1
|
Haas JG, Weber J, Gonzalez O, Zimmer R, Griffiths SJ. Antiviral activity of the mineralocorticoid receptor NR3C2 against Herpes simplex virus Type 1 (HSV-1) infection. Sci Rep 2018; 8:15876. [PMID: 30367157 PMCID: PMC6203759 DOI: 10.1038/s41598-018-34241-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/11/2018] [Indexed: 01/23/2023] Open
Abstract
Analysis of a genome-scale RNA interference screen of host factors affecting herpes simplex virus type 1 (HSV-1) revealed that the mineralocorticoid receptor (MR) inhibits HSV-1 replication. As a ligand-activated transcription factor the MR regulates sodium transport and blood pressure in the kidney in response to aldosterone, but roles have recently been elucidated for the MR in other cellular processes. Here, we show that the MR and other members of the mineralocorticoid signalling pathway including HSP90 and FKBP4, possess anti-viral activity against HSV-1 independent of their effect on sodium transport, as shown by sodium channel inhibitors. Expression of the MR is upregulated upon infection in an interferon (IFN) and viral transcriptional activator VP16-dependent fashion. Furthermore, the MR and VP16, together with the cellular co-activator Oct-1, transactivate the hormone response element (HRE) present in the MR promoter and those of its transcriptional targets. As the MR induces IFN expression, our data suggests the MR is involved in a positive feedback loop that controls HSV-1 infection.
Collapse
Affiliation(s)
- Jürgen G Haas
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Julia Weber
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Orland Gonzalez
- Institute for Informatics, Ludwig-Maximilians Universität München, 80333, München, Germany
| | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians Universität München, 80333, München, Germany
| | - Samantha J Griffiths
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
2
|
Bruce JW, Wilcox KW. Identification of a motif in the C terminus of herpes simplex virus regulatory protein ICP4 that contributes to activation of transcription. J Virol 2002; 76:195-207. [PMID: 11739685 PMCID: PMC135686 DOI: 10.1128/jvi.76.1.195-207.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of most viral genes during productive infection by herpes simplex virus is regulated by the viral protein ICP4 (also called IE175 or Vmw175). The N-terminal portion of ICP4 contains well-defined transactivation, DNA binding, and dimerization domains that contribute to promoter regulation. The C-terminal half of ICP4 contributes to the activity of ICP4, but the functional motifs have not been well mapped. To localize functional motifs in the C-terminal half of ICP4, we have compared the relative specific activities of ICP4 variants in transient-transfection assays. Deletion of the C-terminal 56 residues reduces the specific activity more than 10-fold. Mutational analysis identified three consecutive residues (1252 to 1254) that are conserved in ICP4 orthologs and are essential for full activity, especially in the context of ICP4 variants with a deletion in the N-terminal transactivation domain. Recombinant viruses that encode variants of ICP4 with mutations in the N-terminal transactivation domain and/or the extreme C terminus were constructed. The phenotypes of these recombinant viruses support the hypothesis that efficient promoter activation by ICP4 requires motifs at both the N and C termini. The data suggest that the C terminus of ICP4 functions not as an independent transactivation domain but as an enhancer of the ICP4 N-terminal transactivation domain. The data provide further support for the hypothesis that some ICP4 motifs required for promoter activation are not required for promoter repression and suggest that ICP4 utilizes different cellular factors for activation or repression of viral promoters.
Collapse
Affiliation(s)
- James W Bruce
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
3
|
Xiao W, Pizer LI, Wilcox KW. Identification of a promoter-specific transactivation domain in the herpes simplex virus regulatory protein ICP4. J Virol 1997; 71:1757-65. [PMID: 9032304 PMCID: PMC191244 DOI: 10.1128/jvi.71.3.1757-1765.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
ICP4 is expressed during the immediate-early phase of infection by herpes simplex virus (HSV) and activates transcription of viral genes during subsequent phases of productive infection. Several members of the alpha-herpesvirus family encode regulatory proteins that have extensive homology with ICP4 and exhibit a transactivation domain (TAD) at the N terminus. The portions of ICP4 required for nuclear localization, DNA binding, and dimerization have been defined, but a domain that is specifically required for transactivation has not been identified. We have defined a promoter-specific ICP4 TAD by analysis of the activity of GAL4-ICP4 fusion proteins cotransfected into HeLa cells with a luciferase reporter gene linked to a promoter with five GAL4 binding sites. The transactivation activity of GAL4-ICP4 hybrids is located entirely within the first 139 residues of ICP4 and is significantly less potent than the activity of GAL4-TAD hybrids derived from ICP4 homologs. ICP4 residues 97 to 109 are a critical component of this N-terminal TAD. Transient transfection assays performed with nonfusion forms of ICP4 and luciferase genes linked to the HSV glycoprotein D (gD) or thymidine kinase (tk) promoter revealed that ICP4 residues 97 to 109 are required for induction of the gD promoter but are not required for induction of the tk promoter. Comparative experiments with ICP4 homologs revealed that the pseudorabies virus TAD is a potent activator of the gD promoter and a weak activator of the tk promoter. Complementation assays revealed that loss of ICP4 residues 97 to 109 reduced the yield of virus from infected cells nearly 500-fold compared to wild-type ICP4. We conclude that ICP4 residues 97 to 109 are a core component of a promoter-specific transactivation domain that is required for efficient replication of herpes simplex virus.
Collapse
Affiliation(s)
- W Xiao
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | |
Collapse
|
4
|
Gallinari P, Wiebauer K, Nardi MC, Jiricny J. Localization of a 34-amino-acid segment implicated in dimerization of the herpes simplex virus type 1 ICP4 polypeptide by a dimerization trap. J Virol 1994; 68:3809-20. [PMID: 8189519 PMCID: PMC236886 DOI: 10.1128/jvi.68.6.3809-3820.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The herpes simplex virus type 1 immediate-early protein ICP4 plays an essential role in the regulation of the expression of all viral genes. It is the major trans activator of early and late genes and also has a negative regulatory effect on immediate-early gene transcription. ICP4 is a sequence-specific DNA-binding protein and has always been purified in a dimeric form. The part of the protein that consists of the entire highly conserved region 2 and of the distal portion of region 1 retains the ability to specifically associate with DNA and to form homodimers in solution. In an attempt to map the dimerization domain of ICP4, we used a dimerization trap assay, in which we screened deletion fragments of this 217-amino-acid stretch for sequences that could confer dimerization properties on a heterologous cellular transcription factor (LFB1), which binds to its cognate DNA sequence only as a dimer. The analysis of these chimeric proteins expressed in vitro ultimately identified a stretch of 34 amino acids (343 to 376) that could still confer DNA-binding activity on the LFB1 reporter protein and thus apparently contained the ICP4 dimerization motif. Consistent with this result, a truncated ICP4 protein containing amino acids 343 to 490, in spite of the complete loss of DNA-binding activity, appeared to retain the capacity to form a heterodimer with a longer ICP4 peptide after coexpression in an in vitro translation system.
Collapse
Affiliation(s)
- P Gallinari
- Istituto di Richerche di Biologia Molecolare P. Angeletti, Pomezia, Italy
| | | | | | | |
Collapse
|
5
|
Tyler JK, Everett RD. The DNA binding domains of the varicella-zoster virus gene 62 and herpes simplex virus type 1 ICP4 transactivator proteins heterodimerize and bind to DNA. Nucleic Acids Res 1994; 22:711-21. [PMID: 8139909 PMCID: PMC307873 DOI: 10.1093/nar/22.5.711] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The product of varicella-zoster virus gene 62 (VZV 140k) is the functional counterpart of the major transcriptional regulatory protein of herpes simplex virus type 1 (HSV-1), ICP4. We have found that the purified bacterially expressed DNA binding domain of VZV 140k (residues 417-647) is a stable dimer in solution. As demonstrated by the appearance of a novel protein--DNA complex of intermediate mobility in gel retardation assays, following in vitro co-translation of a pair of differently sized VZV 140k DNA binding domain peptides, the 140k DNA binding domain peptide binds to DNA as a dimer. In addition, the DNA binding domain peptide of HSV-1 ICP4 readily heterodimerizes with the VZV 140k peptide on co-translation, indicating that HSV-1 ICP4 and VZV 140k possess very similar dimerization interfaces. It appears that only one fully wild type subunit of the dimer is sufficient to mediate sequence specific DNA recognition in certain circumstances. Co-immunoprecipitation analysis of mutant DNA binding domain peptides, co-translated with an epitope-tagged ICP4 DNA binding domain, shows that the sequence requirements for dimerization are lower than those necessary for DNA binding.
Collapse
|
6
|
Tyler JK, Allen KE, Everett RD. Mutation of a single lysine residue severely impairs the DNA recognition and regulatory functions of the VZV gene 62 transactivator protein. Nucleic Acids Res 1994; 22:270-8. [PMID: 7907417 PMCID: PMC523576 DOI: 10.1093/nar/22.3.270] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The product of varicella-zoster virus gene 62 (VZV 140k) is a potent transactivator protein. We have identified a region within the DNA binding domain of VZV 140k that shows a striking similarity to the DNA recognition helix of the homeodomain, with an especially highly conserved quartet of residues, WLQN. The 140k protein has functional counterparts within the other alphaherpesviruses, which include the major transcriptional regulatory protein of HSV-1, (ICP4), and the WLQN region is highly conserved among the members of this family of viral transactivators. Substitution of VZV 140k residue lysine 548, just adjacent to the WLQN region, drastically reduces the DNA binding activity of the 140k DNA binding domain and the intact 140k mutant protein fails to activate gene expression. Substitutions of two other VZV 140k residues in this conserved WLQN region result in alterations to the DNA binding interaction and reduced transactivation activities. All three mutations act at the level of DNA recognition, as they have no apparent effect on the dimerization state, solubility or efficiency of expression of the mutant peptides.
Collapse
|
7
|
Watt F, Molloy PL. Specific cleavage of transcription factors by the thiol protease, m-calpain. Nucleic Acids Res 1993; 21:5092-100. [PMID: 8255762 PMCID: PMC310622 DOI: 10.1093/nar/21.22.5092] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The intracellular nonlysosomal calcium-dependent cysteine protease, m-calpain, is shown to specifically cleave the bHLHzip transcription factor USF leaving the binding and dimerisation domains intact. The resultant protein is capable of efficient DNA binding but is no longer able to activate transcription. A surprisingly high proportion of other transcription factors tested, AP1 (c-Fos/c-Jun), Pit-1, Oct-1, CP1a and b, c-Myc, ATF/CREB, AP2 and AP3 but not Sp1, were similarly cleaved by m-calpain to produce specific partial digestion products. These properties make m-calpain a particularly useful protease for proteolytic studies of transcription factors and also raise the possibility that m-calpain may be involved in vivo in regulation of turnover or transcriptional activity of a number of transcription factors.
Collapse
Affiliation(s)
- F Watt
- CSIRO Division of Biomolecular Engineering, Sydney Laboratory, North Ryde, NSW, Australia
| | | |
Collapse
|
8
|
Tyler JK, Everett RD. The DNA binding domain of the varicella-zoster virus gene 62 protein interacts with multiple sequences which are similar to the binding site of the related protein of herpes simplex virus type 1. Nucleic Acids Res 1993; 21:513-22. [PMID: 8382799 PMCID: PMC309147 DOI: 10.1093/nar/21.3.513] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Varicella-zoster virus gene 62 encodes a protein with predicted Mr of 140,000D (VZV 140k) that shares extensive predicted amino acid sequence homology with the major immediate early (IE) transcriptional regulator protein of herpes simplex virus type 1 (HSV-1) Vmw175. The integrity of highly conserved region 2 is essential for the DNA binding and transcriptional regulatory functions of Vmw175. Similarly, an insertion mutation in region 2 (codons 468-641) of 140k eliminates the transcriptional repression and activation functions of this protein. We have expressed a fragment of 140k which encompasses region 2 as a non-fusion polypeptide in bacteria. This 140k DNA binding domain peptide (codons 417-646) binds to numerous DNA sequences throughout the VZV gene 62 promoter region. It induces multiple regions of protection from DNase I digestion, flanked by sites of DNase I hypersensitivity. Several of the sites recognized can be considered to be divergent forms of the consensus sequence which is recognized by Vmw175. However, by use of a panel of mutagenized probe fragments, we found that the 140k DNA binding domain was less sequence-specific than Vmw175 in its interactions with DNA. Consistent with this, the homologous Vmw175 DNA binding domain, and also intact Vmw175, recognize the gene 62 binding sites much less efficiently than the 140k DNA binding domain. Also in contrast to the situation with Vmw175, the 140k DNA binding domain failed to induce DNA bending when occupying the binding sites in its own promoter. Deletion analysis has mapped the minimal DNA binding domain of the VZV 140k protein, as measured in gel retardation analysis, to lie within residues 472 to 633. The differences in binding characteristics of the DNA binding domains of the homologous VZV 140k and HSV-1 Vmw175 IE proteins may account for the subtle differences in their regulatory activities in transfection assays and during virus growth in tissue culture.
Collapse
|
9
|
Smiley JR, Johnson DC, Pizer LI, Everett RD. The ICP4 binding sites in the herpes simplex virus type 1 glycoprotein D (gD) promoter are not essential for efficient gD transcription during virus infection. J Virol 1992; 66:623-31. [PMID: 1309905 PMCID: PMC240760 DOI: 10.1128/jvi.66.2.623-631.1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activation of the early and late genes of herpes simplex virus type 1 during infection in tissue culture requires functional immediate-early regulatory protein ICP4. ICP4 is a specific DNA-binding protein which recognizes a variety of DNA sequences, many of which contain the consensus ATCGTC. In general, mutations which impair the ability of ICP4 to bind to DNA also eliminate its ability to activate viral early and late promoters both in transfection assays and in the infected cell. However, the role of ICP4 binding sites in the viral genome is unclear; many early and late promoters do not contain consensus binding sites in their vicinity. The glycoprotein D (gD) gene contains two well-characterized ICP4 binding sites upstream of its promoter and a third downstream of the transcription start site. Multimerization of one of these sites has been shown to increase the response of the gD promoter to ICP4 in transfection assays, while their removal reduces stimulation of the gD promoter by ICP4 in vitro. To assess the role of these binding sites during virus infection, we have constructed a recombinant viral genome which has mutations affecting all three. Comparison of the amounts of gD RNA synthesized by the recombinant and wild-type viruses indicated that the mutations had little or no effect on the activity of the gD promoter. Therefore, either the sites have no essential role in gD promoter regulation in the presence of all of the herpes simplex virus type 1 IE polypeptides during a normal infection or they can be functionally substituted by other ICP4 binding sites elsewhere in the genome.
Collapse
Affiliation(s)
- J R Smiley
- Molecular Virology and Immunology Program, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Everett RD, Elliott M, Hope G, Orr A. Purification of the DNA binding domain of herpes simplex virus type 1 immediate-early protein Vmw175 as a homodimer and extensive mutagenesis of its DNA recognition site. Nucleic Acids Res 1991; 19:4901-8. [PMID: 1656382 PMCID: PMC328787 DOI: 10.1093/nar/19.18.4901] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) Immediate-Early (IE) polypeptide Vmw175 is essential for the activation of transcription from viral early and late promoters. Vmw175 also reduces the activity of its own (IE-3) promoter in transfection assays. Both transactivation and repression mediated by Vmw175 require the integrity of a conserved domain of the polypeptide which has been shown to bind to specific DNA sequences. We have investigated the DNA sequence requirements for Vmw175 binding using a randomly mutated target. The results indicate that the binding site covers a region of 13 nucleotides divided into proximal and distal parts which are consistent with the consensus ATCGTNNNNNYSG. We have also expressed several different constructs encompassing the DNA binding domain of Vmw175 in bacteria, and obtained preparations of greater than 90% purity. The DNA binding domain is a dimer in solution, and binds DNA with a specificity similar to that of the intact protein, although the smallest DNA binding competent protein has a slightly reduced specificity.
Collapse
Affiliation(s)
- R D Everett
- Medical Research Council Virology Unit, Glasgow, UK
| | | | | | | |
Collapse
|
11
|
Pizer LI, Everett RD, Tedder DG, Elliott M, Litman B. Nucleotides within both proximal and distal parts of the consensus sequence are important for specific DNA recognition by the herpes simplex virus regulatory protein ICP4. Nucleic Acids Res 1991; 19:477-83. [PMID: 1849261 PMCID: PMC333636 DOI: 10.1093/nar/19.3.477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The herpes simplex virus type 1 regulatory protein ICP4 is a sequence specific DNA binding protein which associates with a number of different sites, some of which include the consensus ATCGTCnnnnYCGRC. In order to investigate the involvement in DNA binding of conserved bases within the consensus, we have synthesised a family of mutant oligonucleotides and tested their ability to form a complex with ICP4. We have also compared the binding specificities of bacterially expressed fragments of ICP4 which include the DNA binding domain. Mutation of most (but not all) bases in the proximal part of the consensus greatly reduced binding by ICP4, as did a mutation affecting the distal part. Most (but not all) G residues identified in methylation interference assays were required for efficient binding. While a bacterially expressed ICP4 peptide encompassing amino acid residues 252-523 bound to DNA with a specificity similar to that of the whole protein, a shorter protein (residues 275-523) had a slightly relaxed DNA binding specificity.
Collapse
Affiliation(s)
- L I Pizer
- Department of Microbiology/Immunology, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | | | |
Collapse
|