1
|
Dyachenko OV, Shevchuk TV, Buryanov YI. Structural and functional features of the 5-methylcytosine distribution in the eukaryotic genome. Mol Biol 2010. [DOI: 10.1134/s0026893310020019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Fazi F, Travaglini L, Carotti D, Palitti F, Diverio D, Alcalay M, McNamara S, Miller WH, Lo Coco F, Pelicci PG, Nervi C. Retinoic acid targets DNA-methyltransferases and histone deacetylases during APL blast differentiation in vitro and in vivo. Oncogene 2005; 24:1820-30. [PMID: 15688037 DOI: 10.1038/sj.onc.1208286] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acute promyelocytic leukemia (PML)-retinoic acid receptor alpha (RARalpha) fusion product recruits histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activities on retinoic acid (RA)-target promoters causing their silencing and differentiation block. RA treatment induces epigenetic modifications at its target loci and restores myeloid differentiation of APL blasts. Using RA-sensitive and RA-resistant APL cell lines and primary blasts, we addressed the functional relevance of the aberrant methylation status at the RA-target promoter RARbeta2 and the mechanism by which methylation is reversed by RA. RA decreased DNMT expression and activity, which correlated with demethylation at specific sites on RARbeta2 promoter/exon-1, and the ability of APL blasts to differentiate in vitro and in vivo. None of these events occurred in an RA-resistant APL cell line containing a PML-RARalpha defective for ligand binding. The specific contribution of the HDAC and DNMT pathways to the response of APL cells to RA was also tested by inhibiting these enzymatic activities with TSA and/or 5-azacytidine. In RA-responsive and RA-resistant APL blasts, TSA and 5-azacytidine induced specific changes on the chromatin state at RA-target sites, increased the RA effect on promoter activity, endogenous RA-target gene expression and differentiation. These results extend the rationale for chromatin-targeted treatment in APL and RA-resistant leukemias.
Collapse
MESH Headings
- Blast Crisis
- Bone Marrow Cells/pathology
- Cell Culture Techniques
- Cell Line, Tumor
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Modification Methylases/genetics
- DNA Modification Methylases/metabolism
- DNA Primers
- DNA, Neoplasm/genetics
- DNA, Neoplasm/isolation & purification
- Exons
- Histone Deacetylases/metabolism
- Humans
- Karyotyping
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Polymerase Chain Reaction
- Promoter Regions, Genetic/drug effects
- Receptors, Retinoic Acid/genetics
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- Francesco Fazi
- San Raffaele Bio-medical Science Park of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Meza TJ, Enerly E, Børu B, Larsen F, Mandal A, Aalen RB, Jakobsen KS. A human CpG island randomly inserted into a plant genome is protected from methylation. Transgenic Res 2002; 11:133-42. [PMID: 12054347 DOI: 10.1023/a:1015244400941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vertebrate genomes the dinucleotide CpG is heavily methylated, except in CpG islands, which are normally unmethylated. It is not clear why the CpG islands are such poor substrates for DNA methyltransferase. Plant genomes display methylation, but otherwise the genomes of plants and animals represent two very divergent evolutionary lines. To gain a further understanding of the resistance of CpG islands to methylation, we introduced a human CpG island from the proteasome-like subunit I gene into the genome of the plant Arabidopsis thaliana. Our results show that prevention of methylation is an intrinsic property of CpG islands, recognized even if a human CpG island is transferred to a plant genome. Two different parts of the human CpG island - the promoter region/ first exon and exon 2-4 - both displayed resistance against methylation, but the promoter/ exon1 construct seemed to be most resistant. In contrast, certain sites in a plant CpG-rich region used as a control transgene were always methylated. The frequency of silencing of the adjacent nptII (KmR) gene in the human CpG constructs was lower than observed for the plant CpG-rich region. These results have implications for understanding DNA methylation, and for construction of vectors that will reduce transgene silencing.
Collapse
|
4
|
Hentosh P, Yuh SH, Elson CE, Peffley DM. Sterol-independent regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in tumor cells. Mol Carcinog 2001; 32:154-66. [PMID: 11746827 DOI: 10.1002/mc.1074] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elevated 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase expression supports synthesis of prenyl pyrophosphate intermediates required for tumor growth. In this study, the copy number of HMG-CoA reductase mRNA was determined in solid tumor and leukemic cell lines using competitive reverse transcriptase-polymerase chain reaction. Reductase mRNA was increased about eight-fold in Caco2 human colon adenocarcinoma cells compared with that in CCD18 normal colon cells. We also found a 50-fold enhancement of reductase mRNA in stimulated human lymphocytes compared with unstimulated cells. In CEM human leukemia cells, reductase mRNA was increased 8.6 times compared with that in stimulated lymphocytes. Greater low density lipoprotein receptor mRNA was also observed in tumor cells compared with normal counterparts. We hypothesized that elevated reductase mRNA was due to attenuation of sterol-mediated control of tumor reductase promoter activity. We first compared the methylation status of CpG dinucleotides in the promoters of reductase and p16 tumor suppressor genes from solid tumor, leukemic, and normal cells. As reported for other tumor cells the p16 promoter region was hypermethylated in Caco2 and CEM cells but was hypomethylated in corresponding normal cells. However, reductase promoter sequences in both normal and tumor cells were hypomethylated, demonstrating that methylation is not involved in sterol-independent reductase regulation. We addressed altered transcription factor binding to the tumor cell reductase promoter by transiently transfecting Caco2 and CCD18 with a plasmid vector containing a hamster HMG-CoA reductase promoter fused to the luciferase gene. We found that increased reductase mRNA was partially due to an approximately three-fold higher reductase promoter activity in Caco2 than in CCD18, measured by luciferase reporter assays. Thus, differential binding of transcription factor or factors on the tumor cell reductase promoter attenuates normal sterol-mediated regulation of reductase activity.
Collapse
Affiliation(s)
- P Hentosh
- Department of Pharmacology, University of Health Sciences, Kansas City, Missouri 64106, USA
| | | | | | | |
Collapse
|
5
|
Wong DJ, Foster SA, Galloway DA, Reid BJ. Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest. Mol Cell Biol 1999; 19:5642-51. [PMID: 10409753 PMCID: PMC84416 DOI: 10.1128/mcb.19.8.5642] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CpG island methylation plays an important role in normal cellular processes, such as genomic imprinting and X-chromosome inactivation, as well as in abnormal processes, such as neoplasia. However, the dynamics of de novo CpG island methylation, during which a CpG island is converted from an unmethylated, active state to a densely methylated, inactive state, are largely unknown. It is unclear whether the development of de novo CpG island methylation is a progressive process, in which a subset of CpG sites are initially methylated with a subsequent increase in methylation density, or a single event, in which the initial methylation event encompasses the entire CpG island. The tumor suppressor gene p16/CDKN2a/INK4a (p16) is inactivated by CpG island methylation during neoplastic progression in a variety of human cancers. We investigated the development of methylation in the p16 CpG island in primary human mammary epithelial cell strains during escape from mortality stage 0 (M(0)) growth arrest. The methylation status of 47 CpG sites in the p16 CpG island on individual DNA molecules was determined by sequencing PCR clones of bisulfite-treated genomic DNA. The p16 CpG island was initially methylated at a subset of sites in three discrete regions in association with p16 transcriptional repression and escape from M(0) growth arrest. With continued passage, methylation gradually increased in density and methylation expanded to sites in adjacent regions. Thus, de novo methylation in the p16 CpG island is a progressive process that is neither site specific nor completely random but instead is region specific. Our results suggest that early detection of methylation in the CpG island of the p16 gene will require methylation analysis of the three regions and that the identification of region-specific methylation patterns in other genes may be essential for an accurate assessment of methylation-mediated transcriptional silencing.
Collapse
Affiliation(s)
- D J Wong
- Molecular and Cellular Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
6
|
Zardo G, Caiafa P. The unmethylated state of CpG islands in mouse fibroblasts depends on the poly(ADP-ribosyl)ation process. J Biol Chem 1998; 273:16517-20. [PMID: 9632720 DOI: 10.1074/jbc.273.26.16517] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo and in vitro experiments carried out on L929 mouse fibroblasts suggested that the poly(ADP-ribosyl) ation process acts somehow as a protecting agent against full methylation of CpG dinucleotides in genomic DNA. Since CpG islands, which are found almost exclusively at the 5'-end of housekeeping genes, are rich in CpG dinucleotides, which are the target of mammalian DNA methyltransferase, we examined the possibility that the poly(ADP-ribosyl)ation reaction is involved in maintaining the unmethylated state of these DNA sequences. Experiments were conducted by two different strategies, using either methylation-dependent restriction enzymes on purified genomic DNA or a sequence-dependent restriction enzyme on an aliquot of the same DNA, previously modified by a bisulfite reaction. With the methylation-dependent restriction enzymes, it was observed that the "HpaII tiny fragments" greatly decreased when the cells were preincubated with 3-aminobenzamide, a well known inhibitor of poly(ADP-ribose) polymerase. The other experimental approach allowed us to prove that, as a consequence of the inhibition of the poly(ADP-ribosyl)ation process, an anomalous methylation pattern could be evidenced in the CpG island of the promoter fragment of the Htf9 gene, amplified from DNA obtained from fibroblasts preincubated with 3-aminobenzamide. These data confirm the hypothesis that, at least for the Htf9 promoter region, an active poly(ADP-ribosyl)ation protects the unmethylated state of the CpG island.
Collapse
Affiliation(s)
- G Zardo
- Department of Biomedical Sciences and Technologies, University of L'Aquila, I-67100 L'Aquila, Italy
| | | |
Collapse
|
7
|
Tollefsbol TO, Hutchison CA. Control of methylation spreading in synthetic DNA sequences by the murine DNA methyltransferase. J Mol Biol 1997; 269:494-504. [PMID: 9217255 DOI: 10.1006/jmbi.1997.1064] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Methylation spreading, which involves a propensity for the mammalian DNA-(cytosine-5)-methyltransferase to de novo methylate cytosine-guanine dinucleotides (CpGs) near pre-existing 5-methylcytosine bases, has been implicated in the control of numerous biological processes. We have assessed methylation spreading by the murine DNA methyltransferase in vitro using synthetic copolymers and oligonucleotides which differ only in their methylation state. Double-stranded oligonucleotides were found to undergo higher levels of de novo methylation overall than otherwise identical single-stranded oligonucleotides. This difference reflects the greater number of de novo methylatable cytosine bases in double-stranded than single-stranded sequences. All tested oligonucleotides containing pre-existing 5-methyl-cytosine(s) were de novo methylated at several fold the rates of non-methylated controls. No mammalian proteins besides the DNA methyltransferase were required for this observed enhancement of de novo methylation. Studies using oligonucleotides differing in patterns of pre-methylation showed that methylation spreading can be initiated by hemimethylated or duplex methylated CpGs indicating that recognition of 5-methylcytosine by the enzyme is sufficient to stimulate methylation spreading. Double and single-stranded oligonucleotides with several bases between CpGs underwent considerably more de novo methylation per CpG than sequences containing sequential uninterrupted methylatable sites. Spacing preferences by the DNA methyltransferase were also observed in hemimethylated oligonucleotides, suggesting that this is a general property of the enzyme. Although methylation spreading outside of CpG dinucleotides was relatively rare, single-stranded DNA incurred higher levels of de novo methylation at sites other than CpG as compared to double-stranded DNA. This indicates less specificity of methylation spreading in single-stranded sequences. Finally, enhanced de novo methylation in the presence of fully methylated CpG sites in double-stranded oligonucleotides was not as high as the rates of methylation of hemimethylated CpGs in otherwise identical oligonucleotides. These studies provide further elucidation of the mechanisms and regulation of the methylation spreading process and its potential role in the biological processes it influences.
Collapse
Affiliation(s)
- T O Tollefsbol
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
8
|
Abstract
Of the estimated 45,000 CpG islands in the human genome, the overwhelming majority are found at the 5' ends of genes and their identification and cloning are proving very useful for finding and isolating genes. Recent work has shed light on the chromosomal distribution and origin of CpG islands. It has been shown unequivocally that CpG islands are concentrated in the R band chromosomal regions and that intact transcription factor binding sites and required for their maintenance. Cases of methylation of CpG islands and inactivation of the associated genes have been reported which may be important in ageing, tumorigenesis and imprinting.
Collapse
Affiliation(s)
- S H Cross
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland, UK
| | | |
Collapse
|
9
|
Strom R, Santoro R, D'Erme M, Mastrantonio S, Reale A, Marenzi S, Zardo G, Caiafa P. Specific variants of H1 histone regulate CpG methylation in eukaryotic DNA. Gene X 1995; 157:253-6. [PMID: 7607502 DOI: 10.1016/0378-1119(95)91236-s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Upon HPLC fractionation of human placenta or calf thymus H1 histone preparations, only some fractions enriched in the H1e-c variants were able to exert a severe inhibition on in vitro enzymatic DNA methylation. These fractions, though similar to the other variants in interacting with genomic DNA, were also the only ones which could bind CpG-rich ds-oligodeoxyribonucleotides (oligos). Both the 6-CpG ds-oligo and the DNA purified from chromatin fractions enriched in 'CpG islands' were good competitors for the binding of H1e-c to the 6meCpG ds-oligo. This ability to bind any DNA sequence and to suppress the enzymatic methylation in any sequence containing CpG dinucleotides suggests, for these particular H1 variants, a possible role in maintaining CpG island DNA and linker DNA at low methylation levels.
Collapse
Affiliation(s)
- R Strom
- Department of Human Biopathology, University of Rome, La Sapienza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Macleod D, Charlton J, Mullins J, Bird AP. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev 1994; 8:2282-92. [PMID: 7958895 DOI: 10.1101/gad.8.19.2282] [Citation(s) in RCA: 493] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In an attempt to find the mechanism by which CpG islands remain free of methylation we have undertaken a detailed examination of the mouse adenine phosphoribosyltransferase (aprt) gene. This housekeeping gene has a CpG island that extends over the gene promoter and includes the first two exons. We show that the island is free of methylation at all CpGs, whereas the flanks are methyated. Detailed patterns of methylation beyond the boundaries of the CpG island vary between cells. In vivo footprinting across the island region shows that three GC boxes clustered at the 5' edge of the CpG island are occupied, most probably by Sp1. No other footprints are detected within the island region. Deletion or mutagenesis of the Sp1 sites causes de novo methylation of the CpG island in a transgenic mouse assay. Thus, the peripherally located Sp1 sites are necessary to keep the aprt island methylation free.
Collapse
Affiliation(s)
- D Macleod
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland
| | | | | | | |
Collapse
|
11
|
Abstract
This chapter can be summarized by the following main points: Genomic imprinting results in the functional nonequivalence of the maternal and paternal genomes, thereby preventing the development of viable parthenogenotes and androgenotes in eutherian mammals. Imprinting may have arisen as a result of the specialized evolutionary requirements of the parental genomes or may have been an obligatory step in the development of placentation. A substantial proportion of transgenes and a smaller number of endogenous genes demonstrate imprinted pattern of expression in mice and humans. An analysis of DNA methylation in somatic tissues and germ cells during embryonic and postnatal development reveals dynamic changes, particularly during gametogenesis and early embryogenesis. The nature and timing of these changes suggest that DNA methylation may be involved in genomic imprinting. Imprinted genes display complex methylation patterns. Many aspects of these patterns are consistent with a role for methylation in the imprinted phenotype, although it is currently unclear whether methylation functions in the establishment of imprinting or plays a secondary role in the maintenance of the imprinted pattern of expression. Studies underway to identify new imprinted genes may help elucidate both the function and mechanism of genomic imprinting.
Collapse
Affiliation(s)
- J D Gold
- Laboratory of Radiobiology and Environmental Health, University of California, San Francisco 94143
| | | |
Collapse
|
12
|
Matsuo K, Clay O, Takahashi T, Silke J, Schaffner W. Evidence for erosion of mouse CpG islands during mammalian evolution. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:543-55. [PMID: 8128314 DOI: 10.1007/bf01233381] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In housekeeping and many tissue-specific genes, the promoter is embedded in a so-called CpG island. We have compared the available human and mouse DNA sequences with respect to their CpG island properties. While mouse sequences showed a simple gradient distribution of G + C content and CpG densities, man had a distinct peak of sequences with typical CpG island characteristics. Pairwise comparison of 23 orthologous genes revealed that mouse almost always had a less pronounced CpG island than man, or none at all. In both species the requirements for a functional CpG island may be similar in that most DNA regions with a density of six or more CpG per 100 bp remain unmethylated. However, the mouse has apparently experienced more accidental CpG island methylation, suggested by local TpG and CpA excess. We propose that: (1) in mouse the CpG islands do not represent the ancestral state but have been eroded during evolution, and (2) this erosion may be related to the mouse's small body mass and short life-span, allowing for a more relaxed control of gene activity.
Collapse
Affiliation(s)
- K Matsuo
- Institut für Molekularbiologie II, Universität Zürich, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- F Antequera
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland
| | | |
Collapse
|
14
|
Adams RL, Lindsay H, Reale A, Seivwright C, Kass S, Cummings M, Houlston C. Regulation of de novo methylation. EXS 1993; 64:120-44. [PMID: 8418947 DOI: 10.1007/978-3-0348-9118-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R L Adams
- Department of Biochemistry, University of Glasgow, Scotland
| | | | | | | | | | | | | |
Collapse
|
15
|
Bestor TH, Gundersen G, Kolstø AB, Prydz H. CpG islands in mammalian gene promoters are inherently resistant to de novo methylation. ACTA ACUST UNITED AC 1992; 9:48-53. [PMID: 1356381 DOI: 10.1016/1050-3862(92)90030-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CpG islands found at the 5' ends of many mammalian genes are typically unmethylated despite being both exposed to diffusible protein factors in nuclei and rich in CpG, the target site for DNA methyltransferase. We show here that the CpG islands associated with the human Thy-1 and profilin genes are inherently resistant to de novo methylation by purified murine DNA methyltransferase, and that the higher than expected tendency of CpG sites in islands to be flanked on both sides by G-C base pairs is the likely reason for the resistance. Several lines of evidence indicate that DNA methyltransferase does not make base-specific contacts with residues that flank CpG sites, and it is likely that CpG sites within islands are resistant to de novo methylation because of local conformational features such as ease of strand separation, minor groove dimensions, and alternative secondary structures. A role for minor groove contacts is consistent with the presence within a putative regulatory domain of numerous modified beta turn structural elements that can make minor groove contacts.
Collapse
Affiliation(s)
- T H Bestor
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 02115
| | | | | | | |
Collapse
|
16
|
Hasse A, Schulz WA, Sies H. De novo methylation of transfected CAT gene plasmid constructs in F9 mouse embryonal carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1131:16-22. [PMID: 1581356 DOI: 10.1016/0167-4781(92)90092-e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To study the formation of DNA methylation patterns, plasmids containing promoters of different strengths in front of the bacterial chloramphenicol acetyltransferase reporter gene were transfected into F9 mouse embryonal carcinoma cells. Methylation of the integrated plasmids as well as copy numbers and activities of the reporter gene were determined for individual cell clones. The methylation pattern of the integrated plasmids was found to be determined by properties of the DNA sequence itself. In contrast, the specific methylation patterns were invariant with respect to integration site, copy number and arrangement of the integrates; methylation did also not correlate with transcriptional activity of the different promoters. Certain promoter regions may therefore contain signals recognized by the de novo methylation activity in embryonal carcinoma cells.
Collapse
Affiliation(s)
- A Hasse
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
17
|
Gundersen G, Kolstø AB, Prydz H. Differential methylation of a CpG-island concatemer in hemi- and homozygous transgenic mice. FEBS Lett 1991; 295:214-8. [PMID: 1684939 DOI: 10.1016/0014-5793(91)81421-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methylation-free islands (MFIs), clusters of non-methylated CpG-dinucleotides in mammalian genomes, are associated with a majority of studied genes. By which precise mechanism they maintain their unmethylated status is unknown. The behaviour of transgenic MFIs may contribute to unveil this enigma. We have generated a high-copy number transgenic line with the MFI from the murine Thy-1.1 allele. A stable, minor fraction of this otherwise non-methylated DNA became completely methylated in all adult tissues tested. Furthermore, individuals homozygous for the transgene showed a significantly higher proportion of methylated copies compared to the hemizygous state. These findings support the hypothesis that a limited pool of trans-acting factors are involved in maintaining the hypomethylated state.
Collapse
Affiliation(s)
- G Gundersen
- Biotechnology Centre, University of Oslo, Norway
| | | | | |
Collapse
|
18
|
Hergersberg M. Biological aspects of cytosine methylation in eukaryotic cells. EXPERIENTIA 1991; 47:1171-85. [PMID: 1765128 DOI: 10.1007/bf01918381] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The existence in eukaryotes of a fifth base, 5-methylcytosine, and of tissue-specific methylation patterns have been known for many years, but except for a general association with inactive genes and chromatin the exact function of this DNA modification has remained elusive. The different hypotheses regarding the role of DNA methylation in regulation of gene expression, chromatin structure, development, and diseases, including cancer are summarized, and the experimental evidence for them is discussed. Structural and functional properties of the eukaryotic DNA cytosine methyltransferase are also reviewed.
Collapse
Affiliation(s)
- M Hergersberg
- Institut für Molekularbiologie II, Universität Zürich, Switzerland
| |
Collapse
|
19
|
Caiafa P, Reale A, Allegra P, Rispoli M, D'Erme M, Strom R. Histones and DNA methylation in mammalian chromatin. Differential inhibition by histone H1. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1090:38-42. [PMID: 1883842 DOI: 10.1016/0167-4781(91)90034-j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histones (from calf thymus or from human placenta), if renatured in the presence of EDTA, caused a severe inhibition of in vitro methylation of double-stranded DNA (from Micrococcus luteus) by human placenta DNA methyltransferase. The absence of EDTA during the histone renaturation procedure abolished--at least in the 'physiological' range of the histones/DNA ratio--the inhibition. The H1 component was responsible for this inhibition, no effect being exerted by the other histones. H1 preparations were more effective if renatured in the presence of EDTA--90% inhibition being reached at a 0.3:1 (w/w) H1/DNA ratio. It seems likely that the requirement for the presence of EDTA during the renaturation process is correlated to its ability to induce a fairly stable ordered conformation of the histones, although this effect could also be shown with the 'inactive' H2a, H2b and H3 components, and was instead less evident with histone H1. The restriction to histone H1 of the ability to inhibit enzymic DNA methylation may account for the lower methylation levels present in the internucleosomal DNA of mammalian chromatin.
Collapse
Affiliation(s)
- P Caiafa
- Department of Biochemical Sciences, University of Rome La Sapienza, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Bressan A, Somma MP, Lewis J, Santolamazza C, Copeland NG, Gilbert DJ, Jenkins NA, Lavia P. Characterization of the opposite-strand genes from the mouse bidirectionally transcribed HTF9 locus. Gene 1991; 103:201-9. [PMID: 1889746 DOI: 10.1016/0378-1119(91)90274-f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mouse HTF9 locus contains two genes that are bidirectionally transcribed with opposite polarity from a shared CpG-rich island. Both genes were previously shown to be expressed in a housekeeping fashion in mouse. We have now determined the molecular organization of the genes over 12 kb surrounding the island. In addition, we show that the HTF9 locus resides in the proximal region of mouse chromosome 16. We have sequenced the cDNAs corresponding to both divergent transcripts. Both genes appear to code for novel proteins that are structurally unrelated to each other. Finally, we show that both genes are highly conserved and efficiently expressed in human cells.
Collapse
Affiliation(s)
- A Bressan
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
A DNA signal from the Thy-1 gene defines de novo methylation patterns in embryonic stem cells. Mol Cell Biol 1990. [PMID: 1973527 DOI: 10.1128/mcb.10.8.4396] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although DNA can be extensively methylated de novo when introduced into pluripotent cells, the CpG island in the Thy-1 gene does not become methylated either in the mouse embryo or in embryonic stem cells. A 214-base-pair region near the promoter of the Thy-1 gene protects itself as well as heterologous DNA sequences from de novo methylation. We propose that this nucleotide sequence is representative of a class of important signals that limits de novo methylation in the embryo and establishes the pattern of hypomethylated CpG dinucleotides found in somatic tissues.
Collapse
|
22
|
Antequera F, Boyes J, Bird A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 1990; 62:503-14. [PMID: 1974172 DOI: 10.1016/0092-8674(90)90015-7] [Citation(s) in RCA: 531] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CpG islands are normally methylation free in cells of the animal, even when the associated gene is transcriptionally silent. In mouse NIH 3T3 and L cells, however, over half of the islands are heavily methylated. Near identity of the methylated subset in the two cell lines suggested that methylation is confined to genes that are nonessential in culture. In agreement with this, islands at several tissue-specific genes, but not at housekeeping genes, have become methylated in many human and mouse cell lines. At the chromatin level, methylated islands are Mspl resistant compared with their nonmethylated counterparts. We suggest that mutation-like gene inactivation due to CpG island methylation is widespread in many cell lines and could explain the loss of cell type-specific functions in culture.
Collapse
Affiliation(s)
- F Antequera
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | |
Collapse
|
23
|
Szyf M, Tanigawa G, McCarthy PL. A DNA signal from the Thy-1 gene defines de novo methylation patterns in embryonic stem cells. Mol Cell Biol 1990; 10:4396-400. [PMID: 1973527 PMCID: PMC360998 DOI: 10.1128/mcb.10.8.4396-4400.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although DNA can be extensively methylated de novo when introduced into pluripotent cells, the CpG island in the Thy-1 gene does not become methylated either in the mouse embryo or in embryonic stem cells. A 214-base-pair region near the promoter of the Thy-1 gene protects itself as well as heterologous DNA sequences from de novo methylation. We propose that this nucleotide sequence is representative of a class of important signals that limits de novo methylation in the embryo and establishes the pattern of hypomethylated CpG dinucleotides found in somatic tissues.
Collapse
Affiliation(s)
- M Szyf
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
24
|
Jones PA, Wolkowicz MJ, Rideout WM, Gonzales FA, Marziasz CM, Coetzee GA, Tapscott SJ. De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc Natl Acad Sci U S A 1990; 87:6117-21. [PMID: 2385586 PMCID: PMC54483 DOI: 10.1073/pnas.87.16.6117] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CpG dinucleotides are unevenly distributed in the vertebrate genome. Bulk DNA is depleted of CpGs and most of the cytosines in the dinucleotide in this fraction are methylated. On the other hand, CpG islands, which are often associated with genes, are unmethylated at testable sites in all normal tissues with the exception of genes on the inactive X chromosome. We used Hpa II/Msp I analysis and ligation-mediated polymerase chain reaction to examine the methylation of the MyoD1 CpG island in adult mouse tissues, early cultures of mouse embryo cells, and immortal fibroblastic cell lines. The island was almost devoid of methylation at CCGG sites in adult mouse tissues and in low-passage mouse embryo fibroblasts. In marked contrast, the island was methylated in 10T 1/2 cells and in six other immortal cell lines showing that methylation of this CpG island had occurred during escape from senescence. The island became even more methylated in chemically transformed derivatives of 10T 1/2 cells. Thus, CpG islands not methylated in normal tissues may become modified to an abnormally high degree during immortalization and transformation.
Collapse
Affiliation(s)
- P A Jones
- Kenneth Norris Jr. Comprehensive Cancer Center, University of Southern California, Los Angeles 90033
| | | | | | | | | | | | | |
Collapse
|
25
|
Pfeifer GP, Tanguay RL, Steigerwald SD, Riggs AD. In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev 1990; 4:1277-87. [PMID: 2227409 DOI: 10.1101/gad.4.8.1277] [Citation(s) in RCA: 201] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The promoter region of the X-linked human phosphoglycerate kinase-1 (PGK-1) gene is a CpG island, similar to those often found near autosomal genes. We used ligation-mediated polymerase chain reaction (PCR) for a genomic sequencing study in which 450 bp of the human PGK-1 promoter region was analyzed for the presence of in vivo protein footprints and cytosine methylation at all CpG sites. A technique was devised to selectively visualize the DNA of the inactive X chromosome (Xi), even in the presence of the active X chromosome (Xa). We found that the human Xa in both normal male lymphocytes and hamster-human hybrids is completely unmethylated at all 120 CpG sites. In contrast, 118 of the CpG sites are methylated on the human Xi in hamster-human hybrids. The Xi in normal female lymphocytes is also highly methylated, but some GCG or CGC trinucleotides partially escape methylation; all other CpGs are fully methylated. In vivo footprinting studies with dimethylsulfate (DMS) revealed eight regions of apparent protein-DNA contacts on the Xa. Four of the footprints contained the consensus sequence of the binding site for transcription factor Sp1. The other regions include potential binding sites for transcription factors ATF, NF1, and a CCAAT-binding protein. The Xi did not show any specifically protected sequences, and with the exception of four hyperreactive sites, the in vivo DMS reactivity profile of Xi DNA was very similar to that of purified, linear Xi DNA. The implications of these findings with regard to the maintenance of methylation-free islands, X chromosome inactivation, and the chromatin structure of facultative heterochromatin are discussed.
Collapse
Affiliation(s)
- G P Pfeifer
- Beckman Research Institute of the City of Hope, Department of Biology, Duarte, California 91010
| | | | | | | |
Collapse
|