1
|
Rattaprasert P, Suntornthiticharoen P, Limudomporn P, Thima K, Chavalitshewinkoon-Petmitr P. Inhibitory effects of anthracyclines on partially purified 5'-3' DNA helicase of Plasmodium falciparum. Malar J 2022; 21:216. [PMID: 35821133 PMCID: PMC9275250 DOI: 10.1186/s12936-022-04238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Plasmodium falciparum has been becoming resistant to the currently used anti-malarial drugs. Searching for new drug targets is urgently needed for anti-malarial development. DNA helicases separating double-stranded DNA into single-stranded DNA intermediates are essential in nearly all DNA metabolic transactions, thus they may act as a candidate for new drug targets against malarial parasites. Methods In this study, a P. falciparum 5′ to 3′ DNA helicase (PfDH-B) was partially purified from the crude extract of chloroquine- and pyrimethamine-resistant P. falciparum strain K1, by ammonium sulfate precipitation and three chromatographic procedures. DNA helicase activity of partially purified PfDH-B was examined by measuring its ability to unwind 32P-labelled partial duplex DNA. The directionality of PfDH-B was determined, and substrate preference was tested by using various substrates. Inhibitory effects of DNA intercalators such as anthracycline antibiotics on PfDH-B unwinding activity and parasite growth were investigated. Results The native PfDH-B was partially purified with a specific activity of 4150 units/mg. The PfDH-B could unwind M13-17-mer, M13-31-mer with hanging tail at 3′ or 5′ end and a linear substrate with 3′ end hanging tail but not blunt-ended duplex DNA, and did not need a fork-like substrate. Anthracyclines including aclarubicin, daunorubicin, doxorubicin, and nogalamycin inhibited the unwinding activity of PfDH-B with an IC50 value of 4.0, 7.5, 3.6, and 3.1 µM, respectively. Nogalamycin was the most effective inhibitor on PfDH-B unwinding activity and parasite growth (IC50 = 0.1 ± 0.002 µM). Conclusion Partial purification and characterization of 5′–3′ DNA helicase of P. falciparum was successfully performed. The partially purified PfDH-B does not need a fork-like substrate structure found in P. falciparum 3′ to 5′ DNA helicase (PfDH-A). Interestingly, nogalamycin was the most potent anthracycline inhibitor for PfDH-B helicase activity and parasite growth in culture. Further studies are needed to search for more potent but less cytotoxic inhibitors targeting P. falciparum DNA helicase in the future.
Collapse
Affiliation(s)
- Pongruj Rattaprasert
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok, 10400, Thailand
| | | | - Paviga Limudomporn
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Kanthinich Thima
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok, 10400, Thailand
| | | |
Collapse
|
2
|
Liu Y, Zhu X, Wang K, Zhang B, Qiu S. The Cellular Functions and Molecular Mechanisms of G-Quadruplex Unwinding Helicases in Humans. Front Mol Biosci 2021; 8:783889. [PMID: 34912850 PMCID: PMC8667583 DOI: 10.3389/fmolb.2021.783889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/19/2023] Open
Abstract
G-quadruplexes (G4s) are stable non-canonical secondary structures formed by G-rich DNA or RNA sequences. They play various regulatory roles in many biological processes. It is commonly agreed that G4 unwinding helicases play key roles in G4 metabolism and function, and these processes are closely related to physiological and pathological processes. In recent years, more and more functional and mechanistic details of G4 helicases have been discovered; therefore, it is necessary to carefully sort out the current research efforts. Here, we provide a systematic summary of G4 unwinding helicases from the perspective of functions and molecular mechanisms. First, we provide a general introduction about helicases and G4s. Next, we comprehensively summarize G4 unfolding helicases in humans and their proposed cellular functions. Then, we review their study methods and molecular mechanisms. Finally, we share our perspective on further prospects. We believe this review will provide opportunities for researchers to reach the frontiers in the functions and molecular mechanisms of human G4 unwinding helicases.
Collapse
Affiliation(s)
- Yang Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xinting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Kejia Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Shuyi Qiu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
4
|
Induction of Apoptosis in Metastatic Breast Cancer Cells: XV. Downregulation of DNA Polymerase-α - Helicase Complex (Replisomes) and Glyco-Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:199-221. [PMID: 30637700 DOI: 10.1007/978-981-13-3065-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In normal and cancer cells, successful cell division requires accurate duplication of chromosomal DNA. All cells require a multiprotein DNA duplication system (replisomes) for their existence. However, death of normal cells in our body occurs through the apoptotic process. During apoptotic process several crucial genes are downregulated with the upregulation of caspase pathways, leading to ultimate degradation of genomic DNA. In metastatic cancer cells (SKBR-3, MCF -7, and MDA-462), this process is inhibited to achieve immortality as well as overexpression of the enzymes for the synthesis of marker molecules. It is believed that the GSL of the lacto family such as LeX, SA-LeX, LeY, Lea, and Leb are markers on the human colon and breast cancer cells. Recently, we have characterized that a few apoptotic chemicals (cis-platin, L-PPMP, D-PDMP, GD3 ganglioside, GD1b ganglioside, betulinic acid, tamoxifen, and melphalan) in low doses kill metastatic breast cancer cells. The apoptosis-inducing agent (e.g., cis-platin) showed inhibition of DNA polymerase/helicase (part of the replisomes) and also modulated (positively) a few glycolipid-glycosyltransferase (GSL-GLTs) transcriptions in the early stages (within 2 h after treatment) of apoptosis. These Lc-family GSLs are also present on the surfaces of human breast and colon carcinoma cells. It is advantageous to deliver these apoptotic chemicals through the metastatic cell surfaces containing high concentration of marker glycolipids (Lc-GSLs). Targeted application of apoptotic chemicals (in micro scale) to kill the cancer cells would be an ideal way to inhibit the metastatic growth of both breast and colon cancer cells. It was observed in three different breast cancer lines (SKBR-3, MDA-468, and MCF-7) that in 2 h very little apoptotic process had started, but predominant biochemical changes (including inactivation of replisomes) started between 6 and 24 h of the drug treatments. The contents of replisomes (replisomal complexes) during induction of apoptosis are not known. It is known that DNA helicase activities (major proteins catalyze the melting of dsDNA strands) change during apoptotic induction process. Previously DNA Helicase-III was characterized as a component of the replication complexes isolated from carcinoma cells and normal rapid growing embryonic chicken brain cells. Helicase activities were assayed by a novel method (combined immunoprecipitation-ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of nicked "ACT-DNA," by determining values obtained from +/- aphidicolin added to the incubation mixtures. Very little is known about the stability of the "replication complexes" (or replisomes) during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during replication, repair, and recombination processes. In all three breast carcinoma cell lines (SKBR-3, MCF-7, and MDA-468), a common trend, decrease of activities of DNA polymerase-alpha and Helicase-III (estimated and detected with a polyclonal antibody), was observed, after cis-platin- and L-PPMP-induced apoptosis. Previously our laboratory has documented downregulation (within 24-48 h) of several GSL-GLTs with these apoptotic reagents in breast and colon cancer cells also. Perhaps induced apoptosis would improve the prognosis in metastatic breast and colon cancer patients.
Collapse
|
5
|
Ahmad M, Tuteja R. Emerging importance of mismatch repair components including UvrD helicase and their cross-talk with the development of drug resistance in malaria parasite. Mutat Res 2014; 770:54-60. [PMID: 25771870 DOI: 10.1016/j.mrfmmm.2014.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/14/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
Human malaria is an important parasitic infection responsible for a significant number of deaths worldwide, particularly in tropical and subtropical regions. The recent scenario has worsened mainly because of the emergence of drug-resistant malaria parasites having the potential to spread across the world. Drug-resistant parasites possess a defective mismatch repair (MMR); therefore, it is essential to explore its mechanism in detail to determine the underlying cause. Recently, artemisinin-resistant parasites have been reported to exhibit nonsynonymous single nucleotide polymorphisms in genes involved in MMR pathways such as MutL homolog (MLH) and UvrD. Plasmodium falciparum MLH is an endonuclease required to restore the defective MMR in drug-resistant W2 strain of P. falciparum. Although the role of helicases in eukaryotic MMR has been questioned, the identification and characterization of the UvrD helicase and their cross-talk with MLH in P. falciparum suggests the possible involvement of UvrD in MMR. A comparative genome-wide analysis revealed the presence of the UvrD helicase in Plasmodium species, while it is absent in human host. Therefore, PfUvrD may emerge as a suitable drug target to control malaria. This review study is focused on recent developments in MMR biochemistry, emerging importance of the UvrD helicase, possibility of its involvement in MMR and the emerging cross-talk between MMR components and drug resistance in malaria parasite.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
6
|
Ahmad M, Tuteja R. Plasmodium falciparum RuvB2 translocates in 5′–3′ direction, relocalizes during schizont stage and its enzymatic activities are up regulated by RuvB3 of the same complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2795-811. [DOI: 10.1016/j.bbapap.2013.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/27/2022]
|
7
|
Wang CW, Chen WC, Lin LJ, Lee CT, Tseng TH, Leu WM. OIP30, a RuvB-Like DNA Helicase 2, is a Potential Substrate for the Pollen-Predominant OsCPK25/26 in Rice. ACTA ACUST UNITED AC 2011; 52:1641-56. [DOI: 10.1093/pcp/pcr094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Ishimi Y, Sugiyama T, Nakaya R, Kanamori M, Kohno T, Enomoto T, Chino M. Effect of heliquinomycin on the activity of human minichromosome maintenance 4/6/7 helicase. FEBS J 2009; 276:3382-91. [PMID: 19438708 DOI: 10.1111/j.1742-4658.2009.07064.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The antibiotic heliquinomycin, which inhibits cellular DNA replication at a half-maximal inhibitory concentration (IC(50)) of 1.4-4 microM, was found to inhibit the DNA helicase activity of the human minichromosome maintenance (MCM) 4/6/7 complex at an IC(50) value of 2.4 microM. In contrast, 14 microM heliquinomycin did not inhibit significantly either the DNA helicase activity of the SV40 T antigen and Werner protein or the oligonucleotide displacement activity of human replication protein A. At IC(50) values of 25 and 6.5 microM, heliquinomycin inhibited the RNA priming and DNA polymerization activities, respectively, of human DNA polymerase-alpha/primase. Thus, of the enzymes studied, the MCM4/6/7 complex was the most sensitive to heliquinomycin; this suggests that MCM helicase is one of the main targets of heliquinomycin in vivo. It was observed that heliquinomycin did not inhibit the ATPase activity of the MCM4/6/7 complex to a great extent in the absence of single-stranded DNA. In contrast, heliquinomycin at an IC(50) value of 5.2 microM inhibited the ATPase activity of the MCM4/6/7 complex in the presence of single-stranded DNA. This suggests that heliquinomycin interferes with the interaction of the MCM4/6/7 complex with single-stranded DNA.
Collapse
|
9
|
Abstract
Helicases are one of the smallest motors of biological system, which harness the chemical free energy of ATP hydrolysis to catalyze the opening of energetically stable duplex nucleic acids and thereby are involved in almost all aspect of nucleic acid metabolism including replication, repair, recombination, transcription, translation, and ribosome biogenesis. Basically, they break the hydrogen bonding between the duplex helix and translocate unidirectionally along the bound strand. Mostly all the helicases contain some conserved signature motifs, which act as an engine to power the unwinding. After the discovery of the first prokaryotic DNA helicase from Escherichia coli bacteria in 1976 and the first eukaryotic one from the lily plant in 1978, many more (>100) have been isolated. All the helicases share some common properties, including nucleic acid binding, NTP hydrolysis and unwinding of the duplex. Many helicases have been crystallized and their structures have revealed an underlying common structural fold for their function. The defects in helicases gene have also been reported to be responsible for variety of human genetic disorders, which can lead to cancer, premature aging or mental retardation. Recently, a new role of a helicase in abiotic stress signaling in plant has been discovered. Overall, helicases act as essential molecular tools for cellular machinery and help in maintaining the integrity of genome. Here an overview of helicases has been covered which includes history, biochemical assay, properties, classification, role in human disease and mechanism of unwinding and translocation.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
10
|
Suntornthiticharoen P, Petmitr S, Chavalitshewinkoon-Petmitr P. Purification and characterization of a novel 3′-5′ DNA helicase fromPlasmodium falciparumand its sensitivity to anthracycline antibiotics. Parasitology 2006; 133:389-98. [PMID: 16772048 DOI: 10.1017/s0031182006000527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/14/2006] [Accepted: 04/17/2006] [Indexed: 11/06/2022]
Abstract
Plasmodium falciparumhas developed resistance to most anti-malarials; therefore, an investigation of potential targets should be performed. DNA helicases are enzymes that catalyse the unwinding of double-stranded DNA to provide single-stranded templates for DNA replication, repair and recombination. In this study, a DNA helicase (PfDH A) was purified from a crude extract ofPlasmodium falciparum. DNA helicase activity was measured by assaying unwinding activity. The apparent molecular weight of PfDH A as determined by SDS-PAGE was 90 kDa. PfDH A moved unidirectionally in the 3′ -to- 5′ direction along the bound strand and preferred a fork-like substrate structure and could not unwind blunt-ended duplex DNA. Unwinding activity required Mg2+and could be inhibited by 200 mMNaCl or KCl and was dependent on hydrolysis of ATP or dATP. Anthracyclines, including daunorubicin, nogalamycin, doxorubicin, and aclarubicin, inhibited PfDH A activity with IC50values of 2, 5, 8 and 9 μM, respectively. Based on the results, PfDH A differs from all known human DNA helicases. However, its function and roles in parasite DNA replication need to be elucidated in the future.
Collapse
Affiliation(s)
- P Suntornthiticharoen
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Bangkok 10400, Thailand
| | | | | |
Collapse
|
11
|
Vashisht AA, Tuteja N. Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 84:150-60. [PMID: 16624568 DOI: 10.1016/j.jphotobiol.2006.02.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Abiotic stresses including various environmental factors adversely affect plant growth and limit agricultural production worldwide. Minimizing these losses is a major area of concern for all countries. Therefore, it is desirable to develop multi-stress tolerant varieties. Salinity, drought, and cold are among the major environmental stresses that greatly influence the growth, development, survival, and yield of plants. UV-B radiation of sunlight, which damages the cellular genomes, is another growth-retarding factor. Several genes are induced under the influence of various abiotic stresses. Among these are DNA repair genes, which are induced in response to the DNA damage. Since the stresses affect the cellular gene expression machinery, it is possible that molecules involved in nucleic acid metabolism including helicases are likely to be affected. The light-driven shifts in redox-potential can also initiate the helicase gene expression. Helicases are ubiquitous enzymes that catalyse the unwinding of energetically stable duplex DNA (DNA helicases) or duplex RNA secondary structures (RNA helicases). Most helicases are members of DEAD-box protein superfamily and play essential roles in basic cellular processes such as DNA replication, repair, recombination, transcription, ribosome biogenesis and translation initiation. Therefore, helicases might be playing an important role in regulating plant growth and development under stress conditions by regulating some stress-induced pathways. There are now few reports on the up-regulation of DEAD-box helicases in response to abiotic stresses. Recently, salinity-stress tolerant tobacco plants have already been raised by overexpressing a helicase gene, which suggests a new pathway to engineer plant stress tolerance [N. Sanan-Mishra, X.H. Pham, S.K. Sopory, N. Tuteja, Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc. Natl. Acad. Sci. USA 102 (2005) 509-514]. Presently the exact mechanism of helicase-mediated stress tolerance is not understood. In this review we have described all the reported stress-induced helicases and also discussed the possible mechanisms by which they can provide stress tolerance.
Collapse
Affiliation(s)
- Ajay Amar Vashisht
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
12
|
Sibani S, Price GB, Zannis-Hadjopoulos M. Decreased origin usage and initiation of DNA replication in haploinsufficient HCT116 Ku80+/- cells. J Cell Sci 2005; 118:3247-61. [PMID: 16014376 DOI: 10.1242/jcs.02427] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the functions of the abundant heterodimeric nuclear protein, Ku (Ku70/Ku80), is its involvement in the initiation of DNA replication through its ability to bind to chromosomal replication origins in a sequence-specific and cell cycle dependent manner. Here, using HCT116 Ku80+/- cells, the effect of Ku80 deficiency on cell cycle progression and origin activation was examined. Western blot analyses revealed a 75% and 36% decrease in the nuclear expression of Ku80 and Ku70, respectively. This was concomitant with a 33% and 40% decrease in chromatin binding of both proteins, respectively. Cell cycle analysis of asynchronous and late G1 synchronized Ku80+/- cells revealed a prolonged G1 phase. Furthermore, these Ku-deficient cells had a 4.5-, 3.4- and 4.3-fold decrease in nascent strand DNA abundance at the lamin B2, beta-globin and c-myc replication origins, respectively. Chromatin immunoprecipitation (ChIP) assays showed that the association of Ku80 with the lamin B2, beta-globin and c-myc origins was decreased by 1.5-, 2.3- and 2.5-fold, respectively, whereas that of Ku70 was similarly decreased (by 2.1-, 1.5- and 1.7-fold, respectively) in Ku80+/- cells. The results indicate that a deficiency of Ku80 resulted in a prolonged G1 phase, as well as decreased Ku binding to and activation of origins of DNA replication.
Collapse
Affiliation(s)
- Sahar Sibani
- McGill Cancer Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
13
|
Tuteja N, Tuteja R. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. ACTA ACUST UNITED AC 2004; 271:1835-48. [PMID: 15128294 PMCID: PMC7164108 DOI: 10.1111/j.1432-1033.2004.04093.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA helicases are ubiquitous molecular motor proteins which harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of energetically stable duplex DNA, and thus play important roles in nearly all aspects of nucleic acid metabolism, including replication, repair, recombination, and transcription. They break the hydrogen bonds between the duplex helix and move unidirectionally along the bound strand. All helicases are also translocases and DNA‐dependent ATPases. Most contain conserved helicase motifs that act as an engine to power DNA unwinding. All DNA helicases share some common properties, including nucleic acid binding, NTP binding and hydrolysis, and unwinding of duplex DNA in the 3′ to 5′ or 5′ to 3′ direction. The minichromosome maintenance (Mcm) protein complex (Mcm4/6/7) provides a DNA‐unwinding function at the origin of replication in all eukaryotes and may act as a licensing factor for DNA replication. The RecQ family of helicases is highly conserved from bacteria to humans and is required for the maintenance of genome integrity. They have also been implicated in a variety of human genetic disorders. Since the discovery of the first DNA helicase in Escherichia coli in 1976, and the first eukaryotic one in the lily in 1978, a large number of these enzymes have been isolated from both prokaryotic and eukaryotic systems, and the number is still growing. In this review we cover the historical background of DNA helicases, helicase assays, biochemical properties, prokaryotic and eukaryotic DNA helicases including Mcm proteins and the RecQ family of helicases. The properties of most of the known DNA helicases from prokaryotic and eukaryotic systems, including viruses and bacteriophages, are summarized in tables.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | | |
Collapse
|
14
|
Cui S, Klima R, Ochem A, Arosio D, Falaschi A, Vindigni A. Characterization of the DNA-unwinding activity of human RECQ1, a helicase specifically stimulated by human replication protein A. J Biol Chem 2003; 278:1424-32. [PMID: 12419808 DOI: 10.1074/jbc.m209407200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RecQ helicases are involved in several aspects of DNA metabolism. Five members of the RecQ family have been found in humans, but only two of them have been carefully characterized, BLM and WRN. In this work, we describe the enzymatic characterization of RECQ1. The helicase has 3' to 5' polarity, cannot start the unwinding from a blunt-ended terminus, and needs a 3'-single-stranded DNA tail longer than 10 nucleotides to open the substrate. However, it was also able to unwind a blunt-ended duplex DNA with a "bubble" of 25 nucleotides in the middle, as previously observed for WRN and BLM. We show that only short DNA duplexes (<30 bp) can be unwound by RECQ1 alone, but the addition of human replication protein A (hRPA) increases the processivity of the enzyme (>100 bp). Our studies done with Escherichia coli single-strand binding protein (SSB) indicate that the helicase activity of RECQ1 is specifically stimulated by hRPA. This finding suggests that RECQ1 and hRPA may interact also in vivo and function together in DNA metabolism. Comparison of the present results with previous studies on WRN and BLM provides novel insight into the role of the N- and C-terminal domains of these helicases in determining their substrate specificity and in their interaction with hRPA.
Collapse
Affiliation(s)
- Sheng Cui
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Matheos D, Ruiz MT, Price GB, Zannis-Hadjopoulos M. Ku antigen, an origin-specific binding protein that associates with replication proteins, is required for mammalian DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:59-72. [PMID: 12393188 DOI: 10.1016/s0167-4781(02)00497-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ors binding activity (OBA) represents a HeLa cell protein activity that binds in a sequence-specific manner to A3/4, a 36-bp mammalian replication origin sequence. OBA's DNA binding domain is identical to the 80-kDa subunit of Ku antigen. Ku antigen associates with mammalian origins of DNA replication in vivo, with maximum binding at the G1/S phase. Addition of an A3/4 double-stranded oligonucleotide inhibited in vitro DNA replication of p186, pors12, and pX24, plasmids containing the monkey replication origins of ors8, ors12, and the Chinese hamster DHFR oribeta, respectively. In contrast, in vitro SV40 DNA replication remained unaffected. The inhibitory effect of A3/4 oligonucleotide was fully reversed upon addition of affinity-purified Ku. Furthermore, depletion of Ku by inclusion of an antibody recognizing the Ku heterodimer, Ku70/Ku80, decreased mammalian replication to basal levels. By co-immunoprecipitation analyses, Ku was found to interact with DNA polymerases alpha, delta and epsilon, PCNA, topoisomerase II, RF-C, RP-A, DNA-PKcs, ORC-2, and Oct-1. These interactions were not inhibited by the presence of ethidium bromide in the immunoprecipitation reaction, suggesting DNA-independent protein associations. The data suggest an involvement of Ku in mammalian DNA replication as an origin-specific-binding protein with DNA helicase activity. Ku acts at the initiation step of replication and requires an A3/4-homologous sequence for origin binding. The physical association of Ku with replication proteins reveals a possible mechanism by which Ku is recruited to mammalian origins.
Collapse
Affiliation(s)
- Diamanto Matheos
- McGill Cancer Centre, McGill University, 3655 Drummond Street, Promenade Sir William Osler, Montréal, Québec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
16
|
Novac O, Matheos D, Araujo FD, Price GB, Zannis-Hadjopoulos M. In vivo association of Ku with mammalian origins of DNA replication. Mol Biol Cell 2001; 12:3386-401. [PMID: 11694575 PMCID: PMC61172 DOI: 10.1091/mbc.12.11.3386] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ku is a heterodimeric (Ku70/86-kDa) nuclear protein with known functions in DNA repair, V(D)J recombination, and DNA replication. Here, the in vivo association of Ku with mammalian origins of DNA replication was analyzed by studying its association with ors8 and ors12, as assayed by formaldehyde cross-linking, followed by immunoprecipitation and quantitative polymerase chain reaction analysis. The association of Ku with ors8 and ors12 was also analyzed as a function of the cell cycle. This association was found to be approximately fivefold higher in cells synchronized at the G1/S border, in comparison with cells at G0, and it decreased by approximately twofold upon entry of the cells into S phase, and to near background levels in cells at G2/M phase. In addition, in vitro DNA replication experiments were performed with the use of extracts from Ku80(+/+) and Ku80(-/-) mouse embryonic fibroblasts. A decrease of approximately 70% in in vitro DNA replication was observed when the Ku80(-/-) extracts were used, compared with the Ku80(+/+) extracts. The results indicate a novel function for Ku as an origin binding-protein, which acts at the initiation step of DNA replication and dissociates after origin firing.
Collapse
Affiliation(s)
- O Novac
- McGill Cancer Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
17
|
Vindigni A, Ochem A, Triolo G, Falaschi A. Identification of human DNA helicase V with the far upstream element-binding protein. Nucleic Acids Res 2001; 29:1061-7. [PMID: 11222755 PMCID: PMC29729 DOI: 10.1093/nar/29.5.1061] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The properties of human DNA helicase V (HDH V) were studied in greater detail following an improved purification procedure. From 450 g of cultured cells, <0.1 mg of pure protein was isolated. HDH V unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand in an ATP- and Mg(2+)-dependent fashion. The enzyme is not processive and can also unwind partial RNA-RNA duplexes such as HDH IV and HDH VIII. The M:(r) determined by SDS-PAGE (66 kDa) corresponds to that measured under native conditions, suggesting that HDH V exists as a monomer in the nucleus. Microsequencing of the purified HDH V shows that this enzyme is identical to the far upstream element-binding protein (FBP), a protein that stimulates the activity of the c-myc gene by binding specifically to the 'FUSE' DNA region localized upstream of its promoter. The sequence of HDH V/FBP contains RGG motifs like HDH IV/nucleolin, HDH VIII/G3BP as well as other human RNA and DNA helicases identified by other laboratories.
Collapse
Affiliation(s)
- A Vindigni
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | |
Collapse
|
18
|
Tuteja N, Beven AF, Shaw PJ, Tuteja R. A pea homologue of human DNA helicase I is localized within the dense fibrillar component of the nucleolus and stimulated by phosphorylation with CK2 and cdc2 protein kinases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:9-17. [PMID: 11169178 DOI: 10.1111/j.1365-313x.2001.00918.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA helicases catalyse the transient opening of duplex DNA during nucleic acid transactions. Here we report the isolation of a second nuclear DNA helicase (65 kDa) from Pisum sativum (pea) designated pea DNA helicase 65 (PDH65). The enzyme was immunoaffinity purified using an antihuman DNA helicase I (HDH I) antibody column. The purified PDH65 showed ATP- and Mg(2+)-dependent DNA and RNA unwinding activities, as well as ssDNA-dependent ATPase activity. The direction of DNA unwinding was 3' to 5' along the bound strand. Antibodies against HDH I recognized the purified PDH65, and immunodepletion with these antibodies removed the DNA and RNA unwinding and ATPase activities from purified preparations of PDH65. The DNA and RNA unwinding activities were upregulated after phosphorylation of PDH65 with CK2 and cdc2 protein kinases. By incorporation of BrUTP into pea root tissue, followed by double immunofluorescence labelling and confocal microscopy, PDH65 was shown to be localized within the dense fibrillar component of pea root nucleoli in the regions around the rDNA transcription sites. These observations suggest that PDH65 may be involved both in rDNA transcription and in the early stages of pre-rRNA processing.
Collapse
Affiliation(s)
- N Tuteja
- International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 070, India.
| | | | | | | |
Collapse
|
19
|
Kanemaki M, Kurokawa Y, Matsu-ura T, Makino Y, Masani A, Okazaki K, Morishita T, Tamura TA. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem 1999; 274:22437-44. [PMID: 10428817 DOI: 10.1074/jbc.274.32.22437] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that TIP49a is a novel mammalian DNA helicase showing structural similarity with the bacterial recombination factor RuvB. In this study, we isolated a new TIP49a-related gene, termed TIP49b, from human and yeast cells. TIP49b also resembled RuvB, thus suggesting that TIP49a and TIP49b are included in a gene family. Like TIP49a, TIP49b was abundantly expressed in the testis and thymus. Enzyme assays revealed that TIP49b was an single-stranded DNA-stimulated ATPase and ATP-dependent DNA helicase. Most of the enzymatic properties of TIP49b were the same as those of TIP49a, whereas the polarity of TIP49b DNA helicase activity (5' to 3') was the opposite to that of TIP49a. TIP49b and TIP49a bound to each other and were included in the same complex of approximately 700 kDa in a cell. We found that TIP49b was an essential gene for the growth of Saccharomyces cerevisiae, as is the TIP49a gene, suggesting that TIP49b does not complement the TIP49a function and vice versa. From these observations, we suggest that TIP49b plays an essential role in the cellular processes involved in DNA metabolism.
Collapse
Affiliation(s)
- M Kanemaki
- Department of Biology, Faculty of Science, Chiba University, CREST Japan Science and Technology Corp., 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Costa M, Ochem A, Staub A, Falaschi A. Human DNA helicase VIII: a DNA and RNA helicase corresponding to the G3BP protein, an element of the ras transduction pathway. Nucleic Acids Res 1999; 27:817-21. [PMID: 9889278 PMCID: PMC148252 DOI: 10.1093/nar/27.3.817] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human DNA helicase VIII (HDH VIII) was isolated in the course of a systematic study of the DNA unwinding enzymes present in human cells. From a HeLa cell nuclear extract a protein with an Mrof 68 kDa in SDS-PAGE was isolated, characterised and micro-sequenced. The enzyme shows ATP- and Mg2+-dependent activity is not stimulated by RPA, prefers partially unwound 3'-tailed substrates and moves along the bound strand in the 5' to 3' direction. HDH VIII can also unwind partial RNA/DNA and RNA/RNA duplexes. Microsequencing of the polypeptide showed that this enzyme corresponds to G3BP, an element of the Ras pathway which binds specifically to the GTPase-activating protein. HDH VIII/G3BP is analogous to the heterogeneous nuclear ribonucleoproteins and contains a sequence rich in RGG boxes similar to the C-terminal domain of HDH IV/nucleolin, another DNA and RNA helicase.
Collapse
Affiliation(s)
- M Costa
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy. 163-67404,Illkirch cedex-C. U. de Strasbourg
| | | | | | | |
Collapse
|
21
|
Tuteja N, Phan TN. A chloroplast DNA helicase II from pea that prefers fork-like replication structures. PLANT PHYSIOLOGY 1998; 118:1029-1038. [PMID: 9808748 PMCID: PMC34776 DOI: 10.1104/pp.118.3.1029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/1998] [Accepted: 07/30/1998] [Indexed: 05/22/2023]
Abstract
A DNA helicase, called chloroplast DNA (ctDNA) helicase II, was purified to apparent homogeneity from pea (Pisum sativum). The enzyme contained intrinsic, single-stranded, DNA-dependent ATPase activity and an apparent molecular mass of 78 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The DNA helicase was markedly stimulated by DNA substrates with fork-like replication structures. A 5'-tailed fork was more active than the 3'-tailed fork, which itself was more active than substrates without a fork. The direction of unwinding was 3' to 5' along the bound strand, and it failed to unwind blunt-ended duplex DNA. DNA helicase activity required only ATP or dATP hydrolysis. The enzyme also required a divalent cation (Mg2+>Mn2+>Ca2+) for its unwinding activity and was inhibited at 200 mM KCl or NaCl. This enzyme could be involved in the replication of ctDNA. The DNA major groove-intercalating ligands nogalamycin and daunorubicin were inhibitory to unwinding (Ki approximately 0.85 &mgr;M and 2.2 &mgr;M, respectively) and ATPase (Ki approximately 1.3 &mgr;M and 3.0 &mgr;M, respectively) activities of pea ctDNA helicase II, whereas ellipticine, etoposide (VP-16), and camptothecin had no effect on the enzyme activity. These ligands may be useful in further studies of the mechanisms of chloroplast helicase activities.
Collapse
Affiliation(s)
- N Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | | |
Collapse
|
22
|
Lee C, Seo YS. Isolation and characterization of a processive DNA helicase from the fission yeast Schizosaccharomyces pombe that translocates in a 5'-to-3' direction. Biochem J 1998; 334 ( Pt 2):377-86. [PMID: 9716495 PMCID: PMC1219699 DOI: 10.1042/bj3340377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report here the isolation and characterization of a novel DNA helicase from extracts of the fission yeast Schizosaccharomyces pombe. The enzyme, called DNA helicase II, also contains an intrinsic DNA-dependent ATPase activity. Both the helicase and ATPase activities co-purified with a 63 kDa polypeptide on an SDS/polyacrylamide gel. The protein has a sedimentation coefficient of 4.8 S and a Stokes radius of 36 A (3.6 nm); from these data the native molecular mass was calculated to be 65 kDa. The enzyme translocates in a 5'-to-3' direction with respect to the substrate strand to which it is bound. Unwinding reactions carried out in the presence of increasing enzyme showed a sigmoidal curve, suggesting either co-operative interactions between monomers or multimerization of DNA helicase II in the presence of single-stranded DNA and/or ATP. This enzyme favoured adenosine nucleotides (ATP and dATP) as its energy source, but utilized to limited extents GTP, CTP, dGTP and dCTP. Non-hydrolysable ATP analogues did not support helicase activity. Kinetic analyses showed that the unwinding reaction was rapid, being complete after 50-100 s of incubation. Addition of unlabelled substrates to the helicase reaction after preincubation of the enzyme with substrate did not significantly diminish unwinding. The ATPase activity of DNA helicase II increased proportionally with increasing lengths of single-stranded DNA cofactor. In the presence of circular DNA, ATP hydrolysis continued to increase up to the longest time tested (3 h), whereas it ceased to increase after 5-10 min in the presence of shorter oligonucleotides. The initial rate of ATP hydrolysis during the first 5 min of incubation time was not affected by DNA species used. These data indicate that the enzyme does not dissociate from the single-stranded DNA once it is bound and is therefore highly processive.
Collapse
Affiliation(s)
- C Lee
- Nucleic Acid Biochemistry Laboratory, Basic Research Center, Samsung Biomedical Research Institute, 50 Ilwon-Dong, Kangnam-Ku, Seoul, 135-230, Korea
| | | |
Collapse
|
23
|
|
24
|
Park JS, Choi E, Lee SH, Lee C, Seo YS. A DNA helicase from Schizosaccharomyces pombe stimulated by single-stranded DNA-binding protein at low ATP concentration. J Biol Chem 1997; 272:18910-9. [PMID: 9228070 DOI: 10.1074/jbc.272.30.18910] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A DNA helicase named DNA helicase I was isolated from cell-free extracts of the fission yeast Schizosaccharomyces pombe. Both DNA helicase and single-stranded DNA-dependent ATPase activities copurified with a polypeptide of 95 kDa on an SDS-polyacrylamide gel. The helicase possessed a sedimentation coefficient of 6.0 S and a Stokes radius of 44.8 A determined by glycerol gradient centrifugation and gel filtration analysis, respectively. From these data the native molecular mass was calculated to be 110 kDa, indicating that the active enzyme is a monomer. The DNA-unwinding and ATP hydrolysis activities associated with DNA helicase I have been examined. One notable property of the enzyme was its relatively high rate of ATP turnover (35-50 molecules of ATP hydrolyzed/s/enzyme molecule) that may contribute to its inefficient unwinding activity at low concentrations of ATP (<0.2 mM). Addition of an ATP-regenerating system to the reaction mixture restored the DNA-unwinding activity of the enzyme. S. pombe single-stranded DNA-binding protein (SpSSB, also called SpRPA) stimulated the DNA helicase activity significantly at low levels of ATP (0.025-0.2 mM) even in the absence of an ATP-regenerating system. In contrast, SpRPA had no effect on ATP hydrolysis at any ATP concentration examined. These observations suggest that the stimulation of DNA unwinding by SpRPA is not simply a result of suppression of nonproductive ATP hydrolysis. Rather, the role of SpRPA is to lower the Km for ATP in the unwinding reaction, allowing the helicase to function efficiently at low ATP concentrations.
Collapse
Affiliation(s)
- J S Park
- Basic Research Center, Nucleic Acid Biochemistry, Samsung Biomedical Research Institute, 50 Ilwon-Dong, Kangnam-Ku, Seoul 135-230, Korea
| | | | | | | | | |
Collapse
|
25
|
Tuteja N, Phan TN, Tewari KK. Purification and characterization of a DNA helicase from pea chloroplast that translocates in the 3'-to-5' direction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:54-63. [PMID: 8665952 DOI: 10.1111/j.1432-1033.1996.0054q.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An ATP-dependent DNA helicase has been purified to near homogeneity from pea chloroplasts. The enzyme is a homodimer of 68-kDa subunits. The purified enzyme shows DNA-dependent ATPase activity and is devoid of DNA polymerase, DNA topoisomerase, DNA ligase or nuclease activities. The enzyme requires Mg2+ or Mn2+ for its maximum activity. ATP is the most favoured cofactor for this enzyme while other NTP or dNTP are poorly utilized. Pea chloroplast DNA helicase can unwind a 17-bp duplex whether it has unpaired single-stranded tails at both the 5' end and 3' end, at the 5' end or at the 3' end only, or at neither end. However, it fails to act on a blunt-ended 17-bp duplex DNA. The enzyme moves unidirectionally from 3' to 5' along the bound strand. The unwinding activity is inhibited by the intercalating drugs nogalamycin and daunorubicine.
Collapse
Affiliation(s)
- N Tuteja
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | |
Collapse
|
26
|
|
27
|
Tuteja N, Huang NW, Skopac D, Tuteja R, Hrvatic S, Zhang J, Pongor S, Joseph G, Faucher C, Amalric F. Human DNA helicase IV is nucleolin, an RNA helicase modulated by phosphorylation. Gene 1995; 160:143-8. [PMID: 7642087 DOI: 10.1016/0378-1119(95)00207-m] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cDNA encoding human DNA helicase IV (HDH IV), a 100-kDa protein which unwinds DNA in the 5' to 3' direction with respect to the bound strand, was cloned and sequenced. It was found to be identical to the human cDNA encoding nucleolin, a ubiquitous eukaryotic protein essential for pre-ribosome assembly. HDH IV/nucleolin can unwind RNA-RNA duplexes, as well as DNA-DNA and DNA-RNA duplexes. Phosphorylation of HDH IV/nucleolin by cdc2 kinase and casein kinase II enhanced its unwinding activity in an additive way. The Gly-rich C-terminal domain possesses a limited ATP-dependent duplex-unwinding activity which contributes to the helicase activity of HDH IV/nucleolin.
Collapse
Affiliation(s)
- N Tuteja
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tuteja N, Ochem A, Taneja P, Tuteja R, Skopác D, Falaschi A. Purification and properties of human DNA helicase VI. Nucleic Acids Res 1995; 23:2457-63. [PMID: 7543199 PMCID: PMC307051 DOI: 10.1093/nar/23.13.2457] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A novel ATP-dependent DNA unwinding enzyme, called human DNA helicase VI (HDH VI), was purified to apparent homogeneity from HeLa cells and characterized. From 327 g of cultured cells, 0.44 mg of pure enzyme was recovered, free of DNA polymerase, ligase, topoisomerase, nicking and nuclease activities. The enzyme behaves as a monomer having an M(r) of 128 kDa, whether determined with SDS-PAGE, or in native conditions. Photoaffinity labelling with [alpha-32P]ATP labelled the 128 kDa protein. Only ATP or dATP hydrolysis supports the unwinding activity for which a divalent cation (Mg2+ > Mn2+) is required. HDH VI unwinds exclusively DNA duplexes with an annealed portion < 32 bp and prefers a replication fork-like structure of the substrate. It cannot unwind blunt-end duplexes and is inactive also on DNA-RNA or RNA-RNA hybrids. HDH VI unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand.
Collapse
Affiliation(s)
- N Tuteja
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Cloning and characterization of RECQL, a potential human homologue of the Escherichia coli DNA helicase RecQ. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43957-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Georgaki A, Tuteja N, Sturzenegger B, Hübscher U. Calf thymus DNA helicase F, a replication protein A copurifying enzyme. Nucleic Acids Res 1994; 22:1128-34. [PMID: 8165124 PMCID: PMC523632 DOI: 10.1093/nar/22.7.1128] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A DNA helicase from calf thymus, called DNA helicase F, copurified with replication protein A through several steps of purification including DEAE-Sephacel, hydroxyapatite and single stranded DNA cellulose. It is finally separated from replication protein A on FPLC Mono Q where the DNA helicase elutes after replication protein A. Characterization of the DNA helicase F by affinity labeling with [alpha 32P]ATP indicated that the enzyme has a catalytic subunit of 72 kDa. Gel filtration experiments suggested that DNA helicase F can exist both in a monomeric and an oligomeric form. The enzyme unwinds DNA in the 5'-->3' direction in relation to the strand it binds. All eight deoxyribonucleoside- and ribonucleosidetriphosphates could serve as an energy source. Testing a variety of DNA/DNA substrates demonstrated that the DNA helicase F preferentially unwinds very short substrates and is slightly stimulated by a single stranded 3'-tail. However, replication protein A allowed the DNA helicase to unwind much longer DNA substrates of up to 400 bases, indicating that the copurification of replication protein A with the DNA helicase F might be of functional relevance.
Collapse
Affiliation(s)
- A Georgaki
- Department of Veterinary Biochemistry, University of Zürich-Irchel, Switzerland
| | | | | | | |
Collapse
|
31
|
|
32
|
Tuteja N, Rahman K, Tuteja R, Falaschi A. Human DNA helicase V, a novel DNA unwinding enzyme from HeLa cells. Nucleic Acids Res 1993; 21:2323-9. [PMID: 8389437 PMCID: PMC309527 DOI: 10.1093/nar/21.10.2323] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Using a strand-displacement assay with 32P labeled oligonucleotide annealed to M13 ssDNA we have purified to apparent homogeneity and characterized a novel DNA unwinding enzyme from HeLa cell nuclei, human DNA helicase V (HDH V). This is present in extremely low abundance in the cells and has the highest turnover rate among other human helicases. From 300 grams of cultured cells only 0.012 mg of pure protein was isolated which was free of DNA topoisomerase, ligase, nicking and nuclease activities. The enzyme also shows ATPase activity dependent on single-stranded DNA and has an apparent molecular weight of 92 kDa by SDS-polyacrylamide gel electrophoresis. Only ATP or dATP hydrolysis supports the unwinding activity. The helicase requires a divalent cation (Mg2+ > Mn2+) at an optimum concentration of 1.0 mM for activity; it unwinds DNA duplexes less than 25 bp long and having a ssDNA stretch as short as 49 nucleotides. A replication fork-like structure is not required to perform DNA unwinding. HDH V cannot unwind either blunt-ended duplex DNA or DNA-RNA hybrids; it unwinds DNA unidirectionally by moving in the 3' to 5' direction along the bound strand, a polarity similar to the previously described human DNA helicases I and III (Tuteja et al. Nucleic Acids Res. 18, 6785-6792, 1990; Tuteja et al. Nucleic Acid Res. 20, 5329-5337, 1992) and opposite to that of human DNA helicase IV (Tuteja et al. Nucleic Acid Res. 19, 3613-3618, 1991).
Collapse
Affiliation(s)
- N Tuteja
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | |
Collapse
|
33
|
Shimizu K, Sugino A. Purification and characterization of DNA helicase III from the yeast Saccharomyces cerevisiae. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98390-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Turchi JJ, Murante RS, Bambara RA. DNA substrate specificity of DNA helicase E from calf thymus. Nucleic Acids Res 1992; 20:6075-80. [PMID: 1334262 PMCID: PMC334475 DOI: 10.1093/nar/20.22.6075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DNA helicase E from calf thymus has been characterized with respect to DNA substrate specificity. The helicase was capable of displacing DNA fragments up to 140 nucleotides in length, but was unable to displace a DNA fragment 322 nucleotides in length. DNA competition experiments revealed that helicase E was moderately processive for translocation on single strand M13mp18 DNA, and that the helicase would dissociate and rebind during a 15 minute reaction. Comparison of the rate of ATPase activity catalyzed by helicase E on single strand DNA substrates of different lengths, suggested a processivity consistent with the competition experiments. The helicase displayed a preference for displacing primers whose 5' terminus was fully annealed as opposed to primers with a 12 nucleotide 5' unannealed tail. The presence of a 12 nucleotide 3' tail had no effect on the rate of displacement. DNA helicase E was capable of displacing a primer downstream of either a four nucleotide gap, a one nucleotide gap or a nick in the DNA substrate. Helicase E was inactive on a fully duplex DNA 30 base pairs in length. Calf thymus RP-A stimulated the DNA displacement activity of helicase E. These properties are consistent with a role for DNA helicase E in chromosomal DNA repair.
Collapse
Affiliation(s)
- J J Turchi
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, NY 14642
| | | | | |
Collapse
|
35
|
Hughes M, Jiricny J. The purification of a human mismatch-binding protein and identification of its associated ATPase and helicase activities. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35918-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
36
|
Tuteja N, Rahman K, Tuteja R, Ochem A, Skopac D, Falaschi A. DNA helicase III from HeLa cells: an enzyme that acts preferentially on partially unwound DNA duplexes. Nucleic Acids Res 1992; 20:5329-37. [PMID: 1331986 PMCID: PMC334338 DOI: 10.1093/nar/20.20.5329] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human DNA helicase III, a novel DNA unwinding enzyme, has been purified to apparent homogeneity from nuclear extracts of HeLa cells and characterized. The activity was measured by using a strand displacement assay with a 32P labeled oligonucleotide annealed to M13 ssDNA. From 305 grams of cultured cells 0.26 mg of pure protein was isolated which was free of DNA topoisomerase, ligase, nicking and nuclease activities. The apparent molecular weight is 46 kDa on SDS polyacrylamide gel electrophoresis. The enzyme shows also DNA dependent ATPase activity and moves unidirectionally along the bound strand in 3' to 5' direction. It prefers ATP to dATP as a cofactor and requires a divalent cation (Mg2+ > Mn2+). Helicase III cannot unwind either blunt-ended duplex DNA or DNA-RNA hybrids and requires more than 84 bases of ssDNA in order to exert its unwinding activity. This enzyme is unique among human helicases as it requires a fork-like structure on the substrate for maximum activity, contrary to the previously described human DNA helicases I and IV, (Tuteja et al. Nucleic Acids Res. 18, 6785-6792, 1990; Tuteja et al. Nucleic Acids Res. 19, 3613-3618, 1991).
Collapse
Affiliation(s)
- N Tuteja
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In spite of the fact that a DNA helicase is clearly required for the predominantly leading-strand synthesis occurring during mammalian mtDNA replication, no such activity has heretofore been identified. We report the characterization of a mammalian mitochondrial DNA helicase isolated from bovine brain tissue. The sucrose gradient-purified mitochondria in which the activity was detected had less than 1 part in 2500 nuclear contamination according to Western blot analysis using nuclear- and mitochondrial-specific probes. Mitochondrial protein fractionation by DEAE-Sephacel chromatography yielded a DNA helicase activity dependent upon hydrolysis of ATP or dATP but not other NTPs or dNTPs. The mitochondrial helicase unwound 15- and 20-base oligonucleotides but was unable to unwind 32-base or longer oligonucleotides, and the polarity of the unwinding is 3'-to-5' with respect to the single-stranded portion of the partial duplex DNA substrate. This direction of unwinding would place the bovine mitochondrial helicase on the template strand ahead of DNA polymerase gamma during mtDNA replication, a situation analogous to that of the Rep helicase of Escherichia coli during leading-strand DNA synthesis of certain bacteriophages.
Collapse
Affiliation(s)
- G L Hehman
- Department of Immunology, University of Florida, Gainesville 32610
| | | |
Collapse
|
38
|
Abstract
DNA in its double-stranded form is energetically favoured and therefore very stable. However, DNA is involved in metabolic events and thus has a continuous dynamic. Processes such as DNA replication, DNA repair, DNA recombination and transcription require that DNA occurs transiently in a single-stranded form. This status can be achieved by enzymes called DNA helicases. These enzymes have the power to melt the hydrogen bonds between the base pairs by using nucleoside 5'-triphosphate hydrolysis as an energy source. A variety of different DNA helicases have recently been identified from eukaryotic viruses and cells. We focus on the current knowledge of these DNA helicases and their possible function in DNA transactions.
Collapse
Affiliation(s)
- P Thömmes
- Department of Pharmacology and Biochemistry, University of Zurich-Irchel, Switzerland
| | | |
Collapse
|
39
|
|
40
|
Yanagisawa J, Seki M, Kohda T, Enomoto T, Ui M. DNA-dependent adenosinetriphosphatase C1 from mouse FM3A cells has DNA helicase activity. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50573-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Abstract
The past decade has witnessed an exciting evolution in our understanding of eukaryotic DNA replication at the molecular level. Progress has been particularly rapid within the last few years due to the convergence of research on a variety of cell types, from yeast to human, encompassing disciplines ranging from clinical immunology to the molecular biology of viruses. New eukaryotic DNA replicases and accessory proteins have been purified and characterized, and some have been cloned and sequenced. In vitro systems for the replication of viral DNA have been developed, allowing the identification and purification of several mammalian replication proteins. In this review we focus on DNA polymerases alpha and delta and the polymerase accessory proteins, their physical and functional properties, as well as their roles in eukaryotic DNA replication.
Collapse
Affiliation(s)
- A G So
- Department of Medicine, University of Miami, Florida
| | | |
Collapse
|
42
|
|
43
|
Abstract
Human DNA helicase IV, a novel enzyme, was purified to homogeneity from HeLa cells and characterized. The activity was measured by assaying the unwinding of 32P labeled 17-mer annealed to M13 ss DNA. From 440g of HeLa cells we obtained 0.31 mg of pure protein. Helicase IV was free of DNA topoisomerases, DNA ligase and nuclease activities. The apparent molecular weight is 100 kDa. It requires a divalent cation for activity (Mg2+ = Mn2+ = Zn2+) and the hydrolysis of only ATP or dATP. The activity is destroyed by trypsin and is inhibited by 200 mM KCl or NaCl, 100 mM potassium phosphate, 45 mM ammonium sulfate, 5 mM EDTA, 20 microM ss M13 DNA or 20 microM poly [G] (as phosphate). The enzyme unwinds DNA by moving in the 5' to 3' direction along the bound strand, a polarity opposite to that of the previously described human DNA helicase I (Tuteja et al Nucleic Acids Res. 18, 6785-6792, 1990). It requires more than 84 bases of single-stranded DNA in order to exert its unwinding activity and does not require a replication fork-like structure. Like human DNA helicase I the enzyme can also unwind RNA-DNA hybrid.
Collapse
Affiliation(s)
- N Tuteja
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | |
Collapse
|
44
|
Fielding C. Monoglyceride hydrolase activities of rat plasma and platelets. Their properties and roles in the activity of lipoprotein lipase. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)70060-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|