not be sufficient to allow tRNA import into plant mitochondria.
Collapse
Affiliation(s)
- A Dietrich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis-Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Binder S, Marchfelder A, Brennicke A. RNA editing of tRNA(Phe) and tRNA(Cys) in mitochondria of Oenothera berteriana is initiated in precursor molecules. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:67-74. [PMID: 8041363 DOI: 10.1007/bf00280188] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have analyzed the role of RNA editing in the correction of mismatched base pairs in tRNA secondary structures in mitochondria of the flowering plant Oenothera berteriana. Comparison of genomic and cDNA sequences from unprocessed primary transcripts of the newly characterized genes for tRNA(Cys), tRNA(Asn) and tRNA(Ile) and the previously described gene for tRNA(Phe) revealed single nucleotide discrepancies in the tRNA(Cys) and tRNA(Phe) sequences. While the change in the anticodon stem of tRNA(Cys) alters a C-T to a T-T mismatch, the nucleotide transition in the tRNA(Phe) restores a conventional T-A Watson-Crick base pair, replacing a C-A mismatch in the acceptor stem. Since both nucleotide alterations are conversions from genomic cytidines to thymidines in the cDNA (uridines in the tRNAs), they are attributed to RNA editing, which is observed in nearly all mRNAs from plant mitochondria.
Collapse
Affiliation(s)
- S Binder
- Institut für Genbiologische Forschung, Berlin, Germany
| | | | | |
Collapse
|
7
|
Hermanns J, Osiewacz HD. Three mitochondrial unassigned open reading frames of Podospora anserina represent remnants of a viral-type RNA polymerase gene. Curr Genet 1994; 25:150-7. [PMID: 8087884 DOI: 10.1007/bf00309541] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mitochondrial DNA of Podospora anserina is complex, consisting of a characteristic set of genes with a large number of introns and a substantial amount of sequence of unknown function and origin. In addition, as indicated by various types of reorganization, this genome is highly flexible. Here we report the identification of three unassigned mitochondrial open reading frames (ORF P', ORF Q', ORF 11) as remnants of a rearranged viral-type RNA polymerase gene. These ORFs are not transcribed and may be derived from the integration of a linear plasmid of the type recently identified in a mutant of P. anserina.
Collapse
Affiliation(s)
- J Hermanns
- Department of Molecular Biology of Aging Processes, German Cancer Research Center, Heidelberg
| | | |
Collapse
|
8
|
Nakazono M, Kanno A, Tsutsumi N, Hirai A. Palindromic repeated sequences (PRSs) in the mitochondrial genome of rice: evidence for their insertion after divergence of the genus Oryza from the other Gramineae. PLANT MOLECULAR BIOLOGY 1994; 24:273-281. [PMID: 7509206 DOI: 10.1007/bf00020167] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We have identified a family of small repeated sequences (from 60 to 66 bp in length) in the mitochondrial genome of rice (Oryza sativa cv. Nipponbare). There are at least ten copies of these sequences and they are distributed throughout the mitochondrial genome. Each is potentially capable of forming a stem-and-loop structure and we have designated them PRSs (palindromic repeated sequences). Their features are reminiscent of the small dispersed repeats in the mitochondrial DNA (mtDNA) of some lower eukaryotes, such as Saccharomyces cerevisiae, Neurospora crassa and Chlamydomonas reinhardtii. Some of the PRSs of rice mtDNA are located in the intron of the gene for ribosomal protein S3 (rps3) and in the flanking sequence of the gene for chloroplast-like tRNA(Asn) (trnN). analysis of PCR-amplified fragments of these regions from the DNA of some Gramineae suggests that the PRSs were inserted into these regions of the Oryza mtDNA after the divergence of Oryza from the other Gramineae.
Collapse
Affiliation(s)
- M Nakazono
- Laboratory of Radiation Genetics, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | |
Collapse
|
9
|
Ceci LR, Saiardi A, Siculella L, Quagliariello C. A tRNA(Val) (GAC) gene of chloroplast origin in sunflower mitochondria is not transcribed. PLANT MOLECULAR BIOLOGY 1993; 23:727-736. [PMID: 8251626 DOI: 10.1007/bf00021528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A tRNA(Val) (GAC) gene is located in opposite orientation 552 nucleotides (nt) down-stream of the cytochrome oxidase subunit III (coxIII) gene in sunflower mitochondria. The comparison with the homologous chloroplast DNA revealed that the tRNA(Val) gene is part of a 417 nucleotides DNA insertion of chloroplast origin in the mitochondrial genome. No tRNA(Val) is encoded in monocot mitochondrial DNA (mtDNA), whereas two tRNA(Val) species are coded for by potato mtDNA. The mitochondrial genomes of different plant species thus seem to encode unique sets of tRNAs and must thus be competent in importing the missing differing sets of tRNAs.
Collapse
Affiliation(s)
- L R Ceci
- Centro Studi Mitocondri e Metabolismo Energetico-C.N.R., Trani, Italy
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- M W Gray
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
|
12
|
Ossorio PN, Sibley LD, Boothroyd JC. Mitochondrial-like DNA sequences flanked by direct and inverted repeats in the nuclear genome of Toxoplasma gondii. J Mol Biol 1991; 222:525-36. [PMID: 1660924 DOI: 10.1016/0022-2836(91)90494-q] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the course of our genetic studies on Toxoplasma gondii, it was discovered that one cosmid hybridized to a repetitive element. The hybridization pattern observed for the enzyme BglII indicated that this cosmid hybridized to a large number of discrete, but related elements. Four BglII fragments were subcloned from the cosmid, and each was shown to hybridize with all the others, as well as to numerous dispersed sequences in genomic DNA. Three subclones were sequenced in their entirety, and shown to contain fragments of the genes for cytochrome oxidase subunit I and apocytochrome b, complete and functional copies of which have been found in only mitochondrial genomes. All the subcloned fragments were bounded at both ends by a 91 base-pair sequence, which contains a site for BglII. This 91 base-pair sequence could be found as either a direct or inverted repeat. It was determined that the BglII elements are arrayed downstream from a single copy nuclear gene. Comparison of genomic and cosmid DNAs confirmed that the cosmid faithfully reflects the nuclear genome. Although the mitochondrial genome of Toxoplasma has not been characterized, these nuclear mitochondrial-like sequences appear to be internally rearranged with respect to known, functional mitochondrial genomes, and with respect to each other. The finding of short repeated sequences flanking these elements may be a clue to the mechanism of their dissemination.
Collapse
Affiliation(s)
- P N Ossorio
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5402
| | | | | |
Collapse
|
13
|
Binder S, Knoop V, Brennicke A. Nucleotide sequences of the mitochondrial genes trnS(TGA) encoding tRNA(TGASer) in Oenothera berteriana and Arabidopsis thaliana. Gene 1991; 102:245-7. [PMID: 1874448 DOI: 10.1016/0378-1119(91)90084-o] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The genes encoding tRNA(TGASer) have been investigated in the mitochondrial (mt) genomes of Oenothera berteriana and Arabidopsis thaliana. Sequence analysis shows four nucleotide (nt) differences between the two dicots, but only two differences between each dicot and the available monocot sequences. Similarity comparisons identify these genes as encoding a native mt tRNA(TGASer), with less than 77% of the nt identical to the corresponding chloroplast tRNAs.
Collapse
Affiliation(s)
- S Binder
- Institut für Genbiologische Forschung, Berlin, F.R.G
| | | | | |
Collapse
|
14
|
Sprinzl M, Dank N, Nock S, Schön A. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 1991; 19 Suppl:2127-71. [PMID: 2041802 PMCID: PMC331350 DOI: 10.1093/nar/19.suppl.2127] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- M Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, FRG
| | | | | | | |
Collapse
|
15
|
Izuchi S, Terachi T, Sakamoto M, Mikami T, Sugita M. Structure and expression of tomato mitochondrial genes coding for tRNA(Cys) (GCA), tRNA(Asn) (GUU) and tRNA(Tyr) (GUA): a native tRNA(Cys) gene is present in dicot plants but absent in monocot plants. Curr Genet 1990; 18:239-43. [PMID: 1701109 DOI: 10.1007/bf00318387] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleotide sequences of tRNA(Asn) (GUU) and tRNA(Tyr) (GUA) genes from tomato mitochondria and their flanking regions have been determined. The tomato mitochondrial tRNA(Asn) gene is located 2.1 kb downstream from the tRNA(Cys) gene reported previously (Izuchi and Sugita 1989) and shows a nearly complete identity with the corresponding chloroplast gene. The tRNA(Tyr) gene, which shows only 73% homology with the corresponding chloroplast gene, has to be considered a "native" mitochondrial tRNA gene and is 535 bp from the "chloroplast-like" tRNA(Asn) gene on the same strand. Northern hybridization analysis revealed that the three tRNA genes are transcribed in tomato mitochondria. Southern hybridization analysis of tomato, sugar beet. rice and wheat mitochondrial DNAs, with oligonucleotide probes for mitochondrial or chloroplast tRNA genes, demonstrated that the mitochondrial tRNA(Cys) gene found in tomato is present in dicot plants but not in monocots. On the other hand, a chloroplast-like tRNA(Cys) gene exists in monocot plants.
Collapse
Affiliation(s)
- S Izuchi
- Department of Botany, Faculty of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
16
|
Sangaré A, Weil JH, Grienenberger JM, Fauron C, Lonsdale D. Localization and organization of tRNA genes on the mitochondrial genomes of fertile and male sterile lines of maize. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:224-32. [PMID: 1701208 DOI: 10.1007/bf00265058] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Maize mitochondrial (mt) tRNA genes were localized on the mt master circles of two fertile lines (WF9-N and B37-N) and of one cytoplasmic male sterile line (B37-cmsT) of maize. The three genomes contain 16 tRNA genes with 14 different anticodons which correspond to 13 amino acids. Out of these 16 tRNA genes, 6 show a high degree of homology with the corresponding chloroplast (cp) tRNA genes and were shown to originate from cp DNA insertions and to be expressed in the mitochondria. The organization of the mt tRNA genes in both fertile lines is similar. The same genes are found, in the same environment, as judged from the restriction maps, in fertile and male sterile lines that have the same nuclear background, but the relative organization of the mt tRNA genes on the master circle is completely different.
Collapse
Affiliation(s)
- A Sangaré
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
17
|
Hanic-Joyce P, Gray M. Processing of transfer RNA precursors in a wheat mitochondrial extract. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77417-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1989; 17:9511-24. [PMID: 2587282 PMCID: PMC335188 DOI: 10.1093/nar/17.22.9511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|