1
|
Kuldau GA, Liu JS, White JF, Siegel MR, Schardl CL. Molecular systematics of Clavicipitaceae supporting monophyly of genusEpichloëand form genusEphelis. Mycologia 2018. [DOI: 10.1080/00275514.1997.12026802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Gretchen A. Kuldau
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - Jih-Shiou Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | - James F. White
- Department of Plant Pathology, Rutgers University, New Brunswick, New Jersey 08903
| | - Malcolm R. Siegel
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| | | |
Collapse
|
2
|
Identification of a novel hydrogen producing bacteria from sugarcane bagasse waste. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Chandrasekaran SD, Vaithilingam M, Shanker R, Kumar S, Thiyur S, Babu V, Selvakumar JN, Prakash S. Exploring the In Vitro Thrombolytic Activity of Nattokinase From a New Strain Pseudomonas aeruginosa CMSS. Jundishapur J Microbiol 2015; 8:e23567. [PMID: 26587211 PMCID: PMC4644271 DOI: 10.5812/jjm.23567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Thrombolytic therapy has become a conventional treatment for acute myocardial infarction (AMI), yet currently, clinically prescribed thrombolytic drugs have problems such as delayed action and other side effects. Fibrinolytic enzymes have attracted interest as thrombolytic agents because of their efficiency in the fibrinolytic process, including plasmin activation. Nattokinase (NK) is a potent fibrinolytic agent for thrombosis therapy. OBJECTIVES The aim of this study was to enhance the production of NK from Pseudomonas aeruginosa CMSS by media optimization and strain improvement. MATERIALS AND METHODS In the present study, a potent NK-producing strain was isolated from cow milk and identified. To enhance the yield of NK, effect of various parameters such as pH, temperature, carbon source, nitrogen source and inoculum size were optimized. Strain improvement of P. aeruginosa CMSS was done by random UV-mutagenesis. Nattokinase was partially purified and the activity was determined by the casein digestion method, blood clot lysis and fibrin degradation assay. RESULTS Based on morphological, biochemical and molecular characterization, the strain was confirmed as P. aeruginosa (GenBank accession number: JX112657), designated as P. aeruginosa CMSS. The optimum condition at pH 7 and temperature at 25˚C showed activity of NK as 1514 U mL(-1) and 1532 U mL(-1), respectively. Sucrose as the carbon source and shrimp shell powder (SSP) as the nitrogen source expressed NK activity of 1721 U mL(-1) and 2524 U mL(-1), respectively. At 1% inoculum size, the maximum rate of enzyme production was achieved with 2581 U mL(-1). The NK activity of the mutant strain UV60 was 4263 U mL(-1), indicating a two-fold increase in activity compared to the wild strain (2581 UmL(-1)). Nattokinase produced from mutant strain P. aeruginosa CMSS UV60 showed 94% blood clot lysis at ten minutes. The degradation of fibrin clot by the produced NK was observed after two hours of incubation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the molecular mass of CMSS UV60 NK to be 21kDa. CONCLUSIONS The current study demonstrated the enhanced production of NK by P. aeruginosa CMSS. This study is unique and the findings are the first report on the production of NK from P. aeruginosa CMSS isolated from cow milk.
Collapse
Affiliation(s)
| | | | - Ravi Shanker
- Industrial Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, India
| | - Sanjeev Kumar
- Industrial Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, India
| | - Swathi Thiyur
- Industrial Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, India
| | - Vaishnavi Babu
- Industrial Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, India
| | - Jemimah Naine Selvakumar
- Industrial Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, India
| | - Suyash Prakash
- Industrial Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
4
|
Subathra Devi C, Mohanasrinivasan V, Chetna M, Nikhil AS, Jemimah Naine S. Thermostable lipase from novelPseudomonassp. VITSDVM1 isolated from bovine milk. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1015057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Abstract
I am honored to have been asked to contribute to this memorial issue, although I cannot claim to have known Carl Woese well. Carl's insights and the discoveries that his research group made over the years certainly stimulated my own research program, and at several points early on, interactions with him were pivotal in my career. Here I comment on these personal dealings with Carl and emphasize his influence in two areas of long-standing interest in my lab: organelle evolution and rRNA evolution.
Collapse
Affiliation(s)
- Michael W Gray
- Centre for Comparative Genomics and Evolutionary Bioinformatics; Department of Biochemistry and Molecular Biology; Dalhousie University; Halifax, NS Canada
| |
Collapse
|
6
|
Watanabe K. Unique features of animal mitochondrial translation systems. The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:11-39. [PMID: 20075606 PMCID: PMC3417567 DOI: 10.2183/pjab.86.11] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/17/2009] [Indexed: 05/17/2023]
Abstract
In animal mitochondria, several codons are non-universal and their meanings differ depending on the species. In addition, the tRNA structures that decipher codons are sometimes unusually truncated. These features seem to be related to the shortening of mitochondrial (mt) genomes, which occurred during the evolution of mitochondria. These organelles probably originated from the endosymbiosis of an aerobic eubacterium into an ancestral eukaryote. It is plausible that these events brought about the various characteristic features of animal mt translation systems, such as genetic code variations, unusually truncated tRNA and rRNA structures, unilateral tRNA recognition mechanisms by aminoacyl-tRNA synthetases, elongation factors and ribosomes, and compensation for RNA deficits by enlarged proteins. In this article, we discuss molecular mechanisms for these phenomena. Finally, we describe human mt diseases that are caused by modification defects in mt tRNAs.
Collapse
Affiliation(s)
- Kimitsuna Watanabe
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. INSECT MOLECULAR BIOLOGY 2006; 15:657-86. [PMID: 17069639 PMCID: PMC2048585 DOI: 10.1111/j.1365-2583.2006.00689.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/28/2006] [Indexed: 05/12/2023]
Abstract
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements.
Collapse
Affiliation(s)
- J J Gillespie
- Department of Entomology, Texas A & M University, College Station, TX, USA.
| | | | | | | |
Collapse
|
8
|
Gillespie JJ, Yoder MJ, Wharton RA. Predicted Secondary Structure for 28S and 18S rRNA from Ichneumonoidea (Insecta: Hymenoptera: Apocrita): Impact on Sequence Alignment and Phylogeny Estimation. J Mol Evol 2005; 61:114-37. [PMID: 16059751 DOI: 10.1007/s00239-004-0246-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 03/08/2005] [Indexed: 11/27/2022]
Abstract
We utilize the secondary structural properties of the 28S rRNA D2-D10 expansion segments to hypothesize a multiple sequence alignment for major lineages of the hymenopteran superfamily Ichneumonoidea (Braconidae, Ichneumonidae). The alignment consists of 290 sequences (originally analyzed in Belshaw and Quicke, Syst Biol 51:450-477, 2002) and provides the first global alignment template for this diverse group of insects. Predicted structures for these expansion segments as well as for over half of the 18S rRNA are given, with highly variable regions characterized and isolated within conserved structures. We demonstrate several pitfalls of optimization alignment and illustrate how these are potentially addressed with structure-based alignments. Our global alignment is presented online at (http://hymenoptera.tamu.edu/rna) with summary statistics, such as basepair frequency tables, along with novel tools for parsing structure-based alignments into input files for most commonly used phylogenetic software. These resources will be valuable for hymenopteran systematists, as well as researchers utilizing rRNA sequences for phylogeny estimation in any taxon. We explore the phylogenetic utility of our structure-based alignment by examining a subset of the data under a variety of optimality criteria using results from Belshaw and Quicke (2002) as a benchmark.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
9
|
Gillespie JJ, Munro JB, Heraty JM, Yoder MJ, Owen AK, Carmichael AE. A Secondary Structural Model of the 28S rRNA Expansion Segments D2 and D3 for Chalcidoid Wasps (Hymenoptera: Chalcidoidea). Mol Biol Evol 2005; 22:1593-608. [PMID: 15843598 DOI: 10.1093/molbev/msi152] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyze the secondary structure of two expansion segments (D2, D3) of the 28S ribosomal (rRNA)-encoding gene region from 527 chalcidoid wasp taxa (Hymenoptera: Chalcidoidea) representing 18 of the 19 extant families. The sequences are compared in a multiple sequence alignment, with secondary structure inferred primarily from the evidence of compensatory base changes in conserved helices of the rRNA molecules. This covariation analysis yielded 36 helices that are composed of base pairs exhibiting positional covariation. Several additional regions are also involved in hydrogen bonding, and they form highly variable base-pairing patterns across the alignment. These are identified as regions of expansion and contraction or regions of slipped-strand compensation. Additionally, 31 single-stranded locales are characterized as regions of ambiguous alignment based on the difficulty in assigning positional homology in the presence of multiple adjacent indels. Based on comparative analysis of these sequences, the largest genetic study on any hymenopteran group to date, we report an annotated secondary structural model for the D2, D3 expansion segments that will prove useful in assigning positional nucleotide homology for phylogeny reconstruction in these and closely related apocritan taxa.
Collapse
|
10
|
Gillespie J, Cannone J, Gutell R, Cognato A. A secondary structural model of the 28S rRNA expansion segments D2 and D3 from rootworms and related leaf beetles (Coleoptera: Chrysomelidae; Galerucinae). INSECT MOLECULAR BIOLOGY 2004; 13:495-518. [PMID: 15373807 DOI: 10.1111/j.0962-1075.2004.00509.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We analysed the secondary structure of two expansion segments (D2, D3) of the 28S rRNA gene from 229 leaf beetles (Coleoptera: Chrysomelidae), the majority of which are in the subfamily Galerucinae. The sequences were compared in a multiple sequence alignment, with secondary structure inferred primarily from the compensatory base changes in the conserved helices of the rRNA molecules. This comparative approach yielded thirty helices comprised of base pairs with positional covariation. Based on these leaf beetle sequences, we report an annotated secondary structural model for the D2 and D3 expansion segments that will prove useful in assigning positional nucleotide homology for phylogeny reconstruction in these and closely related beetle taxa. This predicted structure, consisting of seven major compound helices, is mostly consistent with previously proposed models for the D2 and D3 expansion segments in insects. Despite a lack of conservation in the primary structure of these regions of insect 28S rRNA, the evolution of the secondary structure of these seven major motifs may be informative above the nucleotide level for higher-order phylogeny reconstruction of major insect lineages.
Collapse
Affiliation(s)
- J Gillespie
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
11
|
Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 2002; 3:2. [PMID: 11869452 PMCID: PMC65690 DOI: 10.1186/1471-2105-3-2] [Citation(s) in RCA: 1106] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Accepted: 01/17/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative analysis of RNA sequences is the basis for the detailed and accurate predictions of RNA structure and the determination of phylogenetic relationships for organisms that span the entire phylogenetic tree. Underlying these accomplishments are very large, well-organized, and processed collections of RNA sequences. This data, starting with the sequences organized into a database management system and aligned to reveal their higher-order structure, and patterns of conservation and variation for organisms that span the phylogenetic tree, has been collected and analyzed. This type of information can be fundamental for and have an influence on the study of phylogenetic relationships, RNA structure, and the melding of these two fields. RESULTS We have prepared a large web site that disseminates our comparative sequence and structure models and data. The four major types of comparative information and systems available for the three ribosomal RNAs (5S, 16S, and 23S rRNA), transfer RNA (tRNA), and two of the catalytic intron RNAs (group I and group II) are: (1) Current Comparative Structure Models; (2) Nucleotide Frequency and Conservation Information; (3) Sequence and Structure Data; and (4) Data Access Systems. CONCLUSIONS This online RNA sequence and structure information, the result of extensive analysis, interpretation, data collection, and computer program and web development, is accessible at our Comparative RNA Web (CRW) Site http://www.rna.icmb.utexas.edu. In the future, more data and information will be added to these existing categories, new categories will be developed, and additional RNAs will be studied and presented at the CRW Site.
Collapse
MESH Headings
- Base Sequence/genetics
- Databases, Nucleic Acid
- Internet
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA/chemistry
- RNA/genetics
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
Collapse
Affiliation(s)
- Jamie J Cannone
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Sankar Subramanian
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA
| | - Murray N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | - James R Collett
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Lisa M D'Souza
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Yushi Du
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Brian Feng
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Nan Lin
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Lakshmi V Madabusi
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
- Ambion, Inc., Austin, TX 78744-1832, USA
| | - Kirsten M Müller
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Nupur Pande
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Zhidi Shang
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Nan Yu
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| | - Robin R Gutell
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1095, USA
| |
Collapse
|
12
|
Kelley ST, Harris JK, Pace NR. Evaluation and refinement of tmRNA structure using gene sequences from natural microbial communities. RNA (NEW YORK, N.Y.) 2001; 7:1310-1316. [PMID: 11565752 PMCID: PMC1370174 DOI: 10.1017/s1355838201010573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DNA harvested directly from complex natural microbial communities by PCR has been successfully used to predict RNase P RNA structure, and can potentially provide an abundant source of information for structural predictions of other RNAs. In this study, we utilized genetic variation in natural communities to test and refine the secondary and tertiary structural model for the bacterial tmRNA. The variability of proposed tmRNA secondary structures in different organisms and the lack of any predicted tertiary structure suggested that further refinement of the tmRNA could be useful. To increase the phylogenetic representation of tmRNA sequences, and thereby provide additional data for statistical comparative analysis, we amplified, sequenced, and compared tmRNA sequences from natural microbial communities. Using primers designed from gamma proteobacterial sequences, we determined 44 new tmRNA sequences from a variety of environmental DNA samples. Covariation analyses of these sequences, along with sequences from cultured organisms, confirmed most of the proposed tmRNA model but also provided evidence for a new tertiary interaction. This approach of gathering sequence information from natural microbial communities seems generally applicable in RNA structural analysis.
Collapse
Affiliation(s)
- S T Kelley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309, USA
| | | | | |
Collapse
|
13
|
Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, Watanabe K. Proteomic analysis of the mammalian mitochondrial ribosome. Identification of protein components in the 28 S small subunit. J Biol Chem 2001; 276:33181-95. [PMID: 11402041 DOI: 10.1074/jbc.m103236200] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian mitochondrial ribosome (mitoribosome) has a highly protein-rich composition with a small sedimentation coefficient of 55 S, consisting of 39 S large and 28 S small subunits. In the previous study, we analyzed 39 S large subunit proteins from bovine mitoribosome (Suzuki, T., Terasaki, M., Takemoto-Hori, C., Hanada, T., Ueda, T., Wada, A., and Watanabe, K. (2001) J. Biol. Chem. 276, 21724-21736). The results suggested structural compensation for the rRNA deficit through proteins of increased molecular mass in the mitoribosome. We report here the identification of 28 S small subunit proteins. Each protein was separated by radical-free high-reducing two-dimensional polyacrylamide gel electrophoresis and analyzed by liquid chromatography/mass spectrometry/mass spectrometry using electrospray ionization/ion trap mass spectrometer to identify cDNA sequence by expressed sequence tag data base searches in silico. Twenty one proteins from the small subunit were identified, including 11 new proteins along with their complete cDNA sequences from human and mouse. In addition to these proteins, three new proteins were also identified in the 55 S mitoribosome. We have clearly identified a mitochondrial homologue of S12, which is a key regulatory protein of translation fidelity and a candidate for the autosomal dominant deafness gene, DFNA4. The apoptosis-related protein DAP3 was found to be a component of the small subunit, indicating a new function for the mitoribosome in programmed cell death. In summary, we have mapped a total of 55 proteins from the 55 S mitoribosome on the two-dimensional polyacrylamide gels.
Collapse
Affiliation(s)
- T Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, Watanabe K. Structural compensation for the deficit of rRNA with proteins in the mammalian mitochondrial ribosome. Systematic analysis of protein components of the large ribosomal subunit from mammalian mitochondria. J Biol Chem 2001; 276:21724-36. [PMID: 11279069 DOI: 10.1074/jbc.m100432200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian mitochondrial ribosome (mitoribosome) is a highly protein-rich particle in which almost half of the rRNA contained in the bacterial ribosome is replaced with proteins. It is known that mitochondrial translation factors can function on both mitochondrial and Escherichia coli ribosomes, indicating that protein components in the mitoribosome compensate the reduced rRNA chain to make a bacteria-type ribosome. To elucidate the molecular basis of this compensation, we analyzed bovine mitoribosomal large subunit proteins; 31 proteins were identified including 15 newly identified proteins with their cDNA sequences from human and mouse. The results showed that the proteins with binding sites on rRNA shortened or lost in the mitoribosome were enlarged when compared with the E. coli counterparts; this suggests the structural compensation of the rRNA deficit by the enlarged proteins in the mitoribosome.
Collapse
Affiliation(s)
- T Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Kuo TC, Herrin DL. A kinetically efficient form of the Chlamydomonas self-splicing ribosomal RNA precursor. Biochem Biophys Res Commun 2000; 273:967-71. [PMID: 10891356 DOI: 10.1006/bbrc.2000.3047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 23S rRNA gene of Chlamydomonas reinhardtii contains a group IA3 intron, Cr.LSU, whose splicing is essential for cell growth. To better understand Cr.LSU splicing, kinetic analyses were undertaken with 23S.3, a preRNA previously shown to self-splice. Self-splicing of 23S.3 showed biphasic kinetics, with only approximately 33% reacting efficiently. Removal of a region of the 5' exon that could potentially interfere with the intron core (i.e., P3) increased the size (53%) of the active fraction. Replacement of the large P6a-extension by a 20-nt stem-loop further increased the active fraction to approximately 80%. The k(cat) and K(G)(M) for self-splicing (first step) by these latter RNAs were approximately 1 min(-1) and approximately 20 microM, respectively. These results indicate that Cr.LSU is a highly efficient ribozyme whose folding in vitro is impeded by exonic and/or intronic sequences. The implications for in vivo splicing of Cr.LSU are discussed.
Collapse
Affiliation(s)
- T C Kuo
- Molecular Cell and Developmental Biology Section, Institute for Cellular and Molecular Biology, Austin, Texas 78712, USA
| | | |
Collapse
|
16
|
Ingianni A, Petruzzelli S, Madeddu MA, Pompei R. Studies on the distribution of high-level gentamicin-resistant Enterococcus faecalis using ribotyping and restriction analysis of the 16S-23S rRNA intergenic spacer sequences. Microb Drug Resist 2000; 3:271-5. [PMID: 9270998 DOI: 10.1089/mdr.1997.3.271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Twenty-five high-level gentamicin resistant (HLGR) Enterococcus faecalis strains were isolated from three different University laboratories in Italy. The resistant strains were variously distributed in the three centers with percentages of prevalence ranging from about 3% up to 14%. Almost all strains shared high-level resistance to streptomycin (23 out of 25). Ribotyping and restriction analysis of the 16S-23S rRNA intergenic spacer sequences were used to genetically differentiate the various strains and to study their spreading in the university hospitals serviced by the three laboratories. At least three ribotypes were identified, which showed a peculiar distribution in the various centers. Only the ribotype B was isolated from the University of Padua. In Cagliari, most strains belonged to ribotype A (4/6), whereas in Genoa there was an equal distribution of the ribotypes A and B. A clonal spreading of some HLGR strains is suggested by these findings. The restriction analysis of the 16S-23S rRNA intergenic-spacer sequences gave comparable results with classical ribotyping and, in addition, was quicker and easier to perform than the latter.
Collapse
Affiliation(s)
- A Ingianni
- Institute of Internal Medicine, University of Cagliari, Italy
| | | | | | | |
Collapse
|
17
|
Morin L. Long branch attraction effects and the status of "basal eukaryotes": phylogeny and structural analysis of the ribosomal RNA gene cluster of the free-living diplomonad Trepomonas agilis. J Eukaryot Microbiol 2000; 47:167-77. [PMID: 10750846 DOI: 10.1111/j.1550-7408.2000.tb00028.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three taxa emerging at the base of the eukaryotic ribosomal RNA phylogenetic tree (Diplomonadida, Microspora, and Parabasalia) include a wide array of parasitic species. and some free-living organisms that appear to be derived from a parasitic ancestry. The basal position of these taxa, which lack mitochondria, has recently been questioned. I sequenced most of the ribosomal RNA gene cluster of the free-living diplomonad Trepomonas agilis and a secondary structure model was reconstructed for the SSU rRNA. I conducted a RASA matrix analysis to identify, independently from tree reconstruction, putative long branch attraction effects in the data matrix. The results show that each of the basal clades and the euglenozoan clade act, indeed, as long branches and may have been engaged in a process of accelerated rate of evolution. A nucleotide signature analysis was conducted in the conserved regions for positions defining the three great domains of life (Eubacteria, Archea, and Eukaryota). For the three basal taxa, this analysis showed the presence of a significant number of different non-eukaryotic nucleotides. A precise study of the nature and location of these nucleotides led to conclusions supporting the results of the RASA analysis. Altogether, these findings suggest that the basal placement of these taxa in the SSU ribosomal RNA phylogenetic tree is artifactual, and flawed by long branch attraction effects.
Collapse
Affiliation(s)
- L Morin
- Laboratoire de Biologie cellulaire 4, URA CNRS 2227, Centre d'Orsay, Université de Paris-Sud, Orsay, France.
| |
Collapse
|
18
|
Moore CA, Gudikote J, Van Tuyle GC. Mitochondrial DNA rearrangements, including partial duplications, occur in young and old rat tissues. Mutat Res 1998; 421:205-17. [PMID: 9852994 DOI: 10.1016/s0027-5107(98)00169-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using polymerase chain reaction (PCR) with back-to-back primers, 85 different mitochondrial DNA (mtDNA) rearrangements, consisting of partial duplications or mini-circles, were detected in brain, liver, and heart tissue from Fischer 344 rats. The regions around the mitochondrial tRNALeu(UUR) gene, the cluster of three tRNA genes [His, Ser(AGY), Leu(UUC)], as well as the region of the displacement loop were analyzed separately with different primer sets. Rearrangements were detected in all regions analyzed in samples taken throughout the animal life span, ranging from 1 day old to 33 months of age (senescent). Two-thirds of the rearrangements terminated at short (3-9-bp) direct repeats. Three of the different rearrangements were detected in more than one animal; the most common rearrangement was found in nine different template preparations. Two loci (hot spots) were found to be particularly susceptible to rearrangement, and both were located at sequences that exhibited highly conserved potential for secondary structure formation. The displacement loop region of 10 samples exhibited the presence of multiple tandem duplications ranging between 324 and 449 bp in length. One of these consisted of heterologous, but overlapping, repeating units. Identical PCR protocols were carried out in control experiments using a cloned fragment of mtDNA that encompassed the most common hot spot sequence. The results showed that this fragment did not artifactually generate a rearrangement junction under our PCR conditions and suggested that this sequence does not promote rearrangement mutations in bacteria during the cloning process.
Collapse
Affiliation(s)
- C A Moore
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond 23298, USA
| | | | | |
Collapse
|
19
|
Holloway SP, Herrin DL. Processing of a composite large subunit rRNA. Studies with chlamydomonas mutants deficient in maturation of the 23s-like rrna. THE PLANT CELL 1998; 10:1193-206. [PMID: 9668137 PMCID: PMC144049 DOI: 10.1105/tpc.10.7.1193] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
(Cr.LSU). Little is known of the cis and trans requirements or of the processing pathway for this essential RNA. Previous work showed that the ribosome-deficient ac20 mutant overaccumulates an unspliced large subunit (LSU) RNA, suggesting that it might be a splicing mutant. To elucidate the molecular basis of the ac20 phenotype, a detailed analysis of the rrn transcripts in ac20 and wild-type cells was performed. The results indicate that processing of the ITSs, particularly ITS-1, is inefficient in ac20 and that ITS processing occurs after splicing. Deletion of the Cr.LSU intron from ac20 also did not alleviate the mutant phenotype. Thus, the primary defect in ac20 is not splicing but most likely is associated with ITS processing. A splicing deficiency was studied by transforming wild-type cells with rrnL genes containing point mutations in the intron core. Heteroplasmic transformants were obtained in most cases, except for P4 helix mutants; these strains grew slowly, were light sensitive, and had an RNA profile indicative of inefficient splicing. Transcript analysis in the P4 mutants also indicated that ITS processing can occur on an unspliced precursor, although with reduced efficiency. These latter results indicate that although there is not an absolutely required order for LSU processing, there does seem to be a preferred order that results in efficient processing in vivo.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/growth & development
- Chlamydomonas reinhardtii/metabolism
- Chloroplasts/metabolism
- DNA, Ribosomal/metabolism
- Introns
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Oligonucleotide Probes
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 23S/biosynthesis
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- Sequence Deletion
- Transcription, Genetic
Collapse
Affiliation(s)
- S P Holloway
- Department of Botany and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78713, USA
| | | |
Collapse
|
20
|
Ingianni A, Petruzzelli S, Morandotti G, Pompei R. Genotypic differentiation of Gardnerella vaginalis by amplified ribosomal DNA restriction analysis (ARDRA). FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1997; 18:61-6. [PMID: 9215588 DOI: 10.1111/j.1574-695x.1997.tb01028.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In total 34 strains of Gardnerella vaginalis were analyzed with various molecular techniques in order to find the possibility of dividing this single species into different genotypes. Classical ribotyping, PCR-ribotyping and restriction analysis of 16S-23S rRNA intergenic spacer sequences were all unsuccessful in genotype differentiation of these bacteria. Only amplified ribosomal DNA restriction analysis (ARDRA) was suitable in recognizing different G. vaginalis genotypes. At least 3-4 genotypes were identified with different restriction enzymes, some of which showed a prevalent distribution in certain of the centers from which they were collected. Although in this study no correlation was found between bacterial vaginosis and any of the genotypes identified, the ARDRA method could prove to be a useful tool for studying the etiopathology and epidemiology of G. vaginalis.
Collapse
Affiliation(s)
- A Ingianni
- Istituto di Medicina Interna, Cattedra di Microbiologia Applicata, Cagliari, Italy
| | | | | | | |
Collapse
|
21
|
Ofengand J, Bakin A. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol 1997; 266:246-68. [PMID: 9047361 DOI: 10.1006/jmbi.1996.0737] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pseudouridine (psi) residues present in the high molecular mass RNA from the large ribosomal subunit (LSU) have been sequenced from representative species of the eukaryotes, prokaryotes and archaebacteria, and from mitochondrial and chloroplast organelles. Ribosomes from Bacillus subtilis, Halobacter halobium, Drosphilia melanogaster, Mus musculus, Homo sapiens, mitochondria of M. musculus, H. sapiens and Trypanosoma brucei, and Zea mays chloroplasts were examined, resulting in the exact localization of 190 psi residues. The number of psi residues per RNA varied from one in the mitochondrial RNAs to 57 in the cytoplasmic LSU RNA of D. melanogaster and M. musculus. Despite this, all of the psi residues were found in three domains, II, IV and V. All three are at or have been linked to the peptidyl transferase center according to the literature. Comparison of the sites for psi among the species examined revealed four conserved or semi-conserved segments. One is the region 1911 to 1917, which contains three psi or modified psi in almost all species examined. This site is also juxtaposed to the decoding site of the 30 S subunit in the 70 S ribosome and has been implicated in the fidelity of codon recognition. Three additional sites were at the peptidyl transferase center itself. The juxtaposition of the conserved sites for psi with the two important functions of the ribosome, codon recognition and peptide bond formation, implies an important role for psi in ribosome function. We report some new putative modified nucleosides in LSU RNAs as detected by reverse transcription, correct a segment of the sequence of Z. mays chloroplasts and D. melanogaster LSU RNA, correlate the secondary structural context for all known psi residues in ribosomal RNA, and compare the sites for psi with those known for methylated nucleosides in H. sapiens.
Collapse
Affiliation(s)
- J Ofengand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, FL 33101, USA
| | | |
Collapse
|
22
|
Manceau C, Horvais A. Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato. Appl Environ Microbiol 1997; 63:498-505. [PMID: 9023928 PMCID: PMC168340 DOI: 10.1128/aem.63.2.498-505.1997] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Phylogenetic relationships among 77 bacterial strains belonging to Pseudomonas syringae and Pseudomonas viridiflava species were assessed by analysis of the PCR-restriction fragment length polymorphism (RFLP) patterns of three DNA fragments corresponding to rrs and rrl genes and the internal transcribed spacer, ITS1. No difference among all strains in rrs and rrl genes was observed with 14 restriction enzymes, which confirms the close relationships existing between these two species. The nucleotidic sequence of the internal transcripted spacer (ITS1) between rrs and rrl for the P. syringae pv. syringae strain CFBP1392 was determined. Restriction maps of the PCR-amplified ITS1 region were prepared and compared for all 77 strains. Seventeen RFLP patterns, forming three main clusters, were distinguished. One contained all strains of P. syringae pv. tomato and of other pathovars which had been previously described as closely related by either pathogenicity studies or biochemical analyses. This cluster was equally far from P. viridiflava and from other P. syringae pathovars. These other pathovars of P. syringae formed a less coherent taxon.
Collapse
Affiliation(s)
- C Manceau
- Station de Pathologie Végétale, Institut National de la Recherche Agronomique, Beaucouzé, France.
| | | |
Collapse
|
23
|
Kambhampati S, Kjer KM, Thorne BL. Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S ribosomal RNA gene. INSECT MOLECULAR BIOLOGY 1996; 5:229-238. [PMID: 8933174 DOI: 10.1111/j.1365-2583.1996.tb00097.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Termites (Order Isoptera: Class Insecta), are comprised of a complex assemblage of species, with considerable variation in life history, morphology, social behaviour, caste development and ecology. At present, isoptera is divided into seven families, fourteen subfamilies, approximately 270 genera and over 2000 species. Phylogenetic hypotheses currently available for termite families and genera are based on a limited number of morphological characters and lack rigorous cladistic analysis. In this paper we report on phylogenetic relationships among ten termite genera of five families based on a DNA sequence analysis of a portion of the mitochondrial 16S rRNA gene. Parsimony and distance analysis of DNA sequences supported the existing hypothesis that Mastotermitidae is the basal lineage among extant termites. Kalotermitidae was not found to be a sister taxon of Mastotermitidae as existing hypotheses suggest, but was most closely related to Rhinotermitidae and Termitidae. Representatives of Termopsidae were more basal relative to those of Kalotermitidae. The utility of 16S rRNA nucleotide sequence analysis for inferring phylogenetic relationships among termite families, subfamilies and genera is discussed.
Collapse
Affiliation(s)
- S Kambhampati
- Department of Entomology, Kansas State University, Manhattan 66506, USA
| | | | | |
Collapse
|
24
|
Nunn GB, Theisen BF, Christensen B, Arctander P. Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J Mol Evol 1996; 42:211-23. [PMID: 8919873 DOI: 10.1007/bf02198847] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expansion segments within the eukaryote nuclear 23S-like ribosomal RNA molecule are now well characterized in many diverse organisms. A different base compositional bias, a higher propensity for size variability, and an increased evolutionary rate distinguish these regions from the universally conserved "core" regions of the molecule. In addition, some expansion segments of higher eukaryotes exhibit significant sequence simplicity which is hypothesized to occur by slippage-mediated mutational processes. We describe the discovery of extreme size variation of the D3 expansion segment in the crustacean order Isopoda. Among 11 species D3 varies in size from 180 to 518 nucleotides but maintains a homologous secondary structure. The D3 size is significantly positively correlated to relative simplicity factor (RSF), indicating that growth is most likely by insertion of simple sequences. D3 size and RSF correlate approximately with a morphology-based phylogeny, and within oniscideans RSF increases as more recent divergences occur. The D3 of Armadillidium vulgare, with an RSF of 1.87, is the highest value recorded for any known expansion segment. Regions of high sequence simplicity in nuclear ribosomal RNA were previously only known from the higher vertebrate lineage. Here we demonstrate that this phenomenon occurs in a more extreme condition within a monophyletic invertebrate lineage. The extreme size changes identified could indicate that expansion segments are an extraneous element in the functioning ribosome.
Collapse
Affiliation(s)
- G B Nunn
- Institute of Population Biology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
25
|
Ribosome-catalyzed Pep tide-bond Formation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995. [DOI: 10.1016/s0079-6603(08)60809-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
|
27
|
Rocheleau GA, Woodson SA. Requirements for self-splicing of a group I intron from Physarum polycephalum. Nucleic Acids Res 1994; 22:4315-20. [PMID: 7937160 PMCID: PMC331954 DOI: 10.1093/nar/22.20.4315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The third intron from Physarum polycephalum (Pp LSU 3) is one of the closest known relatives to the well-studied Tetrahymena group I intron. Both introns are located at the same position in the 26S rRNA gene, and with the exception of an open reading frame in Pp LSU 3, are highly homologous. While Pp LSU 3 has been shown to self splice, little is known about its activity in vitro. We have examined the requirements for self splicing in greater detail. Despite its similarity to the Tetrahymena intron, Pp LSU 3 is 1500-fold less reactive, demonstrates a preference for high salt, and exhibits a low Km for GTP. Removal of the open reading frame results in a modest increase of activity. This system provides an opportunity to understand how sequence variations in two related introns alter the efficiency of autoexcision, and how this relates to adaptation of group I introns to their particular sequence context.
Collapse
Affiliation(s)
- G A Rocheleau
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742-2021
| | | |
Collapse
|
28
|
Abstract
Evidence that folding of the Tetrahymena pre-rRNA follows a defined path and is rate-determining for splicing at physiological temperatures is presented. Structural isomers were separated by native polyacrylamide gel electrophoresis and their splicing activities were compared. GTP binding selectively shifts the active form of the pre-RNA to an electrophoretic band containing both spliced and unspliced RNA. In situ chemical modification provides evidence for base-pair rearrangements in the 5' exon and structural alterations in the intron core of partially and fully active forms. Transition to the fully active precursor requires high temperature, but the activation energy is lower than expected for opening of RNA helices. Implications for control of RNA conformation during splicing are discussed.
Collapse
Affiliation(s)
- V L Emerick
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742-2021
| | | |
Collapse
|
29
|
Dasen SE, LiPuma JJ, Kostman JR, Stull TL. Characterization of PCR-ribotyping for Burkholderia (Pseudomonas) cepacia. J Clin Microbiol 1994; 32:2422-4. [PMID: 7529239 PMCID: PMC264078 DOI: 10.1128/jcm.32.10.2422-2424.1994] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ribotyping, a method of genotyping bacterial isolates for epidemiologic study, uses rRNA as a probe to detect chromosomal restriction fragment length polymorphisms. Although ribotyping is accurate, its utility is limited by the labor and time necessary for Southern blot analysis. PCR-ribotyping uses PCR to amplify the 16S-23S intergenic spacer region of the bacterial rRNA operon. Length heterogeneity in the spacer region has previously been found to be useful as an alternative to standard ribotyping in a study of Burkholderia (Pseudomonas) cepacia. To further analyze the accuracy of PCR-ribotyping, three groups of previously characterized isolates of B. cepacia were investigated. PCR-ribotyping grouped 90 isolates recovered from seven well-defined epidemics into the correct outbreak group with a mean concordance of 93%. Both standard ribotyping and PCR-ribotyping separated 15 unrelated isolates into 14 types. In an analysis of 83 B. cepacia isolates from chronically colonized cystic fibrosis patients, the concordance of PCR-ribotyping with standard ribotyping ranged from 83 to 100%, with a mean of 98%. One isolate from a chronically colonized patient had a different type by standard ribotyping but was identical to the other isolates from this patient by PCR-ribotyping. Thus, PCR-ribotyping is a rapid and accurate method for typing B. cepacia and is less labor intensive than standard ribotyping.
Collapse
Affiliation(s)
- S E Dasen
- Department of Pediatrics, Medical College of Pennsylvania, Philadelphia 19129
| | | | | | | |
Collapse
|
30
|
Walter AE, Turner DH, Kim J, Lyttle MH, Müller P, Mathews DH, Zuker M. Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. Proc Natl Acad Sci U S A 1994; 91:9218-22. [PMID: 7524072 PMCID: PMC44783 DOI: 10.1073/pnas.91.20.9218] [Citation(s) in RCA: 338] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An RNA model system consisting of an oligomer binding to a 4-nt overhang at the 5' end of a hairpin stem provides thermodynamic parameters for helix-helix interfaces. In a sequence-dependent manner, oligomers bind up to 1000-fold more tightly adjacent to the hairpin stem than predicted for binding to a free tetramer at 37 degrees C. For the interface (/) in [formula: see text] additional free energy change, delta delta G 37 degrees, for binding is roughly the nearest-neighbor delta G 37 degrees for propagation of an uninterrupted helix of equivalent sequence, CGGC. When X and Z are omitted, the delta delta 37 degrees is even more favorable by approximately 1 kcal/mol (1 cal = 4.184J). On average, predictions of 11 RNA secondary structures improve from 67 to 74% accuracy by inclusion of similar stacking contributions.
Collapse
Affiliation(s)
- A E Walter
- Department of Chemistry, University of Rochester, NY 14627-0216
| | | | | | | | | | | | | |
Collapse
|
31
|
Rönner SG, Stackebrandt E. Development of 23S rDNA-oligonucleotide Probes for the Identification of Salmonella species. Syst Appl Microbiol 1994. [DOI: 10.1016/s0723-2020(11)80017-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Rönner SG, Stackebrandt E. Further Evidence for the Genetic Heterogeneity of Clostridium botulinum as Determined by 23S rDNA Oligonucleotide Probing. Syst Appl Microbiol 1994. [DOI: 10.1016/s0723-2020(11)80005-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Processing of truncated mouse or human rRNA transcribed from ribosomal minigenes transfected into mouse cells. Mol Cell Biol 1994. [PMID: 8196643 DOI: 10.1128/mcb.14.6.4044] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The processing of pre-rRNA in eukaryotic cells involves a complex pattern of nucleolytic reactions taking place in preribosomes with the participation of several nonribosomal proteins and small nuclear RNAs. The mechanism of these reactions remains largely unknown, mainly because of the absence of faithful in vitro assays for most processing steps. We have developed a pre-rRNA processing system using the transient expression of ribosomal minigenes transfected into cultured mouse cells. Truncated mouse or human rRNA genes are faithfully transcribed under the control of mouse promoter and terminator signals. The fate of these transcripts is analyzed by the use of reporter sequences flanking the rRNA gene inserts. Both mouse and human transcripts, containing the 3' end of 18S rRNA-encoding DNA (rDNA), internal transcribed spacer (ITS) 1, 5.8S rDNA, ITS 2, and the 5' end of 28S rDNA, are processed predominantly to molecules coterminal with the natural mature rRNAs plus minor products corresponding to cleavages within ITS 1 and ITS 2. To delineate cis-acting signals in pre-rRNA processing, we studied series of more truncated human-mouse minigenes. A faithful processing at the 18S rRNA/ITS 1 junction can be observed with transcripts containing only the 60 3'-terminal nucleotides of 18S rRNA and the 533 proximal nucleotides of ITS 1. However, further truncation of 18S rRNA (to 8 nucleotides) or of ITS 1 (to 48 nucleotides) abolishes the cleavage of the transcript. Processing at the ITS 2/28S rRNA junction is observed with truncated transcripts lacking the 5.8S rRNA plus a major part of ITS 2 and containing only 502 nucleotides of 28S rRNA. However, further truncation of the 28S rRNA segment to 217 nucleotides abolishes processing. Minigene transcripts containing most internal sequences of either ITS 1 or ITS 2, but devoid of ITS/mature rRNA junctions, are not processed, suggesting that the cleavages in vivo within either ITS segment are dependent on the presence in cis of mature rRNA sequences. These results show that the major cis signals for pre-rRNA processing at the 18S rRNA/ITS 1 or the ITS2/28S rRNA junction involve solely a limited critical length of the respective mature rRNA and adjacent spacer sequences.
Collapse
|
34
|
Abstract
Acremonium coenophialum Morgan-Jones et W. Gams is a maternally transmitted fungal symbiont (endophyte) of the important forage grass Festuca arundinacea Schreb. (tall fescue), and provides biological protection and enhanced fitness to its host, but its anti-mammalian ergot alkaloids detract from the usefulness of tall fescue as forage for livestock. Molecular genetic techniques and materials are being developed in order to specifically eliminate the gene(s) encoding the first enzyme in ergot alkaloid biosynthesis. These techniques will also facilitate basic studies, such as host-fungus compatibility or biosynthesis of insecticidal alkaloids. Molecular phylogenetics indicate that endophytes related to A. coenophialum have evolved on multiple occasions from strains of Epichloë typhina (Ascomycotina, Clavicipitaceae), for which the sexual cycle is known. These studies also reveal significant diversity among seedborne endophytes in individual grass species. Thus, the endophytes are an important source of biochemical potential and genetic diversity in grass-fungus symbiota.
Collapse
Affiliation(s)
- C L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington
| | | |
Collapse
|
35
|
Hadjiolova KV, Normann A, Cavaillé J, Soupène E, Mazan S, Hadjiolov AA, Bachellerie JP. Processing of truncated mouse or human rRNA transcribed from ribosomal minigenes transfected into mouse cells. Mol Cell Biol 1994; 14:4044-56. [PMID: 8196643 PMCID: PMC358770 DOI: 10.1128/mcb.14.6.4044-4056.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The processing of pre-rRNA in eukaryotic cells involves a complex pattern of nucleolytic reactions taking place in preribosomes with the participation of several nonribosomal proteins and small nuclear RNAs. The mechanism of these reactions remains largely unknown, mainly because of the absence of faithful in vitro assays for most processing steps. We have developed a pre-rRNA processing system using the transient expression of ribosomal minigenes transfected into cultured mouse cells. Truncated mouse or human rRNA genes are faithfully transcribed under the control of mouse promoter and terminator signals. The fate of these transcripts is analyzed by the use of reporter sequences flanking the rRNA gene inserts. Both mouse and human transcripts, containing the 3' end of 18S rRNA-encoding DNA (rDNA), internal transcribed spacer (ITS) 1, 5.8S rDNA, ITS 2, and the 5' end of 28S rDNA, are processed predominantly to molecules coterminal with the natural mature rRNAs plus minor products corresponding to cleavages within ITS 1 and ITS 2. To delineate cis-acting signals in pre-rRNA processing, we studied series of more truncated human-mouse minigenes. A faithful processing at the 18S rRNA/ITS 1 junction can be observed with transcripts containing only the 60 3'-terminal nucleotides of 18S rRNA and the 533 proximal nucleotides of ITS 1. However, further truncation of 18S rRNA (to 8 nucleotides) or of ITS 1 (to 48 nucleotides) abolishes the cleavage of the transcript. Processing at the ITS 2/28S rRNA junction is observed with truncated transcripts lacking the 5.8S rRNA plus a major part of ITS 2 and containing only 502 nucleotides of 28S rRNA. However, further truncation of the 28S rRNA segment to 217 nucleotides abolishes processing. Minigene transcripts containing most internal sequences of either ITS 1 or ITS 2, but devoid of ITS/mature rRNA junctions, are not processed, suggesting that the cleavages in vivo within either ITS segment are dependent on the presence in cis of mature rRNA sequences. These results show that the major cis signals for pre-rRNA processing at the 18S rRNA/ITS 1 or the ITS2/28S rRNA junction involve solely a limited critical length of the respective mature rRNA and adjacent spacer sequences.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- Blotting, Northern
- DNA, Ribosomal/metabolism
- Humans
- L Cells
- Mice
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Plasmids
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 18S/biosynthesis
- RNA, Ribosomal, 18S/isolation & purification
- RNA, Ribosomal, 28S/biosynthesis
- RNA, Ribosomal, 28S/isolation & purification
- Restriction Mapping
- Ribosomes/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- K V Hadjiolova
- Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Lieberman K, Dahlberg A. The importance of conserved nucleotides of 23 S ribosomal RNA and transfer RNA in ribosome catalyzed peptide bond formation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33988-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Kjer KM, Baldridge GD, Fallon AM. Mosquito large subunit ribosomal RNA: simultaneous alignment of primary and secondary structure. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1217:147-55. [PMID: 8110829 DOI: 10.1016/0167-4781(94)90028-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the sequence and propose a secondary structure for the cytoplasmic large subunit (5.8S and 28S) ribosomal RNA of the mosquito, Aedes albopictus, in an aligned format that incorporates secondary structure comparisons with Homo sapiens, Drosophila melanogaster, and Escherichia coli ribosomal RNAs. This format facilitates comparison of subtle differences between models, allowing nucleotide by nucleotide analysis at each position of discrepancy. Comparison of the A. albopictus large subunit ribosomal RNA gene with those from other species revealed new compensatory base changes. The aligned format focuses attention to the specific contribution of the A. albopictus sequence by facilitating comparison with the sequence of another dipteran, D. melanogaster. This is the second report of a complete large subunit rRNA sequence from an arthropod, and the first 28S rRNA sequence for a member of the lower Diptera (Nematocera).
Collapse
Affiliation(s)
- K M Kjer
- University of Minnesota, Department of Entomology, St. Paul 55108
| | | | | |
Collapse
|
38
|
Kordes E, Jock S, Fritsch J, Bosch F, Klug G. Cloning of a gene involved in rRNA precursor processing and 23S rRNA cleavage in Rhodobacter capsulatus. J Bacteriol 1994; 176:1121-7. [PMID: 8106323 PMCID: PMC205164 DOI: 10.1128/jb.176.4.1121-1127.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In Rhodobacter capsulatus wild-type strains, the 23S rRNA is cleaved into [16S] and [14S] rRNA molecules. Our data show that a region predicted to form a hairpin-loop structure is removed from the 23S rRNA during this processing step. We have analyzed the processing of rRNA in the wild type and in the mutant strain Fm65, which does not cleave the 23S rRNA. In addition to the lack of 23S rRNA processing, strain Fm65 shows impeded processing of a larger 5.6-kb rRNA precursor and slow maturation of 23S and 16S rRNAs from pre-23S and pre-16S rRNA species. Similar effects have also been described previously for Escherichia coli RNase III mutants. Processing of the 5.6-kb precursor was independent of protein synthesis, while the cleavage of 23S rRNA to generate 16S and 14S rRNA required protein synthesis. We identified a DNA fragment of the wild-type R. capsulatus chromosome that conferred normal processing of 5.6-kb rRNA and 23S rRNA when it was expressed in strain Fm65.
Collapse
Affiliation(s)
- E Kordes
- Zentrum für Molekulare Biologie Heidelberg, Germany
| | | | | | | | | |
Collapse
|
39
|
Emerick VL, Woodson SA. Self-splicing of the Tetrahymena pre-rRNA is decreased by misfolding during transcription. Biochemistry 1993; 32:14062-7. [PMID: 8268185 DOI: 10.1021/bi00213a040] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
RNA processing depends in part on the ability of nascent transcripts to fold into the desired conformation. Self-splicing of the group I intron from Tetrahymena was used to assess the folded state of preribosomal RNA transcripts when synthesized in vitro. A simple method for isolating nondenatured RNA from a T7 RNA polymerase reaction was tested. The intron alone is fully active when transcribed at 30 degrees C, suggesting that the active structure is both kinetically and thermodynamically favored. Longer precursor RNAs, however, were less than completely active in self-splicing. Full activity, as judged by both the initial rate and the extent of product formation, was restored by brief incubation at 95 degrees C and rapid cooling in the presence of magnesium ion. This result did not depend on the length of the precursor RNA in any simple way, but correlated loosely with the presence of intact exon domains. When transcribed in the absence of cellular proteins, a significant portion of the pre-RNA appears to be trapped in a conformation that does not readily undergo the first step of splicing.
Collapse
Affiliation(s)
- V L Emerick
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742-2021
| | | |
Collapse
|
40
|
Utility of the D1 domain of nuclear 28S rRNA for phylogenetic inference in the Digenea. Syst Parasitol 1993. [DOI: 10.1007/bf00009725] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Ree HK, Larsen N, Gutell RR, Zimmermann RA. The Primary and Secondary Structures of the 23S Ribosomal RNA from Thermoplasma acidophilum Define an Ancient Archaeal Divergence. Syst Appl Microbiol 1993. [DOI: 10.1016/s0723-2020(11)80263-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
O'Connor M, Dahlberg AE. Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. Proc Natl Acad Sci U S A 1993; 90:9214-8. [PMID: 8415679 PMCID: PMC47533 DOI: 10.1073/pnas.90.19.9214] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A plasmid carrying a mutation in the highly conserved base U2555 in Escherichia coli 23S rRNA was isolated by selecting for suppression of the -1 frameshift mutation trpE91. U2555 is normally protected in chemical footprinting experiments by the aminoacyl residue of A-site-bound tRNA. Substitution of U2555 by adenine or guanine (but not by cytosine) increased readthrough of all three stop codons and +1 and -1 frameshifting. These effects on translational fidelity demonstrate the importance of U2555 for selection of the correct tRNA at the ribosomal A site.
Collapse
Affiliation(s)
- M O'Connor
- Section of Biochemistry, Brown University, Providence, RI 02912
| | | |
Collapse
|
43
|
Gutell RR, Gray MW, Schnare MN. A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res 1993; 21:3055-74. [PMID: 8332527 PMCID: PMC309733 DOI: 10.1093/nar/21.13.3055] [Citation(s) in RCA: 297] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- R R Gutell
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | |
Collapse
|
44
|
An ZQ, Siegel MR, Hollin W, Tsai HF, Schmidt D, Schardl CL. Relationships among non-Acremonium sp. fungal endophytes in five grass species. Appl Environ Microbiol 1993; 59:1540-8. [PMID: 8517749 PMCID: PMC182116 DOI: 10.1128/aem.59.5.1540-1548.1993] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Many cool-season grasses (subfamily Pooideae) possess maternally transmitted fungal symbionts which cause no known pathology and often enhance the ecological fitness and biochemical capabilities of the grass hosts. The most commonly described endophytes are the Acremonium section Albo-lanosa spp. (Acremonium endophytes), which are conidial anamorphs (strictly asexual forms) of Epichloë typhina. Other endophytes which have been noted are a Gliocladium-like fungus in perennial ryegrass (Lolium perenne L.) and a Phialophora-like fungus in tall fescue (Festuca arundinacea Schreb.). Here, we report the identification of additional non-Acremonium sp. endophytes (herein designated p-endophytes) in three more grass species: Festuca gigantea, Festuca arizonica, and Festuca pratensis. In each grass species, the p-endophyte was cosymbiotic with an Acremonium endophyte. Serological analysis and sequence determinations of variable portions of their rRNA genes indicated that the two previously identified non-Acremonium endophytes are closely related to each other and to the newly identified p-endophytes. Therefore, the p-endophytes represent a second group of widely distributed grass symbionts.
Collapse
Affiliation(s)
- Z Q An
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091
| | | | | | | | | | | |
Collapse
|
45
|
An alternative helix in the 26S rRNA promotes excision and integration of the Tetrahymena intervening sequence. Mol Cell Biol 1993. [PMID: 8380892 DOI: 10.1128/mcb.13.2.1137] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly conserved ribosomal stem-loop immediately upstream of the Tetrahymena splice junction can inhibit both forward and reverse self-splicing by competing with base pairing between the 5' exon and the guide sequence of the intervening sequence. Formation of this unproductive hairpin is preferred in precursor RNAs with short exons and results in a lower rate of splicing. Inhibition of self-splicing is not observed in longer precursors, suggesting that additional interactions in the extended exons can influence the equilibrium between the productive and unproductive hairpins at the 5' splice site. An alternative pairing upstream of the 5' splice site has been identified and is proposed to stabilize the active conformer of the pre-rRNA. Nucleotide changes that alter the ability to form this additional helix were made, and the self-splicing rates were compared. Precursors in which the proposed stem is stabilized splice more rapidly than the wild type, whereas RNAs that contain a base mismatch splice more slowly. The ability of DNA oligomers to bind the RNA, as detected by RNase H digestion, correlates with the predicted secondary structure of the RNA. We also show that a 236-nucleotide RNA containing the natural splice junction is a substrate for intervening sequence integration. As in the forward reaction, reverse splicing is enhanced in ligated exon substrates in which the alternative rRNA pairing is more stable.
Collapse
|
46
|
Woodson SA, Emerick VL. An alternative helix in the 26S rRNA promotes excision and integration of the Tetrahymena intervening sequence. Mol Cell Biol 1993; 13:1137-45. [PMID: 8380892 PMCID: PMC358998 DOI: 10.1128/mcb.13.2.1137-1145.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A highly conserved ribosomal stem-loop immediately upstream of the Tetrahymena splice junction can inhibit both forward and reverse self-splicing by competing with base pairing between the 5' exon and the guide sequence of the intervening sequence. Formation of this unproductive hairpin is preferred in precursor RNAs with short exons and results in a lower rate of splicing. Inhibition of self-splicing is not observed in longer precursors, suggesting that additional interactions in the extended exons can influence the equilibrium between the productive and unproductive hairpins at the 5' splice site. An alternative pairing upstream of the 5' splice site has been identified and is proposed to stabilize the active conformer of the pre-rRNA. Nucleotide changes that alter the ability to form this additional helix were made, and the self-splicing rates were compared. Precursors in which the proposed stem is stabilized splice more rapidly than the wild type, whereas RNAs that contain a base mismatch splice more slowly. The ability of DNA oligomers to bind the RNA, as detected by RNase H digestion, correlates with the predicted secondary structure of the RNA. We also show that a 236-nucleotide RNA containing the natural splice junction is a substrate for intervening sequence integration. As in the forward reaction, reverse splicing is enhanced in ligated exon substrates in which the alternative rRNA pairing is more stable.
Collapse
Affiliation(s)
- S A Woodson
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20740-2021
| | | |
Collapse
|
47
|
Gutell RR, Power A, Hertz GZ, Putz EJ, Stormo GD. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res 1992; 20:5785-95. [PMID: 1454539 PMCID: PMC334417 DOI: 10.1093/nar/20.21.5785] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Comparative sequence analysis addresses the problem of RNA folding and RNA structural diversity, and is responsible for determining the folding of many RNA molecules, including 5S, 16S, and 23S rRNAs, tRNA, RNAse P RNA, and Group I and II introns. Initially this method was utilized to fold these sequences into their secondary structures. More recently, this method has revealed numerous tertiary correlations, elucidating novel RNA structural motifs, several of which have been experimentally tested and verified, substantiating the general application of this approach. As successful as the comparative methods have been in elucidating higher-order structure, it is clear that additional structure constraints remain to be found. Deciphering such constraints requires more sensitive and rigorous protocols, in addition to RNA sequence datasets that contain additional phylogenetic diversity and an overall increase in the number of sequences. Various RNA databases, including the tRNA and rRNA sequence datasets, continue to grow in number as well as diversity. Described herein is the development of more rigorous comparative analysis protocols. Our initial development and applications on different RNA datasets have been very encouraging. Such analyses on tRNA, 16S and 23S rRNA are substantiating previously proposed associations and are now beginning to reveal additional constraints on these molecules. A subset of these involve several positions that correlate simultaneously with one another, implying units larger than a basepair can be under a phylogenetic constraint.
Collapse
Affiliation(s)
- R R Gutell
- MCD Biology, University of Colorado, Boulder 80309
| | | | | | | | | |
Collapse
|
48
|
van Keulen H, Gutell RR, Campbell SR, Erlandsen SL, Jarroll EL. The nucleotide sequence of the entire ribosomal DNA operon and the structure of the large subunit rRNA of Giardia muris. J Mol Evol 1992; 35:318-28. [PMID: 1404417 DOI: 10.1007/bf00161169] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The total nucleotide sequence of the rDNA of Giardia muris, an intestinal protozoan parasite of rodents, has been determined. The repeat unit is 7668 basepairs (bp) in size and consists of a spacer of 3314 bp, a small-subunit rRNA (SSU-rRNA) gene of 1429, and a large-subunit rRNA (LSU-rRNA) gene of 2698 bp. The spacer contains long direct repeats and is heterogeneous in size. The LSU-rRNA of G. muris was compared to that of the human intestinal parasite Giardia duodenalis, to the bird parasite Giardia ardeae, and to that of Escherichia coli. The LSU-rRNA has a size comparable to the 23S rRNA of E. coli but shows structural features typical for eukaryotes. Some variable regions are typically small and account for the overall smaller size of this rRNA. The structure of the G. muris LSU-rRNA is similar to that of the other Giardia rRNA, but each rRNA has characteristic features residing in a number of variable regions.
Collapse
Affiliation(s)
- H van Keulen
- Department of Biology, Cleveland State University, OH 44115
| | | | | | | | | |
Collapse
|
49
|
Kostman JR, Edlind TD, LiPuma JJ, Stull TL. Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping. J Clin Microbiol 1992; 30:2084-7. [PMID: 1380010 PMCID: PMC265447 DOI: 10.1128/jcm.30.8.2084-2087.1992] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Traditional ribotyping detects genomic restriction fragment length polymorphisms by probing chromosomal DNA with rRNA. Although it is a powerful method for determining the molecular epidemiology of bacterial pathogens, technical difficulties limit its application. As an alternative, polymorphisms were sought in the 16S-23S spacer regions of bacterial rRNA genes by use of the polymerase chain reaction (PCR). Chromosomal DNA from isolates of Pseudomonas cepacia was used as a template in the PCR with oligonucleotide primers complementary to highly conserved sequences flanking the spacer regions of the rRNA genes. Length polymorphisms in the amplified DNA distinguished unrelated isolates of P. cepacia. Isolates of P. cepacia previously implicated in person-to-person transmission were shown to have identical amplification patterns. These data demonstrate the utility of this new PCR ribotyping method for determining the molecular epidemiology of bacterial species.
Collapse
Affiliation(s)
- J R Kostman
- Department of Medicine, Temple University Health Sciences Center, Philadelphia, Pennsylvania 19140
| | | | | | | |
Collapse
|
50
|
Graack HR, Grohmann L, Kitakawa M, Schäfer KL, Kruft V. YmL9, a nucleus-encoded mitochondrial ribosomal protein of yeast, is homologous to L3 ribosomal proteins from all natural kingdoms and photosynthetic organelles. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:373-80. [PMID: 1597181 DOI: 10.1111/j.1432-1033.1992.tb16937.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear gene for mitochondrial ribosomal protein YmL9 (MRP-L9) of yeast has been cloned and sequenced. The deduced amino acid sequence characterizes YmL9 as a basic (net charge + 30) protein of 27.5 kDa with a putative signal peptide for mitochondrial import of 19 amino acid residues. The intact MRP-L9 gene is essential for mitochondrial function and is located on chromosome XV or VII. YmL9 shows significant sequence similarities to Escherichia coli ribosomal protein L3 and related proteins from various organisms of all three natural kingdoms as well as photosynthetic organelles (cyanelles). The observed structural conservation is located mostly in the C-terminal half and is independent of the intracellular location of the corresponding genes [Graack, H.-R., Grohmann, L. & Kitakawa, M. (1990) Biol. Chem. Hoppe Seyler 371, 787-788]. YmL9 shows the highest degree of sequence similarity to its eubacterial and cyanelle homologues and is less related to the archaebacterial or eukaryotic cytoplasmic ribosomal proteins. Due to their high sequence similarity to the YmL9 protein two mammalian cytoplasmic ribosomal proteins [MRL3 human and rat; Ou, J.-H., Yen, T. S. B., Wang, Y.-F., Kam, W. K. & Rutter, W. J. (1987) Nucleic Acids Res. 15, 8919-8934] are postulated to be true nucleus-encoded mitochondrial ribosomal proteins.
Collapse
Affiliation(s)
- H R Graack
- Max-Planck-Institut für Molekulare Genetik, Abt. Wittmann, Berlin, Federal Republic of Germany
| | | | | | | | | |
Collapse
|