1
|
Yao P, Zhu B, Jaeger S, Eriani G, Wang ED. Recognition of tRNALeu by Aquifex aeolicus leucyl-tRNA synthetase during the aminoacylation and editing steps. Nucleic Acids Res 2008; 36:2728-38. [PMID: 18367476 PMCID: PMC2377443 DOI: 10.1093/nar/gkn028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recognition of tRNA by the cognate aminoacyl-tRNA synthetase during translation is crucial to ensure the correct expression of the genetic code. To understand tRNA(Leu) recognition sets and their evolution, the recognition of tRNA(Leu) by the leucyl-tRNA synthetase (LeuRS) from the primitive hyperthermophilic bacterium Aquifex aeolicus was studied by RNA probing and mutagenesis. The results show that the base A73; the core structure of tRNA formed by the tertiary interactions U8-A14, G18-U55 and G19-C56; and the orientation of the variable arm are critical elements for tRNA(Leu) aminoacylation. Although dispensable for aminoacylation, the anticodon arm carries discrete editing determinants that are required for stabilizing the conformation of the post-transfer editing state and for promoting translocation of the tRNA acceptor arm from the synthetic to the editing site.
Collapse
Affiliation(s)
- Peng Yao
- State Key Laboratory of Molecular Biology - Graduate School of the Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
2
|
Hsu JL, Martinis SA. A Flexible peptide tether controls accessibility of a unique C-terminal RNA-binding domain in leucyl-tRNA synthetases. J Mol Biol 2007; 376:482-91. [PMID: 18155724 DOI: 10.1016/j.jmb.2007.11.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 11/20/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
A unique C-terminal domain extension is required by most leucyl-tRNA synthetases (LeuRS) for aminoacylation. In one exception, the enzymatic activity of yeast mitochondrial LeuRS is actually impeded by its own C-terminal domain. It was proposed that the yeast mitochondrial LeuRS has compromised its aminoacylation activity to some extent and adapted its C terminus for a second role in RNA splicing, which is also essential. X-ray crystal structures of the LeuRS-tRNA complex show that the 60 residue C-terminal domain is tethered to the main body of the enzyme via a flexible peptide linker and allows interactions with the tRNA(Leu) elbow. We hypothesized that this short peptide linker would facilitate rigid body movement of the C-terminal domain as LeuRS transitions between an aminoacylation and editing complex or, in the case of yeast mitochondrial LeuRS, an RNA splicing complex. The roles of the C-terminal linker peptide for Escherichia coli and yeast mitochondrial LeuRS were investigated via deletion mutagenesis as well as by introducing chimeric swaps. Deletions within the C-terminal linker of E. coli LeuRS determined that its length, rather than its sequence, was critical to aminoacylation and editing activities. Although deletions in the yeast mitochondrial LeuRS peptide linker destabilized the protein in general, more stable chimeric enzymes that contained an E. coli LeuRS C-terminal domain showed that shortening its tether stimulated aminoacylation activity. This suggested that limiting C-terminal domain accessibility to tRNA(Leu) facilitates its role in protein synthesis and may be a unique adaptation of yeast mitochondrial LeuRS that accommodates its second function in RNA splicing.
Collapse
Affiliation(s)
- Jennifer L Hsu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 419 Roger Adams Laboratory, Box B-4, 600 S. Mathews Ave., Urbana, IL 61801-3732, USA
| | | |
Collapse
|
3
|
Sohm B, Sissler M, Park H, King MP, Florentz C. Recognition of human mitochondrial tRNALeu(UUR) by its cognate leucyl-tRNA synthetase. J Mol Biol 2004; 339:17-29. [PMID: 15123417 DOI: 10.1016/j.jmb.2004.03.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/19/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
Accuracy of protein synthesis depends on specific recognition and aminoacylation of tRNAs by their cognate aminoacyl-tRNA synthetases. Rules governing these processes have been established for numerous prokaryotic and eukaryotic cytoplasmic systems, but only limited information is available for human mitochondrial systems. It has been shown that the in vitro transcribed human mitochondrial tRNA(Leu(UUR)) does not fold into the expected cloverleaf, but is however aminoacylated by the human mitochondrial leucyl-tRNA synthetase. Here, the role of the structure of the amino acid acceptor branch and the anticodon branch of tRNA(Leu(UUR)) in recognition by leucyl-tRNA synthetase was investigated. The kinetic parameters for aminoacylation of wild-type and mutant tRNA(Leu(UUR)) transcripts and of native tRNA(Leu(UUR)) were determined. Solution structure probing was performed in the presence or in the absence of leucyl-tRNA synthetase and correlated with the aminoacylation kinetics for each tRNA. Replacement of mismatches in either the anticodon-stem or D-stem that are present in the wild-type tRNA(Leu(UUR)) by G-C base-pairs is sufficient to induce (i) cloverleaf folding, (ii) improved aminoacylation efficiency, and (iii) interactions with the synthetase that are similar to those with the native tRNA(Leu(UUR)). Leucyl-tRNA synthetase contacts tRNA(Leu(UUR)) in the amino acid acceptor stem, the anticodon stem, and the D-loop, which is unprecedented for a leucine aminoacylation system.
Collapse
Affiliation(s)
- Bénédicte Sohm
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
4
|
Xu MG, Zhao MW, Wang ED. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices. J Biol Chem 2004; 279:32151-8. [PMID: 15161932 DOI: 10.1074/jbc.m403018200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacylation of the minihelix mimicking the amino acid acceptor arm of tRNA has been demonstrated in more than 10 aminoacyl-tRNA synthetase systems. Although Escherichia coli or Homo sapiens cytoplasmic leucyl-tRNA synthetase (LeuRS) is unable to charge the cognate minihelix or microhelix, we show here that minihelix(Leu) is efficiently charged by Aquifex aeolicus synthetase, the only known heterodimeric LeuRS (alpha beta-LeuRS). Aminoacylation of minihelices is strongly dependent on the presence of the A73 identity nucleotide and greatly stimulated by destabilization of the first base pair as reported for the E. coli isoleucyl-tRNA synthetase and methionyl-tRNA synthetase systems. In the E. coli LeuRS system, the anticodon of tRNA(Leu) is not important for recognition by the synthetase. However, the addition of RNA helices that mimic the anticodon domain stimulates minihelix(Leu) charging by alpha beta-LeuRS, indicating possible domain-domain communication within alpha beta-LeuRS. The leucine-specific domain of alpha beta-LeuRS is responsible for minihelix recognition. To ensure accurate translation of the genetic code, LeuRS functions to hydrolyze misactivated amino acids (pretransfer editing) and misaminoacylated tRNA (posttransfer editing). In contrast to tRNA(Leu), minihelix(Leu) is unable to induce posttransfer editing even upon the addition of the anticodon domain of tRNA. Therefore, the context of tRNA is crucial for the editing of mischarged products. However, the minihelix(Leu) cannot be misaminoacylated, perhaps because of the tRNA-independent pretransfer editing activity of alpha beta-LeuRS.
Collapse
Affiliation(s)
- Min-Gang Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | |
Collapse
|
5
|
Larkin DC, Williams AM, Martinis SA, Fox GE. Identification of essential domains for Escherichia coli tRNA(leu) aminoacylation and amino acid editing using minimalist RNA molecules. Nucleic Acids Res 2002; 30:2103-13. [PMID: 12000830 PMCID: PMC115294 DOI: 10.1093/nar/30.10.2103] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli leucyl-tRNA synthetase (LeuRS) aminoacylates up to six different class II tRNA(leu) molecules. Each has a distinct anticodon and varied nucleotides in other regions of the tRNA. Attempts to construct a minihelix RNA that can be aminoacylated with leucine have been unsuccessful. Herein, we describe the smallest tRNA(leu) analog that has been aminoacylated to a significant extent to date. A series of tRNA(leu) analogs with various domains and combinations of domains deleted was constructed. The minimal RNA that was efficiently aminoacylated with LeuRS was one in which the anticodon stem-loop and variable arm stem-loop, but neither the D-arm nor T-arm, were deleted. Aminoacylation of this minimal RNA was abolished when the discriminator base A73 was replaced with C73 or when putative tertiary interactions between the D-loop and T-loop were disrupted, suggesting that these identity elements are still functioning in the minimized RNA. The various constructs that were significantly aminoacylated were also tested for amino acid editing by the synthetase. The anticodon and variable stem-loop domains were also dispensable for hydrolysis of the charged tRNA(leu) mimics. These results suggest that LeuRS may rely on identity elements in overlapping domains of the tRNA for both its aminoacylation and editing activities.
Collapse
Affiliation(s)
- Deana C Larkin
- Department of Biology and Biochemistry, 369 Science and Research Building II, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Transfer RNAs (tRNAs) are grouped into two classes based on the structure of their variable loop. In Escherichia coli, tRNAs from three isoaccepting groups are classified as type II. Leucine tRNAs comprise one such group. We used both in vivo and in vitro approaches to determine the nucleotides that are required for tRNA(Leu) function. In addition, to investigate the role of the tRNA fold, we compared the in vivo and in vitro characteristics of type I tRNA(Leu) variants with their type II counterparts.A minimum of six conserved tRNA(Leu) nucleotides were required to change the amino acid identity and recognition of a type II tRNA(Ser) amber suppressor from a serine to a leucine residue. Five of these nucleotides affect tRNA tertiary structure; the G15-C48 tertiary "Levitt base-pair" in tRNA(Ser) was changed to A15-U48; the number of nucleotides in the alpha and beta regions of the D-loop was changed to achieve the positioning of G18 and G19 that is found in all tRNA(Leu); a base was inserted at position 47n between the base-paired extra stem and the T-stem; in addition the G73 "discriminator" base of tRNA(Ser) was changed to A73. This minimally altered tRNA(Ser) exclusively inserted leucine residues and was an excellent in vitro substrate for LeuRS. In a parallel experiment, nucleotide substitutions were made in a glutamine-inserting type I tRNA (RNA(SerDelta); an amber suppressor in which the tRNA(Ser) type II extra-stem-loop is replaced by a consensus type I loop). This "type I" swap experiment was successful both in vivo and in vitro but required more nucleotide substitutions than did the type II swap. The type I and II swaps revealed differences in the contributions of the tRNA(Leu) acceptor stem base-pairs to tRNA(Leu) function: in the type I, but not the type II fold, leucine specificity was contingent on the presence of the tRNA(Leu) acceptor stem sequence. The type I and II tRNAs used in this study differed only in the sequence and structure of the variable loop. By altering this loop, and thereby possibly introducing subtle changes into the overall tRNA fold, it became possible to detect otherwise cryptic contributions of the acceptor stem sequence to recognition by LeuRS. Possible reasons for this effect are discussed.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon/genetics
- Base Pairing/genetics
- Base Sequence
- Conserved Sequence/genetics
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Genes, Suppressor/genetics
- Genetic Engineering
- Glutamine/metabolism
- Kinetics
- Leucine/metabolism
- Mutation/genetics
- Nucleic Acid Conformation
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/classification
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/classification
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Serine/metabolism
- Structure-Activity Relationship
- Substrate Specificity
Collapse
|
7
|
Perreau VM, Keith G, Holmes WM, Przykorska A, Santos MA, Tuite MF. The Candida albicans CUG-decoding ser-tRNA has an atypical anticodon stem-loop structure. J Mol Biol 1999; 293:1039-53. [PMID: 10547284 DOI: 10.1006/jmbi.1999.3209] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In many Candida species, the leucine CUG codon is decoded by a tRNA with two unusual properties: it is a ser-tRNA and, uniquely, has guanosine at position 33 (G33). Using a combination of enzymatic (V1 RNase, RnI nuclease) and chemical (Pb(2+), imidazole) probing of the native Candida albicans ser-tRNACAG, we demonstrate that the overall tertiary structure of this tRNA resembles that of a ser-tRNA rather than a leu-tRNA, except within the anticodon arm where there is considerable disruption of the anticodon stem. Using non-modified in vitro transcripts of the C. albicans ser-tRNACAG carrying G, C, U or A at position 33, we demonstrate that it is specifically a G residue at this position that induces the atypical anticodon stem structure. Further quantitative evidence for an unusual structure in the anticodon arm of the G33-tRNA is provided by the observed change in kinetics of methylation of the G at position 37, by purified Escherichia coli m(1)G37 methyltransferase. We conclude that the anticodon arm distortion, induced by a guanosine base at position 33 in the anticodon loop of this novel tRNA, results in reduced decoding ability which has facilitated the evolution of this tRNA without extinction of the species encoding it.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Sequence
- Candida albicans/genetics
- Evolution, Molecular
- Genetic Code/genetics
- Imidazoles/metabolism
- Lead/metabolism
- Methylation
- Mutation/genetics
- Nucleic Acid Conformation
- Nucleosides/genetics
- Nucleosides/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- Ribonucleases/metabolism
- Saccharomyces cerevisiae/genetics
- Solutions
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- V M Perreau
- Research School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | | | | | | | | | | |
Collapse
|
8
|
Soma A, Uchiyama K, Sakamoto T, Maeda M, Himeno H. Unique recognition style of tRNA(Leu) by Haloferax volcanii leucyl-tRNA synthetase. J Mol Biol 1999; 293:1029-38. [PMID: 10547283 DOI: 10.1006/jmbi.1999.3219] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recognition manner of tRNA(Leu), a class II tRNA characterized by a long variable arm, by leucyl-tRNA synthetase from an extreme halophilic archaea, Haloferax volcanii, was studied using the in vitro transcription system. It was found that the discriminator base (A73) and the long variable arm, especially the specific loop sequence A47CG47D and U47H at the base of this helix, are significant for recognition by LeuRS. An appropriate stem length of the variable arm was also required. Base substitutions in the anticodon arm did not affect the leucylation activity. Transplantation of both the discriminator base and the variable arm of tRNA(Leu) was not sufficient to introduce leucylation activity to tRNA(Ser). Insertion of an additional nucleotide into the D-loop, which is not involved in the direct interaction with LeuRS, converted tRNA(Ser) to an efficient leucine acceptor. This suggests that differences in the tertiary structure play a key role in eliminating tRNA(Ser). The sequence-specific recognition of the long variable arm of tRNA(Leu) has not been observed in any of other organisms reported, such as Escherichia coli, yeast or human. On the other hand, the mode of discrimination from non-cognate tRNAs is similar to that in E. coli in that differences in the tertiary structure play a key role. Similarity extends to the substrate stringency, exemplified by a cross-species aminoacylation study showing that no class II tRNAs from E. coli or yeast can be leucylated by H. volcanii LeuRS. Our results have implications for the understanding of the evolution of the recognition system of class II tRNA.
Collapse
MESH Headings
- Acylation
- Anticodon/chemistry
- Anticodon/genetics
- Archaeal Proteins/chemistry
- Archaeal Proteins/metabolism
- Base Sequence
- Conserved Sequence/genetics
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Haloferax volcanii/enzymology
- Haloferax volcanii/genetics
- Kinetics
- Leucine/metabolism
- Leucine-tRNA Ligase/chemistry
- Leucine-tRNA Ligase/metabolism
- Mutation/genetics
- Nucleic Acid Conformation
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Transfer, Leu/chemistry
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Substrate Specificity
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- A Soma
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | | | | | | | | |
Collapse
|
9
|
Giegé R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 1998; 26:5017-35. [PMID: 9801296 PMCID: PMC147952 DOI: 10.1093/nar/26.22.5017] [Citation(s) in RCA: 616] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Correct expression of the genetic code at translation is directly correlated with tRNA identity. This survey describes the molecular signals in tRNAs that trigger specific aminoacylations. For most tRNAs, determinants are located at the two distal extremities: the anticodon loop and the amino acid accepting stem. In a few tRNAs, however, major identity signals are found in the core of the molecule. Identity elements have different strengths, often depend more on k cat effects than on K m effects and exhibit additive, cooperative or anti-cooperative interplay. Most determinants are in direct contact with cognate synthetases, and chemical groups on bases or ribose moieties that make functional interactions have been identified in several systems. Major determinants are conserved in evolution; however, the mechanisms by which they are expressed are species dependent. Recent studies show that alternate identity sets can be recognized by a single synthetase, and emphasize the importance of tRNA architecture and anti-determinants preventing false recognition. Identity rules apply to tRNA-like molecules and to minimalist tRNAs. Knowledge of these rules allows the manipulation of identity elements and engineering of tRNAs with switched, altered or multiple specificities.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Evolution, Molecular
- Genetic Code
- Humans
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
Collapse
Affiliation(s)
- R Giegé
- Unité Propre de Recherche 9002, 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Scientifique, 15 rue René Descartes, F-67084, Strasbourg Cedex, France.
| | | | | |
Collapse
|
10
|
Asahara H, Nameki N, Hasegawa T. In vitro selection of RNAs aminoacylated by Escherichia coli leucyl-tRNA synthetase. J Mol Biol 1998; 283:605-18. [PMID: 9784370 DOI: 10.1006/jmbi.1998.2111] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate systematically the RNA sequences necessary for aminoacylation by Escherichia coli leucyl-tRNA synthetase, RNAs with leucylation activity were isolated by in vitro selection from a library of tRNALeu variants possessing randomized sequences in the D-loop, the variable arm, and the T-loop. After two rounds of selection, most of the selected variants showed the following features: (1) the tertiary interaction between nucleotides at positions 15 and 48 was A15-U48; (2) the continuous G18G19 sequence, which is invariant in canonical tRNAs, appeared at the fixed position in the D-loop; and (3) the nucleotide at position 20a in the D-loop was A. These selected nucleotides and their positions, concentrating on the hinge region of tRNA, were identical to those of native tRNALeu. In contrast, although the long variable arm is the most characteristic of the tRNALeu structure, the primary and secondary structures were not correlated with the leucylation activity. These findings indicate that A15-U48, A20a, and G18G19 located at specific positions are involved in the tertiary folding of leucine-accepting tRNA molecules. With increases in the selection cycle, the D-loop sequence and the secondary structure of the variable arm became similar to those of tRNALeu, suggesting that tRNALeu represents an optimized RNA sequence for leucylation.
Collapse
Affiliation(s)
- H Asahara
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan.
| | | | | |
Collapse
|
11
|
Sissler M, Eriani G, Martin F, Giegé R, Florentz C. Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase. Nucleic Acids Res 1997; 25:4899-906. [PMID: 9396794 PMCID: PMC147145 DOI: 10.1093/nar/25.24.4899] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gene cloning, overproduction and an efficient purification protocol of yeast arginyl-tRNA synthetase (ArgRS) as well as the interaction patterns of this protein with cognate tRNAArgand non-cognate tRNAAspare described. This work was motivated by the fact that the in vitro transcript of tRNAAspis of dual aminoacylation specificity and is not only aspartylated but also efficiently arginylated. The crystal structure of the complex between class II aspartyl-tRNA synthetase (AspRS) and tRNAAsp, as well as early biochemical data, have shown that tRNAAspis recognized by its variable region side. Here we show by footprinting with enzymatic and chemical probes that transcribed tRNAAspis contacted by class I ArgRS along the opposite D arm side, as is homologous tRNAArg, but with idiosyncratic interaction patterns. Besides protection, footprints also show enhanced accessibility of the tRNAs to the structural probes, indicative of conformational changes in the complexed tRNAs. These different patterns are interpreted in relation to the alternative arginine identity sets found in the anticodon loops of tRNAArgand tRNAAsp. The mirror image alternative interaction patterns of unmodified tRNAAspwith either class I ArgRS or class II AspRS, accounting for the dual identity of this tRNA, are discussed in relation to the class defining features of the synthetases. This study indicates that complex formation between unmodified tRNAAspand either ArgRS and AspRS is solely governed by the proteins.
Collapse
MESH Headings
- Anticodon/chemistry
- Arginine-tRNA Ligase/classification
- Arginine-tRNA Ligase/metabolism
- Aspartate-tRNA Ligase/classification
- Aspartate-tRNA Ligase/metabolism
- Base Sequence
- DNA Footprinting
- Escherichia coli
- Fungal Proteins/classification
- Fungal Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/metabolism
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/metabolism
- Stereoisomerism
- Substrate Specificity
Collapse
Affiliation(s)
- M Sissler
- Unité Propre de Recherche 9002 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
12
|
Breitschopf K, Achsel T, Busch K, Gross HJ. Identity elements of human tRNA(Leu): structural requirements for converting human tRNA(Ser) into a leucine acceptor in vitro. Nucleic Acids Res 1995; 23:3633-7. [PMID: 7478989 PMCID: PMC307258 DOI: 10.1093/nar/23.18.3633] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously shown that the exchange of the discriminator base A73 of human tRNA(Leu) for G is alone sufficient to achieve complete loss of leucine acceptance and to create an efficient serine acceptor. The reverse identity switch, however, which was studied using T7 RNA polymerase transcripts of in vitro mutagenized tRNA genes, reveals a far more complex pattern of identity elements for tRNA(Leu). Introduction of the following tRNA(Leu)-specific structures is necessary to transform human tRNA(Ser) into an efficient leucine acceptor: the discriminator base A73, the base pairs C3:G70, A4:U69 and G5:C68 of the acceptor stem, C20a of the DHU loop and the long extra arm. In contrast to tRNA(Ser), human tRNA(Leu) identity requires both the sequence and the correct orientation of the long extra arm, whereas only its orientation is essential for serine identity.
Collapse
Affiliation(s)
- K Breitschopf
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | | | |
Collapse
|
13
|
Giegé R, Puglisi JD, Florentz C. tRNA structure and aminoacylation efficiency. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:129-206. [PMID: 8341800 DOI: 10.1016/s0079-6603(08)60869-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
14
|
Vander Horn PB, Zahler SA. Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis. J Bacteriol 1992; 174:3928-35. [PMID: 1317842 PMCID: PMC206101 DOI: 10.1128/jb.174.12.3928-3935.1992] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The leucyl-tRNA synthetase gene (leuS) of Bacillus subtilis was cloned and sequenced. A mutation in the gene, leuS1, increases the transcription and expression of the ilv-leu operion, permitting monitoring of leuS alleles. The leuS1 mutation was mapped to 270 degrees on the chromosome. Sequence analysis showed that the mutation is a single-base substitution, possibly in a monocistronic operon. The leader mRNA predicted by the sequence would contain a number of possible secondary structures and a T box, a sequence observed upstream of leader mRNA terminators of Bacillus tRNA synthetases and the B. subtilis ilv-leu operon. The DNA of the B. subtilis leuS open reading frame is 48% identical to the leuS gene of Escherichia coli and is predicted to encode a polypeptide with 46% identity to the leucyl-tRNA synthetase of E. coli.
Collapse
Affiliation(s)
- P B Vander Horn
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
15
|
Abstract
Aminoacyl-tRNA synthetases interact with their cognate tRNAs in a highly specific fashion. We have examined the phenomenon that upon complex formation E. coli glutaminyl-tRNA synthetase destabilizes tRNA(Gln) causing chain scissions in the presence of Mg2+ ions. The phosphodiester bond cleavage produces 3'-phosphate and 5'-hydroxyl ends. This kind of experiment is useful for detecting conformational changes in tRNA. Our results show that the cleavage is synthetase-specific, that mutant and wild-type tRNA(Gln) species can assume a different conformation, and that modified nucleosides in tRNA enhance the structural stability of the molecule.
Collapse
Affiliation(s)
- S Beresten
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | |
Collapse
|
16
|
|