1
|
Boulias K, Greer EL. Means, mechanisms and consequences of adenine methylation in DNA. Nat Rev Genet 2022; 23:411-428. [PMID: 35256817 PMCID: PMC9354840 DOI: 10.1038/s41576-022-00456-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
N6-methyl-2'-deoxyadenosine (6mA or m6dA) has been reported in the DNA of prokaryotes and eukaryotes ranging from unicellular protozoa and algae to multicellular plants and mammals. It has been proposed to modulate DNA structure and transcription, transmit information across generations and have a role in disease, among other functions. However, its existence in more recently evolved eukaryotes remains a topic of debate. Recent technological advancements have facilitated the identification and quantification of 6mA even when the modification is exceptionally rare, but each approach has limitations. Critical assessment of existing data, rigorous design of future studies and further development of methods will be required to confirm the presence and biological functions of 6mA in multicellular eukaryotes.
Collapse
|
3
|
Hao Z, Wu T, Cui X, Zhu P, Tan C, Dou X, Hsu KW, Lin YT, Peng PH, Zhang LS, Gao Y, Hu L, Sun HL, Zhu A, Liu J, Wu KJ, He C. N 6-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Mol Cell 2020; 78:382-395.e8. [PMID: 32183942 DOI: 10.1016/j.molcel.2020.02.018] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
N6-Methyldeoxyadenosine (6mA) has recently been shown to exist and play regulatory roles in eukaryotic genomic DNA (gDNA). However, the biological functions of 6mA in mammals have yet to be adequately explored, largely due to its low abundance in most mammalian genomes. Here, we report that mammalian mitochondrial DNA (mtDNA) is enriched for 6mA. The level of 6mA in HepG2 mtDNA is at least 1,300-fold higher than that in gDNA under normal growth conditions, corresponding to approximately four 6mA modifications on each mtDNA molecule. METTL4, a putative mammalian methyltransferase, can mediate mtDNA 6mA methylation, which contributes to attenuated mtDNA transcription and a reduced mtDNA copy number. Mechanistically, the presence of 6mA could repress DNA binding and bending by mitochondrial transcription factor (TFAM). Under hypoxia, the 6mA level in mtDNA could be further elevated, suggesting regulatory roles for 6mA in mitochondrial stress response. Our study reveals DNA 6mA as a regulatory mark in mammalian mtDNA.
Collapse
Affiliation(s)
- Ziyang Hao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Tong Wu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Xiaolong Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Pingping Zhu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; School of Life Science, Zhengzhou University, Zhengzhou 450001, China
| | - Caiping Tan
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoyang Dou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Kai-Wen Hsu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Yueh-Te Lin
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Li-Sheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Yawei Gao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lulu Hu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Hui-Lung Sun
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Allen Zhu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Jianzhao Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
4
|
O'Brown ZK, Greer EL. N6-Methyladenine: A Conserved and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:213-246. [PMID: 27826841 DOI: 10.1007/978-3-319-43624-1_10] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.
Collapse
Affiliation(s)
- Zach Klapholz O'Brown
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Gabarro-Arpa J, Cognet JA, Le Bret M. Object Command Language: a formalism to build molecular models and to analyze structural parameters in macromolecules, with applications to nucleic acids. JOURNAL OF MOLECULAR GRAPHICS 1992; 10:166-73, 162. [PMID: 1467332 DOI: 10.1016/0263-7855(92)80051-e] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have written a programming language OCL (Object Command Language) to solve, in a general way, two recurring problems that arise during the construction of molecular models and during the geometrical characterization of macromolecules: how to move precisely and reproducibly any part of a molecular model in any user-defined local reference axes; and how to calculate standard or user-defined structural parameters that characterize the complex geometries of any macromolecule. OCL endows the user with three main capabilities: the definition of subsets of the macromolecule, called objects in OCL, with a formalism from elementary set theory or lexical analysis; the definition of sequences of elementary geometrical operations, called procedures in OCL, enabling one to build arbitrary three-dimensional (3D) orthonormal reference frames, to be associated with previously defined objects; and the transmission of these definitions to programs that allow one to display, to modify and to analyze interactively the molecular structure, or to programs that perform energy minimizations or molecular dynamics. Several applications to nucleic acids are presented.
Collapse
Affiliation(s)
- J Gabarro-Arpa
- Unité de Biochimie-Enzymologie, Institut Gustave-Roussy (U140 INSERM, URA147 CNRS), France
| | | | | |
Collapse
|