1
|
Berard AR, Coombs KM, Severini A. Quantification of the host response proteome after herpes simplex virus type 1 infection. J Proteome Res 2015; 14:2121-42. [PMID: 25815715 DOI: 10.1021/pr5012284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viruses employ numerous host cell metabolic functions to propagate and manage to evade the host immune system. For herpes simplex virus type 1 (HSV1), a virus that has evolved to efficiently infect humans without seriously harming the host in most cases, the virus-host interaction is specifically interesting. This interaction can be best characterized by studying the proteomic changes that occur in the host during infection. Previous studies have been successful at identifying numerous host proteins that play important roles in HSV infection; however, there is still much that we do not know. This study identifies host metabolic functions and proteins that play roles in HSV infection, using global quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomic profiling of the host cell combined with LC-MS/MS. We showed differential proteins during early, mid and late infection, using both cytosolic and nuclear fractions. We identified hundreds of differentially regulated proteins involved in fundamental cellular functions, including gene expression, DNA replication, inflammatory response, cell movement, cell death, and RNA post-transcriptional modification. Novel differentially regulated proteins in HSV infections include some previously identified in other virus systems, as well as fusion protein, involved in malignant liposarcoma (FUS) and hypoxia up-regulated 1 protein precursor (HYOU1), which have not been identified previously in any virus infection.
Collapse
Affiliation(s)
- Alicia R Berard
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,‡Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Room 799 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
| | - Kevin M Coombs
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,‡Manitoba Center for Proteomics and Systems Biology, University of Manitoba, Room 799 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4.,§Manitoba Institute of Child Health, University of Manitoba, Room 641 John Buhler Research Centre, Winnipeg, Manitoba, Canada R3E 3P4
| | - Alberto Severini
- †Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9.,∥National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, Canada R3E 3P6
| |
Collapse
|
2
|
Core histones H2B and H4 are mobilized during infection with herpes simplex virus 1. J Virol 2011; 85:13234-52. [PMID: 21994445 DOI: 10.1128/jvi.06038-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes.
Collapse
|
3
|
Clement C, Bhattacharjee PS, Kumar M, Foster TP, Thompson HW, Hill JM. Upregulation of mouse genes in HSV-1 latent TG after butyrate treatment implicates the multiple roles of the LAT-ICP0 locus. Invest Ophthalmol Vis Sci 2011; 52:1770-9. [PMID: 20881297 DOI: 10.1167/iovs.09-5019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine host response by gene expression in HSV-1 latent trigeminal ganglia (TG) after sodium butyrate (NaBu) treatment. METHODS Corneas of 6-week-old female BALB/c mice were scarified and inoculated with HSV-1 17Syn(+) (high phenotypic reactivator) or its mutant 17ΔPst(LAT(-)) (low phenotypic reactivator) at 10(4) plaque-forming units/eye. NaBu-induced viral reactivation was by intraperitoneal (IP) administration at postinfection (PI) day 28, followed by euthanasia after 1 hour. NaBu-treated, uninfected mice served as the control. The resultant labeled cRNA from TG isolated total RNA was hybridized to gene microarray chips containing 14,000 mouse genes. Quantitative real-time PCR was performed to confirm gene expression. RESULTS Differential induction of gene expression between 17Syn(+) and its mutant 17ΔPst(LAT(-)) was designated as NaBu-induced gene expression and yielded significant upregulation of 2- to 16-fold of 0.4% (56/14,000) host genes probed, comprising mainly nucleosome assembly and binding, central nervous system structural activity, hormonal activity, and signaling activity. Approximately 0.2% (24/14,000) of the host genes, mainly of the same functional categories were downregulated 3- to 11-fold. Immune activity was minor in comparison to our reports on gene expression during latency and heat stress induction. Euchromatin analysis revealed that the LAT-ICP0 locus is amenable to the effects of NaBu. Histone activity was detected by early transcription of histone cluster 2 H2be (Hist2h2be). CONCLUSIONS NaBu-induced reactivation of HSV-1 is twofold: drug action involving significant moderation of specific host epigenetic changes and failure to elicit or suppress immune activity at the early time point of 1 hour.
Collapse
Affiliation(s)
- Christian Clement
- Department of Ophthalmology, LSU Eye Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
4
|
The capsid protein encoded by U(L)17 of herpes simplex virus 1 interacts with tegument protein VP13/14. J Virol 2010; 84:7642-50. [PMID: 20504930 DOI: 10.1128/jvi.00277-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The U(L)17 protein (pU(L)17) of herpes simplex virus 1 (HSV-1) likely associates with the surfaces of DNA-containing capsids in a heterodimer with pU(L)25. pU(L)17 is also associated with viral light particles that lack capsid proteins, suggesting its presence in the tegument of the HSV-1 virion. To help determine how pU(L)17 becomes incorporated into virions and its functions therein, we identified pU(L)17-interacting proteins by immunoprecipitation with pU(L)17-specific IgY at 16 h postinfection, followed by mass spectrometry. Coimmunoprecipitated proteins included cellular histone proteins H2A, H3, and H4; the intermediate filament protein vimentin; the major HSV-1 capsid protein VP5; and the HSV tegument proteins VP11/12 (pU(L)46) and VP13/14 (pU(L)47). The pU(L)17-VP13/14 interaction was confirmed by coimmunoprecipitation in the presence and absence of intact capsids and by affinity copurification of pU(L)17 and VP13/14 from lysates of cells infected with a recombinant virus encoding His-tagged pU(L)17. pU(L)17 and VP13/14-HA colocalized in the nuclear replication compartment, in the cytoplasm, and at the plasma membrane between 9 and 18 h postinfection. One possible explanation of these data is that pU(L)17 links the external face of the capsid to VP13/14 and associated tegument components.
Collapse
|
5
|
Abstract
Primary infection by herpes simplex virus type 1 (HSV-1) can cause clinical symptoms in the peripheral and central nervous system, upper respiratory tract, and gastrointestinal tract. Recurrent ocular shedding leads to corneal scarring that can progress to vision loss. Consequently, HSV-1 is the leading cause of corneal blindness due to an infectious agent. Bovine herpesvirus 1 (BHV-1) has similar biological properties to HSV-1 and is a significant health concern to the cattle industry. Latency of BHV-1 and HSV-1 is established in sensory neurons of trigeminal ganglia, but latency can be interrupted periodically, leading to reactivation from latency and spread of infectious virus. The ability of HSV-1 and BHV-1 to reactivate from latency leads to virus transmission and can lead to recurrent disease in individuals latently infected with HSV-1. During latency, the only abundant HSV-1 RNA expressed is the latency-associated transcript (LAT). In latently infected cattle, the latency-related (LR) RNA is the only abundant transcript that is expressed. LAT and LR RNA are antisense to ICP0 or bICP0, viral genes that are crucial for productive infection, suggesting that LAT and LR RNA interfere with productive infection by inhibiting ICP0 or bICP0 expression. Numerous studies have concluded that LAT expression is important for the latency-reactivation cycle in animal models. The LR gene has recently been demonstrated to be required for the latency-reactivation cycle in cattle. Several recent studies have demonstrated that LAT and the LR gene inhibit apoptosis (programmed cell death) in trigeminal ganglia of infected animals and transiently transfected cells. The antiapoptotic properties of LAT map to the same sequences that are necessary for promoting reactivation from latency. This review summarizes our current knowledge of factors regulating the latency-reactivation cycle of HSV-1 and BHV-1.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary and Biomedical Sciences, The Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905, USA.
| |
Collapse
|
6
|
Root-Bernstein RS, DeWitt SH. Semen alloantigens and lymphocytotoxic antibodies in AIDS and ICL. Genetica 1995; 95:133-56. [PMID: 7744257 DOI: 10.1007/bf01435006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
More than 90% of people with AIDS develop circulating immune complexes (CICs) and lymphocytotoxic antibodies (LCTAs). Animals infected with HIV, however, never display CICs or LCTAs, and remain healthy. Similarly, HIV-infected people who do not develop CICs or LCTAs also do not progress to AIDS. The appearance of CICs and LCTAs is, however, highly prognostic for AIDS and death. Since HIV infection does not, per se, lead to the development of CICs and LCTAs, other causes are likely. One such cause, for which both epidemiologic and experimental evidence exists, is semen. Semen components include sperm, seminal fluid, lymphocytes, and sometimes infectious agents, including HIV, mycoplasmas, and herpes and hepatitis viruses, all of which independently cause immune suppression. Extensive evidence demonstrates sperm (and various viruses) contains many proteins mimicking the CD4 protein of T-helper cells, while HIV, mycoplasmas, and seminal fluid mimic class II MHC proteins of other lymphocytes. We identify a large number of protein sequences that display such mimicry using computer homology searching, and demonstrate experimentally that sperm antibodies specifically precipitate antibodies against class II MHC mimics such as mycoplasmas, which in turn precipitate antibodies to lymphocyte antigens. These data prove that immunologic exposure to sperm and lymphocytes (as may occur in receptive anal intercourse, needle sharing, or blood transfusions) is theoretically capable of initiating lymphocytotoxic autoimmunity. Such autoimmunity may play a significant role in the pathogenesis of AIDS, and will need to be addressed clinically in high risk individuals regardless of HIV status and regardless of the success of anti-HIV prophylaxis and treatment.
Collapse
Affiliation(s)
- R S Root-Bernstein
- Department of Physiology, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
7
|
Cassady AI, Stacey KJ, Nimmo KA, Murphy KM, von der Ahe D, Pearson D, Botteri FM, Nagamine Y, Hume DA. Constitutive expression of the urokinase plasminogen activator gene in murine RAW264 macrophages involves distal and 5' non-coding sequences that are conserved between mouse and pig. Nucleic Acids Res 1991; 19:6839-47. [PMID: 1762914 PMCID: PMC329318 DOI: 10.1093/nar/19.24.6839] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The 5' flanking regions of the mouse and pig urokinase plasminogen activator (uPA) genes were sequenced and sequence homology interrupted by repeat elements was found to extend to -4.6kb in pig and -6.6kb in mouse. A transient transfection procedure was devised for the murine macrophage cell line RAW264. Pig uPA promoter-CAT constructs were more active than mouse constructs in this assay. This contrast may involve sequence differences within 100 bp of the transcription start site. The selective deletion of distal regions of the promoter (greater than 2.6 kb upstream), and of a conserved element, 5'-AGGAGGAAATGAGG-TCA-3' around -2 kb greatly reduced the activity of reporter constructs in RAW264 cells. Electrophoretic mobility shift assays using the latter sequence identified a single nuclear protein complex. This element has been referred to as PEA3/AP1-like, but the complex did not comigrate with either AP1 or known proteins that bind polypurines (including the macrophage-specific factor PU-1) and was not competed by AP1 or polypurine oligonucleotides. uPA promoters contain multiple AP1 and AP2-like DNA sequences, which were recognised by nuclear proteins expressed constitutively in RAW264 cells. They also contain multiple binding sites for NF kappa B but activated NF kappa B was not expressed in RAW264 cells. The conserved, transcribed 5' non-coding sequences were also required for maximal gene expression. Hence, the uPA promoter contains multiple weak cis-acting elements distributed over 7.0 kb 5' to the translation start site.
Collapse
Affiliation(s)
- A I Cassady
- Centre for Molecular Biology and Biotechnology, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
The B-cell and neuronal forms of the octamer-binding protein Oct-2 differ in DNA-binding specificity and functional activity. Mol Cell Biol 1991. [PMID: 2072899 DOI: 10.1128/mcb.11.8.3925] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes contain an octamer-binding transcription factor, Oct-2, that is absent in most other cell types and plays a critical role in the B-cell-specific transcription of the immunoglobulin genes. A neuronal form of this protein has also been detected in brain and neuronal cell lines by using a DNA mobility shift assay, and an Oct-2 mRNA is observed in these cells by Northern (RNA) blotting and in situ hybridization. We show that the neuronal form of Oct-2 differs from that found in B cells with respect to both DNA-binding specificity and functional activity. In particular, whereas the B-cell protein activates octamer-containing promoters, the neuronal protein inhibits octamer-mediated gene expression. The possible role of the neuronal form of Oct-2 in the regulation of neuronal gene expression and its relationship to B-cell Oct-2 are discussed.
Collapse
|
9
|
Dent CL, Lillycrop KA, Estridge JK, Thomas NS, Latchman DS. The B-cell and neuronal forms of the octamer-binding protein Oct-2 differ in DNA-binding specificity and functional activity. Mol Cell Biol 1991; 11:3925-30. [PMID: 2072899 PMCID: PMC361185 DOI: 10.1128/mcb.11.8.3925-3930.1991] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
B lymphocytes contain an octamer-binding transcription factor, Oct-2, that is absent in most other cell types and plays a critical role in the B-cell-specific transcription of the immunoglobulin genes. A neuronal form of this protein has also been detected in brain and neuronal cell lines by using a DNA mobility shift assay, and an Oct-2 mRNA is observed in these cells by Northern (RNA) blotting and in situ hybridization. We show that the neuronal form of Oct-2 differs from that found in B cells with respect to both DNA-binding specificity and functional activity. In particular, whereas the B-cell protein activates octamer-containing promoters, the neuronal protein inhibits octamer-mediated gene expression. The possible role of the neuronal form of Oct-2 in the regulation of neuronal gene expression and its relationship to B-cell Oct-2 are discussed.
Collapse
Affiliation(s)
- C L Dent
- Department of Biochemistry, University College and Middlesex School of Medicine, London, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Latchman DS. The herpes simplex virus virion protein Vmw65 transcriptionally activates the gene encoding the U4 snRNA but not that encoding the U2 snRNA during lytic infection. Biochem J 1991; 275 ( Pt 2):369-72. [PMID: 1850984 PMCID: PMC1150062 DOI: 10.1042/bj2750369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although lytic infection with herpes simplex virus (HSV) causes the repression of most host cell biosynthesis, it results in increased transcription of the cellular gene encoding the U4 snRNA, leading to accumulation of this snRNA. In contrast, no increased transcription of the gene encoding the U2 snRNA or accumulation of this RNA is observed in infected cells. These effects are mediated by the HSV virion protein Vmw65, which activates the U4 gene but does not affect the U2 gene. The significance of this difference between the U2 and U4 genes is discussed with regard to the presence in both of these genes of an identical octamer-binding site for the cellular transcription factor Oct-1 which complexes with Vmw65.
Collapse
Affiliation(s)
- D S Latchman
- Department of Biochemistry, University College and Middlesex School of Medicine, London, U.K
| |
Collapse
|
11
|
Inhibition of histone H2B gene transcription and of cellular growth by a truncated viral trans-activator protein. Mol Cell Biol 1990. [PMID: 2160597 DOI: 10.1128/mcb.10.6.3258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus virion protein Vmw65 trans activates the viral immediate-early genes and some octamer-containing cellular genes, including that encoding histone H2B. We found, however, that a truncated form of this virion protein repressed H2B gene transcription and also dominantly inhibited induction of the gene by intact Vmw65. A cell line expressing this truncated protein expressed reduced levels of H2B and grew more slowly than the parental cell line or a similar line expressing the intact protein.
Collapse
|
12
|
Dent CL, Estridge JK, Kemp LM, Latchman DS. Inhibition of histone H2B gene transcription and of cellular growth by a truncated viral trans-activator protein. Mol Cell Biol 1990; 10:3258-61. [PMID: 2160597 PMCID: PMC360694 DOI: 10.1128/mcb.10.6.3258-3261.1990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The herpes simplex virus virion protein Vmw65 trans activates the viral immediate-early genes and some octamer-containing cellular genes, including that encoding histone H2B. We found, however, that a truncated form of this virion protein repressed H2B gene transcription and also dominantly inhibited induction of the gene by intact Vmw65. A cell line expressing this truncated protein expressed reduced levels of H2B and grew more slowly than the parental cell line or a similar line expressing the intact protein.
Collapse
Affiliation(s)
- C L Dent
- Department of Biochemistry, University College and Middlesex School of Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
13
|
Kemp LM, Dent CL, Latchman DS. Octamer motif mediates transcriptional repression of HSV immediate-early genes and octamer-containing cellular promoters in neuronal cells. Neuron 1990; 4:215-22. [PMID: 2155008 DOI: 10.1016/0896-6273(90)90096-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
C1300 mouse neuroblastoma cells are nonpermissive for infection with herpes simplex virus owing to a failure of viral immediate-early gene transcription following infection. The weak activity of the immediate-early gene promoters in these cells is mediated by the binding of a repressor factor to the octamer-related TAATGARAT motifs in these promoters. This repressor activity is specific to cells of neuronal origin (being absent in a range of permissive nonneuronal cells) and is also able to repress the activity of cellular octamer-containing promoters introduced into C1300 cells. The role of this repressor in the regulation of octamer-containing cellular genes in neuronal cells and in the control of latent infections with herpes simplex virus is discussed.
Collapse
Affiliation(s)
- L M Kemp
- Department of Biochemistry, University College and Middlesex School of Medicine, London, England
| | | | | |
Collapse
|