1
|
Abstract
RNA species play host to a plethora of post-transcriptional modifications which together make up the epitranscriptome. 5-methyluridine (m5U) is one of the most common modifications made to cellular RNA, where it is found almost ubiquitously in bacterial and eukaryotic cytosolic tRNAs at position 54. Here, we demonstrate that m5U54 in human mitochondrial tRNAs is catalysed by the nuclear-encoded enzyme TRMT2B, and that its repertoire of substrates is expanded to ribosomal RNAs, catalysing m5U429 in 12S rRNA. We show that TRMT2B is not essential for viability in human cells and that knocking-out the gene shows no obvious phenotype with regards to RNA stability, mitochondrial translation, or cellular growth.
Collapse
Affiliation(s)
- Christopher A Powell
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Holman KM, Puppala AK, Lee JW, Lee H, Simonović M. Insights into substrate promiscuity of human seryl-tRNA synthetase. RNA (NEW YORK, N.Y.) 2017; 23:1685-1699. [PMID: 28808125 PMCID: PMC5648036 DOI: 10.1261/rna.061069.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Seryl-tRNA synthetase (SerRS) attaches L-serine to the cognate serine tRNA (tRNASer) and the noncognate selenocysteine tRNA (tRNASec). The latter activity initiates the anabolic cycle of selenocysteine (Sec), proper decoding of an in-frame Sec UGA codon, and synthesis of selenoproteins across all domains of life. While the accuracy of SerRS is important for overall proteome integrity, it is its substrate promiscuity that is vital for the integrity of the selenoproteome. This raises a question as to what elements in the two tRNA species, harboring different anticodon sequences and adopting distinct folds, facilitate aminoacylation by a common aminoacyl-tRNA synthetase. We sought to answer this question by analyzing the ability of human cytosolic SerRS to bind and act on tRNASer, tRNASec, and 10 mutant and chimeric constructs in which elements of tRNASer were transposed onto tRNASec We show that human SerRS only subtly prefers tRNASer to tRNASec, and that discrimination occurs at the level of the serylation reaction. Surprisingly, the tRNA mutants predicted to adopt either the 7/5 or 8/5 fold are poor SerRS substrates. In contrast, shortening of the acceptor arm of tRNASec by a single base pair yields an improved SerRS substrate that adopts an 8/4 fold. We suggest that an optimal tertiary arrangement of structural elements within tRNASec and tRNASer dictate their utility for serylation. We also speculate that the extended acceptor-TΨC arm of tRNASec evolved as a compromise for productive binding to SerRS while remaining the major recognition element for other enzymes involved in Sec and selenoprotein synthesis.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cytosol/enzymology
- Humans
- Kinetics
- Models, Molecular
- Mutagenesis
- Nucleic Acid Conformation
- RNA Folding
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Serine-tRNA Ligase/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Kaitlyn M Holman
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Anupama K Puppala
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Jonathan W Lee
- College of Liberal Arts and Sciences, The University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Hyun Lee
- Center for Biomolecular Sciences, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
3
|
Baumgardt K, Melior H, Madhugiri R, Thalmann S, Schikora A, McIntosh M, Becker A, Evguenieva-Hackenberg E. RNase E and RNase J are needed for S-adenosylmethionine homeostasis in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2017; 163:570-583. [PMID: 28141492 DOI: 10.1099/mic.0.000442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ribonucleases (RNases) E and J play major roles in E. coli and Bacillus subtilis, respectively, and co-exist in Sinorhizobium meliloti. We analysed S. meliloti 2011 mutants with mini-Tn5 insertions in the corresponding genes rne and rnj and found many overlapping effects. We observed similar changes in mRNA levels, including lower mRNA levels of the motility and chemotaxis related genes flaA, flgB and cheR and higher levels of ndvA (important for glucan export). The acyl-homoserine lactone (AHL) levels were also higher during exponential growth in both RNase mutants, despite no increase in the expression of the sinI AHL synthase gene. Furthermore, several RNAs from both mutants migrated aberrantly in denaturing gels at 300 V but not under stronger denaturing conditions at 1300 V. The similarities between the two mutants could be explained by increased levels of the key methyl donor S-adenosylmethionine (SAM), since this may result in faster AHL synthesis leading to higher AHL accumulation as well as in uncontrolled methylation of macromolecules including RNA, which may strengthen RNA secondary structures. Indeed, we found that in both mutants the N6-methyladenosine content was increased almost threefold and the SAM level was increased at least sevenfold. Complementation by induced ectopic expression of the respective RNase restored the AHL and SAM levels in each of the mutants. In summary, our data show that both RNase E and RNase J are needed for SAM homeostasis in S. meliloti.
Collapse
Affiliation(s)
- Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: CNRS, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Hendrik Melior
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: Institute of Medical Virology, Biomedical Research Center, Justus Liebig University, Schubertstr. 81, D 35392 Giessen, Germany
| | - Sebastian Thalmann
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Adam Schikora
- Institute of Phytopathology and Applied Zoology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Brunswick, Germany
| | - Matthew McIntosh
- Centre of Synthetic Microbiology, Hans-Meerwein-Straße 6, D-35043 Marburg, Germany
| | - Anke Becker
- Centre of Synthetic Microbiology, Hans-Meerwein-Straße 6, D-35043 Marburg, Germany
| | | |
Collapse
|
4
|
tRNA concentration fine tunes protein solubility. FEBS Lett 2012; 586:3336-40. [PMID: 22819830 DOI: 10.1016/j.febslet.2012.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/30/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022]
Abstract
Clusters of codons pairing to low-abundance tRNAs synchronize the translation with co-translational folding of single domains in multidomain proteins. Although proven with some examples, the impact of the ribosomal speed on the folding and solubility on a global, cell-wide level remains elusive. Here we show that upregulation of three low-abundance tRNAs in Escherichia coli increased the aggregation propensity of several cellular proteins as a result of an accelerated elongation rate. Intriguingly, alterations in the concentration of the natural tRNA pool compromised the solubility of various chaperones consequently rendering the solubility of some chaperone-dependent proteins.
Collapse
|
5
|
Clarke PA, Pe'ery T, Ma Y, Mathews MB. Structural features of adenovirus 2 virus-associated RNA required for binding to the protein kinase DAI. Nucleic Acids Res 1994; 22:4364-74. [PMID: 7971266 PMCID: PMC308468 DOI: 10.1093/nar/22.21.4364] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The double-stranded RNA activated protein kinase DAI contains an RNA binding domain consisting of two copies of a double-stranded RNA binding motif. We have investigated the role of RNA structure in the interaction between DAI and the structured single-stranded RNA, adenovirus VA RNAI, which inhibits DAI activation. Mutations in the apical stem, terminal stem, and central domain of the RNA were tested to assess the contribution of these elements to DAI binding in vitro. The data demonstrate that over half a turn of intact apical stem is required for the interaction and that there is a correlation between the binding of apical stem mutants and their ability to function both in vivo and in vitro. There was also evidence of preference for GC-rich sequence in the proximal region of the apical stem. In the central domain the correlation between binding and function of mutant RNAs was poor, suggesting that at least some of this region plays no direct role in binding to DAI, despite its functional importance. Exceptionally, central domain mutations that encroached on the phylogenetically conserved stem 4 of VA RNA disrupted binding, and complementary mutations in this sequence partially restored binding. Measurement of the binding of wild-type VA RNAI to DAI and p20, a truncated form of the protein containing the RNA binding domains alone, under various ionic conditions imply that the major interactions are electrostatic and occur via the protein's RNA binding domain. However, differences between full-length DAI and p20 in their binding to mutants in the conserved stem suggest that regions outside the RNA binding domain also participate in the binding. The additional interactions are likely to be non-ionic, and may be important for preventing DAI activation during virus infection.
Collapse
|
6
|
Svärd SG, Kirsebom LA. Determinants of Escherichia coli RNase P cleavage site selection: a detailed in vitro and in vivo analysis. Nucleic Acids Res 1993; 21:427-34. [PMID: 7680119 PMCID: PMC309135 DOI: 10.1093/nar/21.3.427] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The location of the Escherichia coli RNase P cleavage site was studied both in vitro and in vivo. We show that selection of the cleavage site is dependent on the nucleotide at the cleavage site and the length of the acceptor-stem. Within the acceptor-stem the number of nucleotides on the 5'-half of the acceptor-stem appears to be the important determinant, rather than the number of base pairs in the acceptor-stem. We also demonstrate that the length of the T-stem and a G to C substitution at position 57 in the tRNA(Tyr)Su3 precursor influence the location of the cleavage site under certain conditions. With respect to the function of the subunits of RNase P our data suggest that the nucleotide at position 333 in M1 RNA, and the C5 protein, are important for the identification of the cleavage site.
Collapse
MESH Headings
- Base Sequence
- DNA, Bacterial
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli Proteins
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Catalytic/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Ribonuclease P
- Ribonucleotides/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- S G Svärd
- Department of Microbiology, Biomedical Center, Uppsala, Sweden
| | | |
Collapse
|
7
|
Gaur RK, Krupp G. Modification interference approach to detect ribose moieties important for the optimal activity of a ribozyme. Nucleic Acids Res 1993; 21:21-6. [PMID: 8441616 PMCID: PMC309060 DOI: 10.1093/nar/21.1.21] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A new approach for modification interference studies is presented. It involves the use of phosphorothioates as a handle to analyze any desired base or sugar modification. This method was applied to identify ribose and phosphate moieties which could be important in the pre-tRNA recognition of E. coli RNase P RNA (M1 RNA). The utility of this technique was confirmed by detecting the inhibitory effect of a deoxyribose in the 5'-flank (position-1). This site was already known to interfere with RNase P cleavage, if modified. We have analyzed pre-tRNA(Tyr) and pre-tRNA(Phe) and found different interference patterns for both tRNAs. Two unpaired regions were involved in both pre-tRNAs. Phosphorothioates interfered at the transition between acceptor- and D-arms. The results with deoxythymidines in the T-loop indicated that deoxyribose moieties or the extra methyl group in thymidine could interfere with RNAse P cleavage. These data suggest that even in complete pre-tRNAs, only a few intact ribonucleotides are important in the substrate recognition by RNase P. We have demonstrated the potential of this new approach which offers many future applications in all fields involving nucleic acids, for example RNA processing, action of ribozymes, tRNA charging and studies related to DNA promoter recognition.
Collapse
Affiliation(s)
- R K Gaur
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Kiel, Germany
| | | |
Collapse
|
8
|
Svärd SG, Kirsebom LA. Several regions of a tRNA precursor determine the Escherichia coli RNase P cleavage site. J Mol Biol 1992; 227:1019-31. [PMID: 1279179 DOI: 10.1016/0022-2836(92)90518-o] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The RNase P cleavage reaction was studied as a function of the number of base-pairs in the acceptor-stem and/or T-stem of a natural tRNA precursor, the tRNA(Tyr)Su3 precursor. Our data suggest that the location of the Escherichia coli RNase P cleavage site does not depend merely on the lengths of the acceptor-stem and T-stem as previously suggested. Surprisingly, we find that precursors with only four base-pairs in the acceptor-stem are cleaved by M1 RNA and by holoenzyme. Furthermore, we show that both disruption of base-pairing, and alteration of the nucleotide sequence (without disruption of base-pairing) proximal to the cleavage site result in aberrant cleavage. Thus, the identity of the nucleotides near the cleavage site is important for recognition of the cleavage site rather than base-pairing. The important nucleotides are those at positions -2, -1, +1, +72, +73 and +74. We propose that the nucleotide at position +1 functions as a guiding nucleotide. These results raise the possibility that Mg2+ binding near the cleavage site is dependent on the identity of the nucleotides at these positions. In addition, we show that disruption of base-pairing in the acceptor-stem affects both Michaelis-Menten constants, Km and kcat.
Collapse
Affiliation(s)
- S G Svärd
- Department of Microbiology, Biomedical Center, Uppsala, Sweden
| | | |
Collapse
|
9
|
Mans RM, Van Steeg MH, Verlaan PW, Pleij CW, Bosch L. Mutational analysis of the pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. Aminoacylation efficiency and RNA pseudoknot stability. J Mol Biol 1992; 223:221-32. [PMID: 1731070 DOI: 10.1016/0022-2836(92)90727-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Site-directed mutations were introduced in the connecting loops and one of the two stem regions of the RNA pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. The kinetic parameters of valylation for each mutated RNA were determined in a cell-free extract from wheat germ. Structure mapping was performed on most mutants with enzymic probes, like RNase T1, nuclease S1 and cobra venom ribonuclease. An insertion of four A residues in the four-membered connecting loop L1 that crosses the deep groove of the pseudoknot reduces aminoacylation efficiency. Deletions up to three nucleotides do not affect aminoacylation or RNA pseudoknot formation. Deletion of the entire loop abolishes aminoacylation. Although elimination of the pseudoknot is presumed, this could not be demonstrated. Unlike the mutations in loop L1, all mutations in the three-membered connecting loop L2 that crosses the shallow groove of the RNA pseudoknot decrease the aminoacylation efficiency considerably. Nonetheless, the RNA pseudoknot is still present in most mutated RNAs. These results indicate that a number of mutations can be introduced in both loops without abolishing aminoacylation. Results obtained with the introduction of mismatches and A.U base-pairs in stem S1 of the pseudoknot, containing three G.C base-pairs in wild-type RNA, indicate that the pseudoknot is only marginally stable. Our estimation of the gain of free energy due to the pseudoknot formation is at most 2.0 kcal/mol. The pseudoknot structure can, however, be stabilized upon binding the valyl-tRNA synthetase.
Collapse
Affiliation(s)
- R M Mans
- Department of Biochemistry, University of Leiden Gorlaeus Laboratories, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Thurlow DL, Shilowski D, Marsh TL. Nucleotides in precursor tRNAs that are required intact for catalysis by RNase P RNAs. Nucleic Acids Res 1991; 19:885-91. [PMID: 1901990 PMCID: PMC333726 DOI: 10.1093/nar/19.4.885] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Precursor tRNAAsp molecules, containing a 26-base 5' leader, were treated with diethylpyrocarbonate, 50% hydrazine or anhydrous hydrazine/3M NaCl and then subjected to processing by RNase P RNAs from Escherichia coli or Bacillus subtilis. Fully processed tRNAs and material not successfully cleaved by the catalytic RNAs were analyzed for their content of chemically altered nucleotides. Several bases were identified as being required intact for optimal activity as substrate as judged by exclusion of chemically modified residues from processed molecules, and simultaneous enhancement in material that was not recognized as substrate. Such nucleotides cluster near the site of cleavage at the mature 5' end and in the T stem and loop. Purines at residues 1 and 2 adjacent to the site of cleavage, position 57 in the T loop, and site 64 in the T stem exhibited the most pronounced effects. These results suggest a model of recognition of substrate by RNase P RNAs in which the ribozyme interacts with the corner of the precursor tRNA's three dimensional structure, where the T- and D-loops are juxtaposed, and extends along the top of the molecule back towards the site of catalysis.
Collapse
Affiliation(s)
- D L Thurlow
- Department of Chemistry, Clark University, Worcester, MA 01610
| | | | | |
Collapse
|
11
|
Hegg LA, Thurlow DL. Cytidines in tRNAs that are required intact by ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. Nucleic Acids Res 1990; 18:5975-9. [PMID: 1700367 PMCID: PMC332393 DOI: 10.1093/nar/18.20.5975] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Individual species of tRNA from Escherichia coli were treated with hydrazine/3 M NaCl to modify cytidine residues. The chemically modified tRNAs were used as substrate for ATP/CTP: tRNA nucleotidyltransferases from E. coli and yeast, with [alpha-32P]ATP as cosubstrate. tRNAs that were labeled were analyzed for their content of modified cytidines. Cytidines at positions 74 and 75 were found to be required chemically intact for interaction with both enzymes. C56 was also required intact by the E. coli enzyme in all tRNAs, and by the yeast enzyme in several instances. C61 was found to be important in seven of 14 tRNAs with the E. coli enzyme but only in four of 13 tRNAs with that from yeast. Our results support a model in which nucleotidyltransferase extends from the 3' end of its tRNA substrate across the top of the stacked array of bases in the accepter- and psi-stems to the corner of the molecule where the D- and psi-loops are juxtaposed.
Collapse
Affiliation(s)
- L A Hegg
- Department of Chemistry, Clark University, Worcester, MA 01610
| | | |
Collapse
|
12
|
Recognition of the tRNA-like structure in tobacco mosaic viral RNA by ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38182-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|