1
|
Weidenbach S, Hou C, Chen JM, Tsodikov OV, Rohr J. Dimerization and DNA recognition rules of mithramycin and its analogues. J Inorg Biochem 2015; 156:40-7. [PMID: 26760230 DOI: 10.1016/j.jinorgbio.2015.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022]
Abstract
The antineoplastic and antibiotic natural product mithramycin (MTM) is used against cancer-related hypercalcemia and, experimentally, against Ewing sarcoma and lung cancers. MTM exerts its cytotoxic effect by binding DNA as a divalent metal ion (Me(2+))-coordinated dimer and disrupting the function of transcription factors. A precise molecular mechanism of action of MTM, needed to develop MTM analogues selective against desired transcription factors, is lacking. Although it is known that MTM binds G/C-rich DNA, the exact DNA recognition rules that would allow one to map MTM binding sites remain incompletely understood. Towards this goal, we quantitatively investigated dimerization of MTM and several of its analogues, MTM SDK (for Short side chain, DiKeto), MTM SA-Trp (for Short side chain and Acid), MTM SA-Ala, and a biosynthetic precursor premithramycin B (PreMTM B), and measured the binding affinities of these molecules to DNA oligomers of different sequences and structural forms at physiological salt concentrations. We show that MTM and its analogues form stable dimers even in the absence of DNA. All molecules, except for PreMTM B, can bind DNA with the following rank order of affinities (strong to weak): MTM=MTM SDK>MTM SA-Trp>MTM SA-Ala. An X(G/C)(G/C)X motif, where X is any base, is necessary and sufficient for MTM binding to DNA, without a strong dependence on DNA conformation. These recognition rules will aid in mapping MTM sites across different promoters towards development of MTM analogues as useful anticancer agents.
Collapse
Affiliation(s)
- Stevi Weidenbach
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jhong-Min Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
2
|
Setlow P, Li L. Photochemistry and Photobiology of the Spore Photoproduct: A 50-Year Journey. Photochem Photobiol 2015; 91:1263-90. [PMID: 26265564 PMCID: PMC4631623 DOI: 10.1111/php.12506] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023]
Abstract
Fifty years ago, a new thymine dimer was discovered as the dominant DNA photolesion in UV-irradiated bacterial spores [Donnellan, J. E. & Setlow R. B. (1965) Science, 149, 308-310], which was later named the spore photoproduct (SP). Formation of SP is due to the unique environment in the spore core that features low hydration levels favoring an A-DNA conformation, high levels of calcium dipicolinate that acts as a photosensitizer, and DNA saturation with small, acid-soluble proteins that alters DNA structure and reduces side reactions. In vitro studies reveal that any of these factors alone can promote SP formation; however, SP formation is usually accompanied by the production of other DNA photolesions. Therefore, the nearly exclusive SP formation in spores is due to the combined effects of these three factors. Spore photoproduct photoreaction is proved to occur via a unique H-atom transfer mechanism between the two involved thymine residues. Successful incorporation of SP into an oligonucleotide has been achieved via organic synthesis, which enables structural studies that reveal minor conformational changes in the SP-containing DNA. Here, we review the progress on SP photochemistry and photobiology in the past 50 years, which indicates a very rich SP photobiology that may exist beyond endospores.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Lei Li
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, 46202
- Department of Biochemistry and Molecular Biology & Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
3
|
Abstract
The DNA backbone geometry was analyzed for 96 crystal structures of oligodeoxynucleotides. The ranges and mean values of the torsion angles for the observed subclasses of the A-, B-, and Z-DNA conformational types were determined by analyzing distributions of the torsion angles and scattergrams relating pairs of angles.
Collapse
Affiliation(s)
- B Schneider
- Rutgers University, Department of Chemistry, Piscataway, NJ 08855-0939, USA
| | | | | |
Collapse
|
4
|
Abstract
All crystal structures of A-DNA duplexes exhibit a typical crystal packing, with the termini of one molecule abutting the shallow grooves of symmetry related neighbors, while all other forms (B, Z, and RNA) tend to form infinitely stacked helices. The A-DNA arrangement leads to the formation of shallow groove base multiples that have implications for the structure of DNA in compacted states. The characteristic packing leaves big solvent channels, which can be sometimes occupied by B-DNA duplexes. Comparisons of the structures of the same oligomer crystallizing in two different space groups and of different sequences crystallizing in the same space group show that the lattice forces dominate the A-DNA conformation in the crystals, complicating the effort to elucidate the influence of the base sequence on the structures. Nevertheless, in both alternating and nonalternating fragments some sequence effects can still be uncovered. Furthermore, several studies have started to define the minimal sequence changes or chemical modifications that can interconvert the oligomers between different double-helical conformers (A-, B-, and Z-form). Overall, it is seen that the rigid nucleotide principle applies to the oligomeric fragments. Besides the structures of the naked DNAs, their interactions with water, polyamines, and metal ions have attracted considerable attention. There are conserved patterns in the hydration, involving both the grooves and the backbone, which are different from those of B-DNA or Z-DNA. Overall, A-DNA seems to be more economically hydrated than B-DNA, particularly around the sugar-phosphate backbone. Spermine was found to be able to bind exclusively to either of the grooves or to the phosphate groups of the backbone, or exhibit a mixed binding mode. The located metal cations prefer binding to guanine bases and phosphate groups. The only mispairs investigated in A-DNA are the wobble pairs, yielding structural insight into their effects on helix stabilities and hydration. G.T wobble pairs have been determined in various sequence contexts, where they differentially affect the conformations and stableness of the duplexes. The structure of a G.m5C base pair, which surprisingly also adopted the wobble conformation, suggests that a similar geometry may transiently exist for G.C pairs. These results from the crystalline state will be compared to the solution state and discussed in relation to their relevance in biology.
Collapse
Affiliation(s)
- M C Wahl
- Ohio State University, Department of Chemistry, Columbus 43210-1002, USA
| | | |
Collapse
|
5
|
Yuriev E, Scott D, Hanna MM. Effects of 5-[S-(2,4-dinitrophenyl)-thio]-2'-deoxyuridine analog incorporation on the structure and stability of DNA hybrids: implications for the design of nucleic acid probes. J Mol Recognit 1999; 12:337-45. [PMID: 10611643 DOI: 10.1002/(sici)1099-1352(199911/12)12:6<337::aid-jmr475>3.0.co;2-m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Labeled nucleic acid probes are used as diagnostic tools by detecting changes in gene expression upon hybridization to target RNAs or DNAs that are related to specific disease genes. 5-[S-(2, 4-Dinitrophenyl)-thio]-2'-deoxyuridine analog represents an excellent nucleic acid label, containing the DNP group which functions both as a probe and as a precursor for the introduction of a variety of fluorescent groups. This study describes thermal denaturation hybridization experiments with oligonucleotides containing the 5-[S-(2,4-dinitrophenyl)-thio]-2'-deoxyuridine analog. Using molecular modeling techniques, the effects of this analog on the hybrid structure and stability were examined, including (i) analog conformation, (ii) hydrogen bonding, (iii) stacking interactions and (iv) hybrid helical geometry. This analog does not prohibitively affect the hybrid thermal stability and incorporation of the analog does not compromise the structural integrity of the double helix. In particular, the sequence-dependence of the analog effects and the dependence on the modification site relative to the end(s) of the helix were investigated. Findings described here should provide guidelines in the rational design of nucleic acid probes.
Collapse
Affiliation(s)
- E Yuriev
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | |
Collapse
|
6
|
Rozenberg H, Rabinovich D, Frolow F, Hegde RS, Shakked Z. Structural code for DNA recognition revealed in crystal structures of papillomavirus E2-DNA targets. Proc Natl Acad Sci U S A 1998; 95:15194-9. [PMID: 9860945 PMCID: PMC28019 DOI: 10.1073/pnas.95.26.15194] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation in papillomaviruses depends on sequence-specific binding of the regulatory protein E2 to several sites in the viral genome. Crystal structures of bovine papillomavirus E2 DNA targets reveal a conformational variant of B-DNA characterized by a roll-induced writhe and helical repeat of 10.5 bp per turn. A comparison between the free and the protein-bound DNA demonstrates that the intrinsic structure of the DNA regions contacted directly by the protein and the deformability of the DNA region that is not contacted by the protein are critical for sequence-specific protein/DNA recognition and hence for gene-regulatory signals in the viral system. We show that the selection of dinucleotide or longer segments with appropriate conformational characteristics, when positioned at correct intervals along the DNA helix, can constitute a structural code for DNA recognition by regulatory proteins. This structural code facilitates the formation of a complementary protein-DNA interface that can be further specified by hydrogen bonds and nonpolar interactions between the protein amino acids and the DNA bases.
Collapse
Affiliation(s)
- H Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
7
|
Beger RD, Arthanari HB, Basu S, Bolton PH. Interresidue quiet NOEs for DNA structural studies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1998; 132:34-40. [PMID: 9615411 DOI: 10.1006/jmre.1998.1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The potential utility of long-range NOEs in DNA has not been exploited since the observed signals have contributions both from the direct magnetization route and from multiple diffusion pathways. The Quiet NOE approach can be used to select for the direct magnetization transfer pathway by suppressing spin diffusion. A single-band Quiet NOE, which allows detection of the direct NOEs between protons in a selected chemical shift window, has been demonstrated on two duplex DNAs, and the NOEs observed can contain important structural information.
Collapse
Affiliation(s)
- R D Beger
- Chemistry Department, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | |
Collapse
|
8
|
Alhambra C, Luque FJ, Gago F, Orozco M. Ab Initio Study of Stacking Interactions in A- and B-DNA. J Phys Chem B 1997. [DOI: 10.1021/jp962626a] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cristóbal Alhambra
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, Departament de Farmàcia, Unitat Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain, Departamento de Fisiología y Farmacología, Universidad de Alcalá de Henares, 28871 Madrid, Spain
| | - Francisco J. Luque
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, Departament de Farmàcia, Unitat Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain, Departamento de Fisiología y Farmacología, Universidad de Alcalá de Henares, 28871 Madrid, Spain
| | - Federico Gago
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, Departament de Farmàcia, Unitat Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain, Departamento de Fisiología y Farmacología, Universidad de Alcalá de Henares, 28871 Madrid, Spain
| | - Modesto Orozco
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain, Departament de Farmàcia, Unitat Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal s/n, Barcelona 08028, Spain, Departamento de Fisiología y Farmacología, Universidad de Alcalá de Henares, 28871 Madrid, Spain
| |
Collapse
|
9
|
|
10
|
Rudnicki WR, Lesyng B. Applicability of commonly used atom-atom type potential energy functions in structural analysis of nucleic acids. The role of electrostatic interactions. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0097-8485(95)00010-p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Abstract
Superstructure-formation of DNA plays an important role in transcription regulation as well as in chromatin formation. To understand the stereochemical basis of DNA bending by proteins we analysed the structural characteristics of dinucleotide steps which occur at the site where DNA is bent upon binding a transcription factor. When DNA is considerably bent in a crystal structure the bending is not spread smoothly over a length, but the DNA is kinked at a pair of crucial steps which are highly rolled and untwisted. These rolled steps are spaced 6-10 bp apart and are predominantly occupied by pyrimidine-purine sequences. In association with another dinucleotide step at the centre, which combines 6 bp-spaced rolled steps towards the same side of the DNA, these produce two essentially different types of DNA bending.
Collapse
Affiliation(s)
- M Suzuki
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
12
|
Young MA, Ravishanker G, Beveridge DL, Berman HM. Analysis of local helix bending in crystal structures of DNA oligonucleotides and DNA-protein complexes. Biophys J 1995; 68:2454-68. [PMID: 7647248 PMCID: PMC1282155 DOI: 10.1016/s0006-3495(95)80427-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sequence-dependent bending of the helical axes in 112 oligonucleotide duplex crystal structures resident in the Nucleic Acid Database have been analyzed and compared with the use of bending dials, a computer graphics tool. Our analysis includes structures of both A and B forms of DNA and considers both uncomplexed forms of the double helix as well as those bound to drugs and proteins. The patterns in bending preferences in the crystal structures are analyzed by base pair steps, and emerging trends are noted. Analysis of the 66 B-form structures in the Nucleic Acid Database indicates that uniform trends within all pyrimidine-purine and purine-pyrimidine steps are not necessarily observed but are found particularly at CG and GC steps of dodecamers. The results support the idea that AA steps are relatively straight and that larger roll bends occur at or near the junctions of these A-tracts with their flanking sequences. The data on 16 available crystal structures of protein-DNA complexes indicate that the majority of the DNA bends induced via protein binding are sharp localized kinks. The analysis of the 30 available A-form DNA structures indicates that these structures are also bent and show a definitive preference for bending into the deep major groove over the shallow minor groove.
Collapse
Affiliation(s)
- M A Young
- Chemistry Department, Wesleyan University, Middletown, Connecticut 06457, USA
| | | | | | | |
Collapse
|
13
|
Cohen DM, Kulikowski C, Berman H. DEXTER: A system that experiments with choices of training data using expert knowledge in the domain of DNA hydration. Mach Learn 1995. [DOI: 10.1007/bf00993380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Tang RS, Draper DE. On the use of phasing experiments to measure helical repeat and bulge loop-associated twist in RNA. Nucleic Acids Res 1994; 22:835-41. [PMID: 7511222 PMCID: PMC307890 DOI: 10.1093/nar/22.5.835] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In a phasing experiment, two bends are introduced into a long duplex RNA or DNA and the number of base pairs between them varied. When electrophoresed in a gel, the set of molecules may show a periodic variation in mobility that contains information about the twist associated with the bends and the intervening helix. We show how a set of three phasing experiments can be used to extract this information, and apply it to an RNA helix bend at the bulge sequence A2. The bulge introduces a negative (left-handed) twist of approximately 30 degrees; at low temperatures, it is mostly confined to the 5' side of the bulge. The apparent helical repeat of random sequence RNA measured in these experiments was 10.2 +/- 0.1 base pairs, an unexpectedly low value. It is likely that moderate curvative of the RNA helix axis (30-40 degrees over 80 bp) has affected the measurement.
Collapse
Affiliation(s)
- R S Tang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
15
|
Gessner RV, Quigley GJ, Egli M. Comparative studies of high resolution Z-DNA crystal structures. Part 1: Common hydration patterns of alternating dC-dG. J Mol Biol 1994; 236:1154-68. [PMID: 8120893 DOI: 10.1016/0022-2836(94)90018-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The water structure in three crystal forms of the left-handed Z-DNA hexamer [d(CGCGCG)]2 has been analyzed. Several common motifs have been found in the first hydration shells. On the convex surface, the major groove of the left-handed conformation, water molecules bridge the guanine O-6 keto groups at GpC steps. Cytosine N-4 nitrogens of opposite strands are hydrated by tandem water molecules. At the bottom of the minor groove, a string of water molecules connects the cytosine O-2 keto groups. Across the minor groove guanine N-2 nitrogens are bridged to phosphate oxygens of cytosine and guanine residues by one or two water molecules. In contrast to the very regular geometry of the water structure around the bases, the arrangement of water molecules between phosphate groups appears to be less ordered. However, there is a strong correlation between the interphosphate distances and the number of water molecules or ions which link the phosphate groups. In all three structures various ions, such as sodium and magnesium ions, as well as the protonated amino and imino groups of the polycation spermine displace and replace water molecules in the first hydration shell. Nevertheless, the analysis reveals that numerous first hydration shell water molecules in Z-DNA crystals can be regarded as part of the DNA structure. Their positions and thermal parameters are generally independent of changes in the local crystallographic environment.
Collapse
Affiliation(s)
- R V Gessner
- Institute for Clinical Chemistry and Biochemistry, Rudolf Virchow University Hospital, Berlin, Germany
| | | | | |
Collapse
|
16
|
Abstract
The 2.5 A crystal structure of a TATA-box complex with yeast TBP shows that the eight base pairs of the TATA box bind to the concave surface of TBP by bending towards the major groove with unprecedented severity. This produces a wide open, underwound, shallow minor groove which forms a primarily hydrophobic interface with the entire under-surface of the TBP saddle. The severe bend and a positive writhe radically alter the trajectory of the flanking B-form DNA.
Collapse
Affiliation(s)
- Y Kim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | | | | | | |
Collapse
|
17
|
Ramakrishnan B, Sundaralingam M. Crystal packing effects on A-DNA helix parameters: a comparative study of the isoforms of the tetragonal & hexagonal family of octamers with differing base sequences. J Biomol Struct Dyn 1993; 11:11-26. [PMID: 8216939 DOI: 10.1080/07391102.1993.10508706] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The helix and base pair parameters of A-DNA octamers have been compared having different base sequences both in the tetragonal and hexagonal crystal systems. For the eight structures in the tetragonal family, the twist, rise, slide, inclination and tilt are essentially the same, influenced by the similarity in crystal packing. The propeller twist and the base pair buckle display small sequence dependent variations. But the base pair roll appears to be changed by the specific intermolecular hydrogen bonding interactions. For four of the five octamer structures in the hexagonal family, the base pair rise, slide, inclination, tilt, as well as the propeller twist and buckle are all very similar, while the twist angle and the base pair roll are not. The intermolecular hydrogen bonding interactions seem to be primarily responsible for the differences in the roll angle in the tetragonal structures but for both the roll and twist angles in the hexagonal structures. These results demonstrate that the majority of the observed helix base pair parameters for A-DNA octamers in crystals are affected by the crystal packing environment, while a few parameters, like propeller twist and base pair buckle display some base sequence dependence.
Collapse
Affiliation(s)
- B Ramakrishnan
- Department of Chemistry, Biochemistry, Ohio State University, Columbus 43210-1002
| | | |
Collapse
|
18
|
Abstract
Vacuum UV circular dichroism (CD) spectra were measured down to 175 nm for d(C)10, d(G)10, the d(G)10.d(C)10 duplex, and the d(G)10.d(G)10.d(C)10 triplex. A CD difference spectrum was calculated for d(G)10.d(C)10 giving the change in CD induced by forming the duplex from d(G)10 and d(C)10. The d(G)10.d(G)10.d(C)10 CD difference spectrum gave the CD induced by triplex formation from binding of d(G)10 to the d(G)10.d(C)10 duplex. In the near-UV, the d(G)10.d(C)10 and d(G)10.d(G)10.d(C)10 difference spectra resembled the difference spectrum for poly[r(G).r(C)] (Biopolymers 29, 325-333). This similarity may be an indication of similar purine base stacking. The d(G)10.d(G)10.d(C)10 vacuum UV difference spectrum had a negative band at 195 nm and a positive band at 180 nm, making it similar to difference spectra for homopolymer triplexes containing T.A.T and U.A.U triplets (Nucl. Acids Res. 19, 2275-2280). The appearance of these bands in difference spectra should be good indicators of triplex formation. The complementary oligonucleotides c-mycI d(CCCCACCCTCCC) and c-mycII d(GGGAGGGTGGGG) are part of the regulatory sequences of the human c-myc gene. G.G.C rich triplexes formed by binding c-mycII or c-mycIII d(GGGGTGGGTGGG) to the c-mycI.c-mycII duplex had CD difference spectra similar to that of d(G)10.d(G)10.d(C)10 in both the vacuum UV and near UV regions, indicating similar triplet structures.
Collapse
Affiliation(s)
- K H Johnson
- Baylor College of Medicine, Center for Biotechnology, The Woodlands, TX 77381
| | | | | |
Collapse
|
19
|
Abstract
We present a systematic analysis of water structure around nucleic acid bases. We have examined 28 crystal structures of oligonucleotides, and have studied the patterns of water around the four bases, guanine, cytosine, adenine, and thymine. The geometries of water positions were calculated up to 4.00 A from base atoms. We have found conformation-dependent differences in both the geometry and extent of hydration of the bases.
Collapse
Affiliation(s)
- B Schneider
- Department of Chemistry, Rutgers, State University of New Jersey, New Brunswick 08903
| | | | | |
Collapse
|
20
|
|
21
|
Quintana JR, Lipanov AA, Dickerson RE. Low-temperature crystallographic analyses of the binding of Hoechst 33258 to the double-helical DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G. Biochemistry 1991; 30:10294-306. [PMID: 1718416 DOI: 10.1021/bi00106a030] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The crystal structure of the complex of Hoechst 33258 and the DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G has been solved from X-ray data collected at three different low temperatures (0, -25, and -100 degrees C). Such temperatures have permitted collection of higher resolution data (2.0, 1.9, and 2.0 A, respectively) than with previous X-ray studies of the same complex. In all three cases, the drug is located in the narrow central A-A-T-T region of the minor groove. Data analyses at -25 and -100 degrees C (each with a 1:1 drug/DNA ratio in the crystallizing solution) suggest a unique orientation for the drug. In contrast, two orientations of the drug were found equally possible at 0 degrees C with a 2:1 drug/DNA ratio in solution. Dihedral angles between the rings of Hoechst 33258 appear to change in a temperature-dependent manner. The drug/DNA complex is stabilized by single or bifurcated hydrogen bonds between the two N-H hydrogen-bond donors in the benzimidazole rings of Hoechst and adenine N3 and thymine O2 acceptors in the minor groove. A general preference for AT regions is conferred by electrostatic potential and by narrowing of the walls of the groove. Local point-by-point AT specificity follows from close van der Waals contacts between ring hydrogen atoms in Hoechst 33258 and the C2 hydrogens of adenines. Replacement of one benzimidazole ring by purine in a longer chain analogue of Hoechst 33258 could make that particular site GC tolerant in the manner observed at imidazole substitution for pyrrole in lexitropsins.
Collapse
Affiliation(s)
- J R Quintana
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1570
| | | | | |
Collapse
|
22
|
Holbrook SR, Cheong C, Tinoco I, Kim SH. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature 1991; 353:579-81. [PMID: 1922368 DOI: 10.1038/353579a0] [Citation(s) in RCA: 255] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The crystal structure of the RNA dodecamer duplex (r-GGACUUCGGUCC)2 has been determined. The dodecamers stack end-to-end in the crystal, simulating infinite A-form helices with only a break in the phosphodiester chain. These infinite helices are held together in the crystal by hydrogen bonding between ribose hydroxyl groups and a variety of donors and acceptors. The four noncomplementary nucleotides in the middle of the sequence did not form an internal loop, but rather a highly regular double-helix incorporating the non-Watson-Crick base pairs, G.U and U.C. This is the first direct observation of a U.C (or T.C) base pair in a crystal structure. The U.C pairs each form only a single base-base hydrogen bond, but are stabilized by a water molecule which bridges between the ring nitrogens and by four waters in the major groove which link the bases and phosphates. The lack of distortion introduced in the double helix by the U.C mismatch may explain its low efficiency of repair in DNA. The G.U wobble pair is also stabilized by a minor-groove water which bridges between the unpaired guanine amino and the ribose hydroxyl of the uracil. This structure emphasizes the importance of specific hydrogen bonding between not only the nucleotide bases, but also the ribose hydroxyls, phosphate oxygens and tightly bound waters in stabilization of the intramolecular and intermolecular structures of double helical RNA.
Collapse
Affiliation(s)
- S R Holbrook
- Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
23
|
Shakked Z. The influence of the environment on DNA structures determined by X-ray crystallography. Curr Opin Struct Biol 1991. [DOI: 10.1016/0959-440x(91)90046-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
|
25
|
Abstract
A simple relation exists between the packing density in crystals of short A-DNA duplexes and their global double-helical structure. The volume per nucleotide pair shows a linear inverse correlation with the mean displacement of base pairs from the best straight helix axis. The mean displacement is a measure of major groove depth and varies between -3.3 A and -4.9 A in A-form oligonucleotides analysed in the crystalline state. Since the mean displacement of base pairs from the helix axis determines other helical parameters such as base-pair longitudinal slide, its correlation with crystal packing is of considerable interest. The displacement-packing correlation is very clear for octamer duplexes which crystallize in three different lattices. Longer A-helical fragments sometimes deviate from the rule. It may be speculated whether A-form duplexes not completing a full helical turn are especially prone to distortions due to packing in crystals or arising from intermolecular contacts in solution.
Collapse
Affiliation(s)
- U Heinemann
- Abteilung Saenger, Institut für Kristallographie, Freie Universität Berlin, FRG
| |
Collapse
|
26
|
Abstract
The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.
Collapse
Affiliation(s)
- E Palecek
- Max-Planck Institut für Biophysikalische Chemie, Göttingen, BRD
| |
Collapse
|