1
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
2
|
Kistemaker HAV, Overkleeft HS, van der Marel GA, Filippov DV. Branching of poly(ADP-ribose): Synthesis of the Core Motif. Org Lett 2015; 17:4328-31. [PMID: 26307949 DOI: 10.1021/acs.orglett.5b02143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of the core motif of branched poly(adenosine diphosphate ribose) (poly(ADPr)) is described, and structural analysis reasserted the proposed stereochemistry for branching. For the synthesis, a ribose trisaccharide was first constructed with only α-O-glycosidic linkages. Finally, the adenine nucleobase was introduced via a Vorbrüggen-type glycosylation reaction. The orthogonality of the selected protecting groups was demonstrated, allowing for the construction of branched poly(ADPr) oligomers in the near future.
Collapse
Affiliation(s)
- Hans A V Kistemaker
- Leiden Institute of Chemistry, Leiden University , P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University , P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University , P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University , P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
3
|
Sylla B, Gauthier C, Legault J, Fleury PY, Lavoie S, Mshvildadze V, Muzashvili T, Kemertelidze E, Pichette A. Isolation of a new disaccharide nucleoside from Helleborus caucasicus: structure elucidation and total synthesis of hellecaucaside A and its β-anomer. Carbohydr Res 2014; 398:80-9. [DOI: 10.1016/j.carres.2014.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
|
4
|
Esberg A, Moqtaderi Z, Fan X, Lu J, Struhl K, Byström A. Iwr1 protein is important for preinitiation complex formation by all three nuclear RNA polymerases in Saccharomyces cerevisiae. PLoS One 2011; 6:e20829. [PMID: 21695216 PMCID: PMC3112208 DOI: 10.1371/journal.pone.0020829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 05/09/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Iwr1, a protein conserved throughout eukaryotes, was originally identified by its physical interaction with RNA polymerase (Pol) II. PRINCIPAL FINDINGS Here, we identify Iwr1 in a genetic screen designed to uncover proteins involved in Pol III transcription in S. cerevisiae. Iwr1 is important for Pol III transcription, because an iwr1 mutant strain shows reduced association of TBP and Pol III at Pol III promoters, a decreased rate of Pol III transcription, and lower steady-state levels of Pol III transcripts. Interestingly, an iwr1 mutant strain also displays reduced association of TBP to Pol I-transcribed genes and of both TBP and Pol II to Pol II-transcribed promoters. Despite this, rRNA and mRNA levels are virtually unaffected, suggesting a post-transcriptional mechanism compensating for the occupancy defect. CONCLUSIONS Thus, Iwr1 plays an important role in preinitiation complex formation by all three nuclear RNA polymerases.
Collapse
Affiliation(s)
- Anders Esberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaochun Fan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jian Lu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (AB); (KS)
| | - Anders Byström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail: (AB); (KS)
| |
Collapse
|
5
|
Pearson D, Hienzsch A, Wagner M, Globisch D, Reiter V, Özden D, Carell T. LC-MS based quantification of 2'-ribosylated nucleosides Ar(p) and Gr(p) in tRNA. Chem Commun (Camb) 2011; 47:5196-8. [PMID: 21448475 DOI: 10.1039/c1cc11011j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RNA nucleosides are often naturally modified into complex non-canonical structures with key biological functions. Here we report LC-MS quantification of the Ar(p) and Gr(p) 2'-ribosylated nucleosides in tRNA using deuterium labelled standards, and the first detection of Gr(p) in complex fungi.
Collapse
Affiliation(s)
- David Pearson
- Center for Integrated Protein Science (CiPSM) at the Department of Chemistry, LMU Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Efimtseva EV, Kulikova IV, Mikhailov SN. Disaccharide nucleosides as an important group of natural compounds. Mol Biol 2009. [DOI: 10.1134/s0026893309020125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gritsenko OM, Gromova ES. Dialdehyde-containing nucleic acids and their components: synthesis, properties and affinity modification of proteins. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1999v068n03abeh000489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Mikhailov SN, Efimtseva EV, Rodionov AA, Shelkunova AA, Rozenski J, Emmerechts G, Schepers G, Van Aerschot A, Herdewijn P. Synthesis of RNA containing O-beta-D-ribofuranosyl-(1''-2')-adenosine-5''-phosphate and 1-methyladenosine, minor components of tRNA. Chem Biodivers 2007; 2:1153-63. [PMID: 17193197 DOI: 10.1002/cbdv.200590085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
tRNA is best known for its function as amino acid carrier in the translation process, using the anticodon loop in the recognition process with mRNA. However, the impact of tRNA on cell function is much wider, and mutations in tRNA can lead to a broad range of diseases. Although the cloverleaf structure of tRNA is well-known based on X-ray-diffraction studies, little is known about the dynamics of this fold, the way structural dynamics of tRNA is influenced by the modified nucleotides present in tRNA, and their influence on the recognition of tRNA by synthetases, ribosomes, and other biomolecules. One of the reasons for this is the lack of good synthetic methods to incorporate modified nucleotides in tRNA so that larger amounts become available for NMR studies. Except of 2'-O-methylated nucleosides, only one other sugar-modified nucleoside is present in tRNA, i.e., 2'-O-beta-D-ribofuranosyl nucleosides. The T loop of tRNA often contains charged modified nucleosides, of which 1-methyladenosine and phosphorylated disaccharide nucleosides are striking examples. A protecting-group strategy was developed to introduce 1-methyladenosine and 5''-O-phosphorylated 2'-O-(beta-D-ribofuranosyl)-beta-D-ribofuranosyladenine in the same RNA fragment. The phosphorylation of the disaccharide nucleoside was performed after the assembly of the RNA on solid support. The modified RNA was characterized by mass-spectrometry analysis from the RNase T1 digestion fragments. The successful synthesis of this T loop of the tRNA of Schizosaccharomyces pombe initiator tRNA(Met) will be followed by its structural analysis by NMR and by studies on the influence of these modified nucleotides on dynamic interactions within the complete tRNA.
Collapse
Affiliation(s)
- Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Transfer RNA modifications and modifying enzymes in Saccharomyces cerevisiae. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b105814] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Bednarek P, Winter J, Hamberger B, Oldham NJ, Schneider B, Tan J, Hahlbrock K. Induction of 3'-O-beta-D-ribofuranosyl adenosine during compatible, but not during incompatible, interactions of Arabidopsis thaliana or Lycopersicon esculentum with Pseudomonas syringae pathovar tomato. PLANTA 2004; 218:668-672. [PMID: 14685856 DOI: 10.1007/s00425-003-1146-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 09/30/2003] [Indexed: 05/24/2023]
Abstract
All hitherto identified aromatic compounds accumulating in leaves of Arabidopsis thaliana (L.) Heynh. upon infection with virulent or avirulent strains of Pseudomonas syringae pathovar tomato ( Pst) were indolic metabolites. We now report the strong accumulation of a novel type of natural product, 3'-O-beta-D-ribofuranosyl adenosine (3'RA), exclusively during compatible interactions. In contrast to the various indolic metabolites, 3'RA was undetectable in incompatible interactions of A. thaliana leaves with an avirulent Pst strain, as well as in uninfected control leaves. A similar, strong induction of 3'RA was observed in compatible but, again, not in incompatible interactions of Pst with its natural host, Lycopersicon esculentum. The strength of the effect and its confinement to compatible interactions suggests that it may be applicable as a diagnostic tool.
Collapse
Affiliation(s)
- Paweł Bednarek
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Rodionov AA, Efimtseva EV, Mikhailov SN, Rozenski J, Luyten I, Herdewijn P. Synthesis and properties of O-beta-D-ribofuranosyl-(1"-2')-adenosine-5"-O-phosphate and its derivatives. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:1847-59. [PMID: 11200278 DOI: 10.1080/15257770008045465] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The synthesis of O-beta-D-ribofuranosyl-(1"-2')-adenosine-5"-O-phosphate and its suitably protected derivative for oligonucleotide synthesis have been developed.
Collapse
Affiliation(s)
- A A Rodionov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | | | | | | | | | |
Collapse
|
12
|
Ermolinsky BS, Mikhailov SN. Periodate oxidation in chemistry of nucleic acids: Dialdehyde derivatives of nucleosides, nucleotides, and oligonucleotides (Review). RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2000. [DOI: 10.1007/bf02758613] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Rodionov AA, Efimtseva EV, Mikhailov SN. Synthesis ofO-β-D-Ribofuranosyl-(1″-2′)-adenosine-5″-O-phosphate. ACTA ACUST UNITED AC 1999. [DOI: 10.1080/15257779908041519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Mikhailov SN, Rodionov AA, Efimtseva EV, Ermolinsky BS, Fomitcheva MV, Padyukova NS, Rothenbacher K, Lescrinier E, Herdewijn P. Formation of Trisaccharide Nucleosides During Disaccharide Nucleoside Synthesis. European J Org Chem 1998. [DOI: 10.1002/(sici)1099-0690(199810)1998:10<2193::aid-ejoc2193>3.0.co;2-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Morin A, Auxilien S, Senger B, Tewari R, Grosjean H. Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes. RNA (NEW YORK, N.Y.) 1998; 4:24-37. [PMID: 9436905 PMCID: PMC1369593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have investigated the specificity of the eukaryotic enzymatic machinery that transforms adenosine at position 37 (3' adjacent to anticodon) of several tRNAs into threonylcarbamoyladenosine (t6A37). To this end, 28 variants of yeast initiator tRNAMet and yeast tRNAVal, devoid of modified nucleotide, were produced by in vitro transcription with T7 polymerase of the corresponding synthetic tRNA genes and microinjected into the cytoplasm of Xenopus laevis oocytes. Threonylcarbamoyl incorporation was analyzed in tRNA transcripts mutated in the anticodon loop by substitution, deletion, or Insertion of nucleotides, or in the overall 3D structure of the tRNA by altering critical tertiary interactions. Specifically, we tested the effects of altering ribonucleotides in the anticodon loop, changes of the loop size, perturbations of the overall tRNA 3D structure due to mutations disruptive of the tertiary base pairs, and truncated tRNAs. The results indicate that, in addition to the targeted A37, only U36 was absolutely required. However, A38 in the anticodon loop considerably facilitates the quantitative conversion of A37 into t6A37 catalyzed by the enzymes present in X. laevis. The anticodon positions 34 and 35 were absolutely "neutral" and can accept any of the four canonical nucleotides A, U, C, or G. The anticodon loop size may vary from six to eight nucleotides, and the anticodon stem may have one mismatch pair of the type AxC or GxU at location 30-40 without affecting the efficiency of t6A37 formation and still t6A37 is efficiently formed. Although threonylcarbamoylation of A37 occurred with tRNA having limited perturbations of 3D structure, the overall L-shaped architecture of the tRNA substrate was required for efficient enzymatic conversion of A37 to t6A37. These results favor the idea that unique enzymatic machinery located in the oocyte cytoplasm catalyzes the formation of t6A37 in all U36A37-containing tRNAs (anticodon NNU). Microinjection of the yeast tRNAMeti into the cytoplasm of X. laevis oocytes also revealed the enzymatic activities for several other nucleotide modifications, respectively m1Gg, m2G10, m(2)2G26, m7G46, D47, m5C48/49, and m1A58.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/chemistry
- Adenosine/metabolism
- Animals
- Base Composition
- Base Sequence
- Cytoplasm
- Databases, Factual
- Female
- Microinjections
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Oocytes/physiology
- RNA, Fungal/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Uridine/chemistry
- Uridine/metabolism
- Xenopus laevis/genetics
Collapse
Affiliation(s)
- A Morin
- Laboratoire d'Enzymologie et Biochimie Structurales, C.N.R.S., Gifsur-Yvette, France.
| | | | | | | | | |
Collapse
|
16
|
Mikhailov SN, De Clercq E, Herdewijn P. Ribosylation of Pyrimidine 2′-Deoxynucleosides. ACTA ACUST UNITED AC 1996. [DOI: 10.1080/07328319608002433] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Abstract
Genetic elements coding for proteins that present amino acid identity with the conserved motifs of retroviral reverse transcriptases constitute the retroid family. With the exception of reverse transcriptases encoded by mitochondrial plasmids of Neurospora, all reverse transcriptases have an absolute requirement for a primer to initiate DNA synthesis. In retroviruses, plant pararetroviruses, and retrotransposons (transposons containing long terminal repeats), DNA synthesis is primed by specific tRNAs. All these retroelements contain a primer binding site presenting a Watson-Crick complementarity with the primer tRNA. The tRNAs most widely used as primers are tRNA(Trp), tRNA(Pro), tRNA(1,2Lys), tRNA(3Lys), tRNA(iMet). Other tRNAs such as tRNA(Gln), tRNA(Leu), tRNA(Ser), tRNA(Asn) and tRNA(Arg) are also occasionally used as primers. In the retroviruses and plant pararetroviruses, the primer binding site is complementary to the 3' end of the primer tRNA. In the case of retrotransposons, the primer binding site is either complementary to the 3' end or to an internal region of the primer tRNA. Additional interactions taking place between the primer tRNA and the retro-RNA outside of the primer binding site have been evidenced in the case of Rous sarcoma virus, human immunodeficiency virus type I, and yeast retrotransposon Ty1. A selective encapsidation of the primer tRNA, probably promoted by interactions with reverse transcriptase, occurs during the formation of virus or virus-like particles. Annealing of the primer tRNA to the primer binding site appears to be mediated by reverse transcriptase and/or the nucleocapsid protein. Modified nucleosides of the primer tRNA have been shown to be important for replication of the primer binding site, encapsidation of the primer (in the case of Rous sarcoma virus), and interaction with the genomic RNA (in the case of human immunodeficiency virus type I).
Collapse
Affiliation(s)
- R Marquet
- UPR no 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
18
|
Kierzek R. The Stability of Trisubstituted Internucleotide Bond in the Presence of the Vicinal 2′-Hydroxyl. Chemical Synthesis of Uridyl(2′-phosphate)-(3′-5′)-uridine. ACTA ACUST UNITED AC 1994. [DOI: 10.1080/15257779408009478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Abstract
A comprehensive listing is made of posttranscriptionally modified nucleosides from RNA reported in the literature through mid-1994. Included are chemical structures, common names, symbols, Chemical Abstracts registry numbers (for ribonucleoside and corresponding base), Chemical Abstracts Index Name, phylogenetic sources, and initial literature citations for structural characterization or occurrence, and for chemical synthesis. The listing is categorized by type of RNA: tRNA, rRNA, mRNA, snRNA, and other RNAs. A total of 93 different modified nucleosides have been reported in RNA, with the largest number and greatest structural diversity in tRNA, 79; and 28 in rRNA, 12 in mRNA, 11 in snRNA and 3 in other small RNAs.
Collapse
Affiliation(s)
- P A Limbach
- Department of Medicinal Chemistry, University of Utah, Salt Lake City 84112
| | | | | |
Collapse
|
20
|
Förster C, Chakraburtty K, Sprinzl M. Discrimination between initiation and elongation of protein biosynthesis in yeast: identity assured by a nucleotide modification in the initiator tRNA. Nucleic Acids Res 1993; 21:5679-83. [PMID: 8284215 PMCID: PMC310535 DOI: 10.1093/nar/21.24.5679] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytoplasmic initiator tRNAs from plants and fungi possess an unique 2'-phosphoribosyl residue at position 64 of their sequence. In yeast tRNA(iMet), this modified nucleotide located in the T-stem of the tRNA is a 2'-1''-(beta-O-ribofuranosyl-5''-phosphoryl)-adenosine. The phosphoribosyl residue of this modified nucleoside was removed chemically by treatment involving periodate oxidation of tRNA(iMet) and regeneration of the 3'-terminal adenosine with ATP (CTP):tRNA nucleotidyl transferase. The role of phosphoribosylation at position 64 for interaction with elongation factor eEF-1 alpha and initiation factor 2 (eIF-2) was investigated in the homologous yeast system. Whereas the 5'-phosphoribosyl residue prevents the binding of Met-tRNA(iMet) to eEF-1 alpha, it does not influence the interaction with eIF-2. After removal of the ribosyl group, the demodified initiator tRNA showed binding to eEF-1 alpha, but no change was detected with respect to the interaction with the initiation factor eIF-2. This observation is interpreted to mean that a single modification of an eucaryotic initiator tRNA in yeast serves as a negative discriminant for eEF-1 alpha, thus preventing the initiator tRNA(iMet) from entering the elongation cycle of protein biosynthesis.
Collapse
Affiliation(s)
- C Förster
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | |
Collapse
|
21
|
Heitzler J, Maréchal-Drouard L, Dirheimer G, Keith G. Use of a dot blot hybridization method for identification of pure tRNA species on different membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1129:273-7. [PMID: 1536878 DOI: 10.1016/0167-4781(92)90503-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The characterization of a tRNA in purification procedures usually involves aminoacylation assays but recently, the hybridization by dot blot with specific oligonucleotides as probes has been used for the tRNA identification. We present here an optimization of a dot blot hybridization method for the tRNA detection by comparing the efficiency of eight different nylon membranes. Neutral 0.22 microns porosity membranes (Nytran, Biodine A) give the best detection efficiency when small quantities of material (less than 40 ng of tRNA) are dotted on filter; by contrast, neutral 0.45 microns porosity membranes (such as Hybond N) are the most efficient when larger quantities of tRNA are dotted on the filter. The described technique allows to detect less than 20 pg of a pure tRNA species. Its use in the identification of Saccharomyces cerevisiae initiator tRNA(Met) in counter-current distribution fractions is shown.
Collapse
Affiliation(s)
- J Heitzler
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
22
|
Glasser AL, Desgres J, Heitzler J, Gehrke CW, Keith G. O-ribosyl-phosphate purine as a constant modified nucleotide located at position 64 in cytoplasmic initiator tRNAs(Met) of yeasts. Nucleic Acids Res 1991; 19:5199-203. [PMID: 1656390 PMCID: PMC328876 DOI: 10.1093/nar/19.19.5199] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The unknown modified nucleotide G*, isolated from both Schizosaccharomyces pombe and Torulopsis utilis initiator tRNAs(Met), has been identified as an O-ribosyl-(1"----2')-guanosine-5"-phosphate, called Gr(p), by means of HPLC, UV-absorption, mass spectrometry and periodate oxidation procedures. By comparison with the previously published structure of Ar(p) isolated from Saccharomyces cerevisiae initiator tRNA(Met), the (1"----2')-glycosidic bond in Gr(p) has been postulated to have a beta-spatial conformation. The modified nucleotide Gr(p) is located at position 64 in the tRNA(Met) molecules, i.e. at the same position as Ar(p). Since we have also characterized Gr(p) in Candida albicans initiator tRNA(Met), the phosphoribosylation of purine 64 can be considered as a constant nucleotide modification in the cytoplasmic initiator tRNAs(Met) of all yeast species so far sequenced. Precise evidence for the presence of Gr(p) in initiator tRNAs(Met) of several plants is also reported.
Collapse
Affiliation(s)
- A L Glasser
- Laboratoire de Biochimie Médicale, Faculté de Médecine, Université de Bourgogne, Dijon, France
| | | | | | | | | |
Collapse
|