1
|
Eick A, Xiao Z, Langer P, Weisz K. Spectroscopic studies on the formation and thermal stability of DNA triplexes with a benzoannulated delta-carboline-oligonucleotide conjugate. Bioorg Med Chem 2008; 16:9106-12. [PMID: 18823783 DOI: 10.1016/j.bmc.2008.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/02/2008] [Accepted: 09/10/2008] [Indexed: 11/30/2022]
Abstract
A benzoannulated delta-carboline with a phenyl substituent has been covalently tethered to the 3'-end of a triplex-forming oligonucleotide and its ability to bind and stabilize DNA triple helices has been examined by various spectroscopic methods. UV thermal melting experiments were conducted with different hairpin duplexes and with a complementary single-stranded oligonucleotide as targets for the conjugate. The delta-carboline ligand preferentially binds triplexes over duplexes and leads to a temperature increase of the triplex-to-duplex transition by up to 23 degrees C. The results obtained from UV, CD and fluorescence measurements suggest that the delta-carboline ligand exhibits specific interactions with a triplex and favors binding by intercalation at the triplex-duplex junction.
Collapse
Affiliation(s)
- Andrea Eick
- Institut für Biochemie, Ernst-Moritz-Arndt-Universität Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
2
|
Santini GPH, Pakleza C, Cognet JAH. DNA tri- and tetra-loops and RNA tetra-loops hairpins fold as elastic biopolymer chains in agreement with PDB coordinates. Nucleic Acids Res 2003; 31:1086-96. [PMID: 12560507 PMCID: PMC149216 DOI: 10.1093/nar/gkg196] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Revised: 11/07/2002] [Accepted: 11/23/2002] [Indexed: 01/30/2023] Open
Abstract
The biopolymer chain elasticity (BCE) approach and the new molecular modelling methodology presented previously are used to predict the tri- dimensional backbones of DNA and RNA hairpin loops. The structures of eight remarkably stable DNA or RNA hairpin molecules closed by a mispair, recently determined in solution by NMR and deposited in the PDB, are shown to verify the predicted trajectories by an analysis automated for large numbers of PDB conformations. They encompass: one DNA tetraloop, -GTTA-; three DNA triloops, -AAA- or -GCA-; and four RNA tetraloops, -UUCG-. Folding generates no distortions and bond lengths and bond angles of main atoms of the sugar-phosphate backbone are well restored upon energy refinement. Three different methods (superpositions, distance of main chain atoms to the elastic line and RMSd) are used to show a very good agreement between the trajectories of sugar-phosphate backbones and between entire molecules of theoretical models and of PDB conformations. The geometry of end conditions imposed by the stem is sufficient to dictate the different characteristic DNA or RNA folding shapes. The reduced angular space, consisting of the new parameter, angle Omega, together with the chi angle offers a simple, coherent and quantitative description of hairpin loops.
Collapse
Affiliation(s)
- Guillaume P H Santini
- Laboratoire de Physico-chimie Biomoléculaire et Cellulaire, UMR 7033 CNRS, T22-12, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France
| | | | | |
Collapse
|
3
|
Pakleza C, Cognet JAH. Biopolymer Chain Elasticity: A novel concept and a least deformation energy principle predicts backbone and overall folding of DNA TTT hairpins in agreement with NMR distances. Nucleic Acids Res 2003; 31:1075-85. [PMID: 12560506 PMCID: PMC149214 DOI: 10.1093/nar/gkg194] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A new molecular modelling methodology is presented and shown to apply to all published solution structures of DNA hairpins with TTT in the loop. It is based on the theory of elasticity of thin rods and on the assumption that single-stranded B-DNA behaves as a continuous, unshearable, unstretchable and flexible thin rod. It requires four construction steps: (i) computation of the tri-dimensional trajectory of the elastic line, (ii) global deformation of single-stranded helical DNA onto the elastic line, (iii) optimisation of the nucleoside rotations about the elastic line, (iv) energy minimisation to restore backbone bond lengths and bond angles. This theoretical approach called 'Biopolymer Chain Elasticity' (BCE) is capable of reproducing the tri-dimensional course of the sugar-phosphate chain and, using NMR-derived distances, of reproducing models close to published solution structures. This is shown by computing three different types of distance criteria. The natural description provided by the elastic line and by the new parameter, Omega, which corresponds to the rotation angles of nucleosides about the elastic line, offers a considerable simplification of molecular modelling of hairpin loops. They can be varied independently from each other, since the global shape of the hairpin loop is preserved in all cases.
Collapse
Affiliation(s)
- Christophe Pakleza
- Laboratoire de Physico-chimie Biomoléculaire et Cellulaire, UMR 7033 CNRS, T22-12, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France
| | | |
Collapse
|
4
|
Chou SH, Tseng YY, Chu BY. Natural abundance heteronuclear NMR studies of the T3 mini-loop hairpin in the terminal repeat of the adenoassociated virus 2. JOURNAL OF BIOMOLECULAR NMR 2000; 17:1-16. [PMID: 10909862 DOI: 10.1023/a:1008380031690] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA hairpin containing a T3 loop, as occurs in the terminal repeat of a popular gene therapy vector (Adenoassociated Virus 2, AAV2), has been extensively studied using homo- and heteronuclear NMR experiments. Almost complete assignment of the proton and carbon resonances, including H5'(Pro-S) and H5'(Pro-R) protons, has been accomplished at natural abundance. NOESY spectra in H2O and D2O have revealed many unusual NOEs, which, when combined with the epsilon, beta, gamma, and chi torsion angles determined from heteronuclear 1H-13C, 1H-31P, and 13C-31P coupling constants, have allowed for a more detailed picture of the T3 mini-loop hairpin. The three loop thymidines are all unpaired, yet are highly structured when bracketed by a 5'-GC...GC-3' stem sequence. The structure determined in this manuscript is considerably different from several other structures reported so far. Contrary to an RNA oligomer with a central U3 sequence that has the tendency to form a duplex with three U*U mismatches, the d(GAAGC-TTT-GCTTC) sequence exists mostly as a hairpin under millimolar NMR conditions. Since T3 triloop was found to be an essential element for the site-specific non-homologous integration of the AAV2 virus, and modification of the T3 loop residue abolishes such capability, the structure we report here may be of biological significance.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, Chemistry Department, National Chung-Hsing University, Taichung, Taiwan.
| | | | | |
Collapse
|
5
|
Chou SH, Tseng YY, Chu BY. Stable formation of a pyrimidine-rich loop hairpin in a cruciform promoter. J Mol Biol 1999; 292:309-20. [PMID: 10493877 DOI: 10.1006/jmbi.1999.3066] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have determined the solution structure of a TCC-loop hairpin in the cruciform promoter for the bacteriophage N4 virion RNA polymerase (N4 vRNAP). This hairpin and its complementary GGA-loop hairpin are extruded at physiological superhelical density and are required for vRNAP recognition. Contrary to its complementary GGA-loop, the three pyrimidines in the TCC-loop are all unpaired. However, with the help of two juxtaposed stem Watson-Crick G.C base-pairs, each nucleotide in the loop employs a special method to stabilize the hairpin structure. The resulting structures display extensive loop base-stacking rearrangement yet minor backbone distortion, which is largely accomplished through some loop zeta and alpha torsional angle changes. Consistent with the structural studies, UV melting of the GAAGCTCCGCTTC hairpin revealed a higher melting temperature (66 degrees C) than that of the GAACGTCCCGTTC hairpin (58 degrees C) with reversed stem G.C base-pairs, indicating significant contribution from the extra three loop-stem H-bonds. Thermodynamic parameters DeltaG degrees 25of the GAAGCTCCGCTTC hairpin and its complementary GAAGCGGAGCTTC hairpin are -4.1 and -4. 3 kcal/mol respectively, indicating approximately equal contribution of each hairpin to the cruciform formation of the N4 virion RNA polymerase promoter. No significant loop dynamics in the microsecond to millisecond NMR time-scale was observed, and the abundant well-defined exchangeable and non-exchangeable proton NOEs allowed us to efficiently determine a well-converged family for the final structures of the TCC-loop hairpin.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, 40227, Taiwan.
| | | | | |
Collapse
|
6
|
Bigey P, Knox JD, Croteau S, Bhattacharya SK, Théberge J, Szyf M. Modified oligonucleotides as bona fide antagonists of proteins interacting with DNA. Hairpin antagonists of the human DNA methyltransferase. J Biol Chem 1999; 274:4594-606. [PMID: 9988694 DOI: 10.1074/jbc.274.8.4594] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The study of the biological role of DNA methyltransferase (DNA MeTase) has been impeded by the lack of direct and specific inhibitors. This report describes the design of potent DNA based antagonists of DNA MeTase and their utilization to define the interactions of DNA MeTase with its substrate and to study its biological role. We demonstrate that the size, secondary structure, hemimethylation, and phosphorothioate modification strongly affect the antagonists interaction with DNA MeTase whereas base substitutions do not have a significant effect. To study whether DNA MeTase is critical for cellular transformation, human lung non-small carcinoma cells were treated with the DNA MeTase antagonists. Ex vivo, hairpin inhibitors of DNA MeTase are localized to the cell nucleus in lung cancer cells. They inhibit DNA MeTase, cell growth, and anchorage independent growth (an indicator of tumorigenesis in cell culture) in a dose-dependent manner. The inhibitors developed in this study are the first documented example of direct inhibitors of DNA MeTase in living cells and of modified oligonucleotides as bona fide antagonists of critical cellular proteins.
Collapse
Affiliation(s)
- P Bigey
- Department of Pharmacology, McGill University, 3655 Drummond Street, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Mauffret O, Amir-Aslani A, Maroun RG, Monnot M, Lescot E, Fermandjian S. Comparative structural analysis by [1H,31P]-NMR and restrained molecular dynamics of two DNA hairpins from a strong DNA topoisomerase II cleavage site. J Mol Biol 1998; 283:643-55. [PMID: 9784373 DOI: 10.1006/jmbi.1998.2095] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural analysis of two single-stranded DNAs d(AGCTTATCATCGATAAGCT) (ATC-19) and d(AGCTTATCGATGATAAGCT) (GAT-19) was performed by NMR and restrained molecular dynamics. These oligonucleotides reproduce the 15-33 segment of phage pBR322 DNA, which contains a strong cleavage site for topoisomerase II coupled to the antitumor drugs VP-16 and ellipticine. Because of their partial palindromic nature, the two oligonucleotides ATC-19 and GAT-19 may fold back into stable hairpin structures, consisting of a stem of eight base-pairs and a loop of three residues. NMR assignments and conformational parameters were determined from combined 2D NOESY, COSY and 1H-31P spectra. Conformations of ATC-19 and GAT-19 hairpins were calculated using the X-PLOR 3.1 program. Structures were generated through simulated annealing procedures starting from 50 structures with randomized torsion angles. A good convergence was observed for ATC-19 molecules, while no consensus was found for GAT-19. Within the GAT-19 loop, the base stacking was poor and no hydrogen bond could be detected. In contrast, ATC-19 displayed a well-defined three residue loop stabilized by both extensive base stackings and hydrogen bonding between the N3 atom of the adenine ring and the amino group of the cytosine ring. The results confirm our earlier ATC-19 structure obtained by a completely different calculation procedure (JUMNA) and the higher thermal stability of ATC-19 compared to GAT-19. Moreover, due to its mismatched base-pair, the ATC-19 loop may be better described as a single residue loop rather than a three residue loop. Comparison of this loop to those containing sheared purine.purine base-pairs revealed striking resemblances, particularly on the backbone angle combination. Finally, the differences observed between the ATC-19 and GAT-19 structures could help toward understanding the sequential cleavage of DNA strands by topoisomerase II.
Collapse
Affiliation(s)
- O Mauffret
- Départment de Biologie Structurale et de Pharmacologie Moléculaire (CNRS UMR 1772), PR2, Institut Gustave Roussy, Villejuif Cedex, 94805, France
| | | | | | | | | | | |
Collapse
|
8
|
Shepard W, Cruse WB, Fourme R, de la Fortelle E, Prangé T. A zipper-like duplex in DNA: the crystal structure of d(GCGAAAGCT) at 2.1 A resolution. Structure 1998; 6:849-61. [PMID: 9687367 DOI: 10.1016/s0969-2126(98)00087-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The replication origin of the single-stranded (ss)DNA bacteriophage G4 has been proposed to fold into a hairpin loop containing the sequence GCGAAAGC. This sequence comprises a purine-rich motif (GAAA), which also occurs in conserved repetitive sequences of centromeric DNA. ssDNA analogues of these sequences often show exceptional stability which is associated with hairpin loops or unusual duplexes, and may be important in DNA replication and centromere function. Nuclear magnetic resonance (NMR) studies indicate that the GCGAAAGC sequence forms a hairpin loop in solution, while centromere-like repeats dimerise into unusual duplexes. The factors stabilising these unusual secondary structure elements in ssDNA, however, are poorly understood. RESULTS The nonamer d(GCGAAAGCT) was crystallised as a bromocytosine derivative in the presence of cobalt hexammine. The crystal structure, solved by the multiple wavelength anomalous dispersion (MAD) method at the bromine K-edge, reveals an unexpected zipper-like motif in the middle of a standard B-DNA duplex. Four central adenines, flanked by two sheared G.A mismatches, are intercalated and stacked on top of each other without any interstrand Watson-Crick base pairing. The cobalt hexammine cation appears to participate only in crystal cohesion. CONCLUSIONS The GAAA consensus sequence can dimerise into a stable zipper-like duplex as well as forming a hairpin loop. The arrangement closes the minor groove and exposes the intercalated, unpaired, adenines to the solvent and DNA-binding proteins. Such a motif, which can transform into a hairpin, should be considered as a structural option in modelling DNA and as a potential binding site, where it could have a role in DNA replication, nuclease resistance, ssDNA genome packaging and centromere function.
Collapse
Affiliation(s)
- W Shepard
- LURE, Université Paris-Sud, Orsay, France.
| | | | | | | | | |
Collapse
|
9
|
Wijmenga SS, Kruithof M, Hilbers CW. Analysis of (1)H chemical shifts in DNA: Assessment of the reliability of (1)H chemical shift calculations for use in structure refinement. JOURNAL OF BIOMOLECULAR NMR 1997; 10:337-50. [PMID: 20859781 DOI: 10.1023/a:1018348123074] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The reliability of (1)H chemical shift calculations for DNA is assessed by comparing the experimentally and calculated chemical shifts of a reasonably large number of independently determined DNA structures. The calculated chemical shifts are based on semiempirical relations derived by Giessner-Prettre and Pullman [(1987) Q. Rev. Biophys., 20, 113-172]. The standard deviation between calculated and observed chemical shifts is found to be quite small, i.e. 0.17 ppm. This high accuracy, which is achieved without parameter adjustment, makes it possible to analyze the structural dependencies of chemical shifts in a reliable fashion. The conformation-dependent (1)H chemical shift is mainly determined by the ring current effect and the local magnetic anisotropy, while the third possible effect, that of the electric field, is surprisingly small. It was further found that for a double helical environment, the chemical shift of the sugar protons, H2' to H5'', is mainly affected by the ring current and magnetic anisotropy of their own base. Consequently, the chemical shift of these sugar protons is determined by two factors, namely the type of base to which the sugar ring is attached, C, T, A, or G, and secondly by the χ-angle. In particular, the H2' shift varies strongly with the χ-angle, and strong upfield H2' shifts directly indicate that the χ-angle is in the syn domain. The H1' shift is not only strongly affected by its own base, but also by its 3'-neighboring base. On the other hand, base protons, in particular H5 of cytosine and methyl protons of thymine, are affected mainly by the 5'-neighboring bases, although some effect (0.2 ppm) stems from the 3'-neighboring base. The H2 protons are mainly affected by the 3'-neighboring base. As a result of these findings a simple scheme is proposed for sequential assignment of resonances from B-helices based on chemical shifts.
Collapse
Affiliation(s)
- S S Wijmenga
- Department of Medical Biochemistry and Biophysics, Umeå University, S-901 87, Umeå, Sweden
| | | | | |
Collapse
|
10
|
Abstract
Hairpin is a structural motif frequently observed in both RNA and DNA molecules. This motif is involved specifically in various biological functions (e.g., gene expression and regulation). To understand how these hairpin motifs perform their functions, it is important to study their structures. Compared to protein structural motifs, structures of nucleic acid hairpins are less known. Based on a set of reduced coordinates for describing nucleic acid structures and a sampling algorithm that equilibrates structures using Metropolis Monte Carlo simulation, we developed a method to model nucleic acid hairpin structures. This method was used to predict the structure of a DNA hairpin with a single-guanosine loop. The lowest energy structure from the ensemble of 200 sampled structures has a RMSD of < 1.5 A, from the structure determined using NMR. Additional constraints for the loop bases were introduced for modeling an RNA hairpin with two nucleotides in the loop. The modeled structure of this RNA hairpin has extensive base stacking and an extra hydrogen bond (between the CYT in the loop and a phosphate oxygen), as observed in the NMR structure.
Collapse
Affiliation(s)
- C S Tung
- Theoretical Division, Los Alamos National Laboratory, New Mexico 87545, USA.
| |
Collapse
|
11
|
Chou SH, Zhu L, Gao Z, Cheng JW, Reid BR. Hairpin loops consisting of single adenine residues closed by sheared A.A and G.G pairs formed by the DNA triplets AAA and GAG: solution structure of the d(GTACAAAGTAC) hairpin. J Mol Biol 1996; 264:981-1001. [PMID: 9000625 DOI: 10.1006/jmbi.1996.0691] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The DNA undecamers GTACAAAGTAC (AAA 11-mer) and GTACGAGGTAC (GAG 11-mer) have been studied in solution by high-resolution NMR spectroscopy. Both duplexes form stable hairpins containing single deoxyadenosine loops and stems containing five base-pairs that are closed at the loop end by sheared AxA and GxC pairs, respectively. These molecules thus contain new AAA and GAG loop turn motifs. All protons, including the chiral H5'/H5" protons of the loop residues, were assigned using NOESY, DQF-COSY and heteronuclear 1H-31P COSY experiments. The backbone torsion angles were constrained using experimental data from NOE crosspeaks, three-bond 1H-1H coupling constants and four-bond 1H-31P coupling constants and four-bond 1H-31P coupling constants. The AAA and GAG 11-mers form similar structures in solution. The detailed structure of the AAA 11-mer was determined by the combined use of NMR, distance geometry and energy minimization methods. This structure exhibits good stacking of the loop adenosine base on the closing 5Ax7A sheared pair, with the 6A base stacking on the 5A base and the 6A deoxyribose stacking with the 7A base. All sugars in the AAA 11-mer hairpin adopt the typical DNA C2'-endo conformation and a sharp backbone turn occurs between residues 6A and 7A. This loop turn is brought about mainly by a change in the backbone phosphate torsion angles from zeta(g-) alpha(g-) to zeta(g+) alphat(g+) at the turn. The gamma torsion angle of residue 7A in the closing sheared pair also changes from gauche+ to trans. In Pu1NPu2 loop turns of the GCA, AAA and GAG types, the chemical shift of the H4' proton of the loop deoxyribose depends on the nature of Pu2; this reflects the stacking of the loop sugar on the Pu2 base and the different ring current effects of A or G in this position.
Collapse
Affiliation(s)
- S H Chou
- Biochemistry Department, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
12
|
Zhu L, Chou SH, Reid BR. A single G-to-C change causes human centromere TGGAA repeats to fold back into hairpins. Proc Natl Acad Sci U S A 1996; 93:12159-64. [PMID: 8901550 PMCID: PMC37960 DOI: 10.1073/pnas.93.22.12159] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recently, we established that satellite III (TGGAA)n tandem repeats, which occur at the centromeres of human chromosomes, pair with themselves to form an unusual "self-complementary" antiparallel duplex containing (GGA)2 motifs in which two unpaired guanines from opposite strands intercalate between sheared G.A base pairs. In separate studies, we have also established that the GCA triplet does not form bimolecular (GCA)2 motifs but instead promotes the formation of hairpins containing a GCA-turn motif in which the loop contains a single cytidine closed by a sheared G.A pair. Since TGCAA is the most frequent variant of TGGAA found in satellite III repeats, we reasoned that the potential of this variant to form GCA-turn miniloop fold-back structures might be an important factor in modulating the local structure in natural (TGGAA)n repeats. We report here the NMR-derived solution structure of the heptadecadeoxynucleotide (G)TGGAATGCAATGGAA(C) in which a central TGCAA pentamer is flanked by two TGGAA pentamers. This 17-mer forms a rather unusual and very stable hairpin structure containing eight base pairs in the stem, only four of which are Watson-Crick pairs, and a loop consisting of a single cytidine residue. The stem contains a (GGA)2 motif with intercalative 14G/4G stacking between two sheared G.A base pairs; the loop end of the stem consists of a sheared 8G.10A closing pair with the cytosine base of the 9C loop stacked on 8G. The remarkable stability of this unusual hairpin structure (Tm = 63 degrees C) suggests that it probably plays an important role in modulating the folding of satellite III (TGGAA)n repeats at the centromere.
Collapse
Affiliation(s)
- L Zhu
- Chemistry Department, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
13
|
Kuklenyik Z, Yao S, Marzilli LG. Similar conformations of hairpins with TTT and TTTT sequences: NMR and molecular modeling evidence for T.T base pairs in the TTTT hairpin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:960-9. [PMID: 8665919 DOI: 10.1111/j.1432-1033.1996.00960.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The conformations of the d[G(1)C(2)G(3)C(4)-T(a)T(b)T(c)T(d)-G(5)C(6)G(7)C(8)] (T4) and d[G(1)C(2)G(3)C(4)-T(a)T(b)T(c)-G(5)C(6)G(7)C(8)] (T3) DNA hairpins have been studied. The 1H and 31P signals of the two hairpins have been nearly completely assigned by means of two-dimensional NMR spectroscopy in D2O (NOESY (two-dimensional nuclear Overhauser effect and exchange spectroscopy) at mixing times of 5, 50, 100, 300 and 500 ms, double-quantum-filtered correlation spectroscopy (DQF-COSY) and 1H-31P reverse chemical shift correlation (RCSC), and one-dimensional NOE spectra in 90% H2O. Conformational analysis using distance geometry (DG), molecular mechanics (MM) and molecular dynamics (MD) gave model conformations, which were evaluated by comparison of experimental and simulated 2D NOESY spectra. For the T4 sequence in T4, both NMR data and modeling indicated a T(a).T(d) wobble base pair. Although two types of T(a).T(d) base pairs are possible, the one with T(a)NH-T(d)O4 and T(a)O2-T(d)NH H-bonds was calculated to be more stable. Because the T(a).T(d) base pair of T4 extends the stem, there are only two residues (T(b) and T(c) in the loop. Although there are three residues in the T3 loop, the T(c) base projects into the solvent. The resulting conformational models have very similar loop folding patterns (FP): the bases of the two adjacent residues that begin the loop [T(b)T(c) of T4 and T(a)T(b) or T3] have a minor groove/major groove orientation with the first residue each having a trans alpha torsion angle; and the phosphodiester group that links the residues at the 3' end of the loop and the 5' top of the stem [T(c)pT(d) of T4 and T(c)pG(5) of T3] has a gauche+, gauche+ zeta,alpha conformation with a trans gamma angle for the second residue in both. These or similar features appear to be present in most of the few other hairpins studied previously by conformational methods. Thus, we believe that the conformations of the loops in T3 and T4 hairpins have greater similarities than previously recognized.
Collapse
Affiliation(s)
- Z Kuklenyik
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
14
|
Basti MM, Stuart JW, Lam AT, Guenther R, Agris PF. Design, biological activity and NMR-solution structure of a DNA analogue of yeast tRNA(Phe) anticodon domain. NATURE STRUCTURAL BIOLOGY 1996; 3:38-44. [PMID: 8548453 DOI: 10.1038/nsb0196-38] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Design of biologically active DNA analogues of the yeast tRNA(Phe) anticodon domain, tDNAPheAC, required the introduction of a d(m5C)-dependent, Mg(2+)-induced structural transition and the d(m1G) disruption of an intra-loop dC.dG base pair. The modifications were introduced at residues corresponding to m5C-40 and wybutosine-37 in tRNA(Phe). Modified tDNAPheAC inhibited translation by 50% at a tDNAPheAC:ribosome ratio of 8:1. The molecule's structure has been determined by NMR spectroscopy and restrained molecular dynamics with an overall r.m.s.d. of 2.8 A and 1.7 A in the stem, and is similar to the tRNA(Phe) anticodon domain in conformation and dimensions. The tDNAPheAC structure may provide a guide for the design of translation inhibitors as potential therapeutic agents.
Collapse
Affiliation(s)
- M M Basti
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | | | | | | | |
Collapse
|
15
|
Ippel JH, Lanzotti V, Galeone A, Mayol L, Van den Boogaart JE, Pikkemaat JA, Altona C. Slow conformational exchange in DNA minihairpin loops: a conformational study of the circular dumbbell d<pCGC-TT-GCG-TT>. Biopolymers 1995; 36:681-94. [PMID: 8555416 DOI: 10.1002/bip.360360602] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In recent years various examples of highly stable two-residue hairpin loops (miniloops) in DNA have been encountered. As the detailed structure and stability of miniloops appear to be determined not only by the nature and sequence of the two bases in the loop, but also by the closing base pair, it is desirable to carry out in-depth studies of especially designed small model DNA compounds. Therefore, a circular DNA dumbbell-like molecule is tailored to consist of a stem of three Watson-Crick base pairs, flanked on each side by a minihairpin loop. The resulting circular DNA decamer 5'-d<pCGC-TT-GCG-TT>-3' (I) is studied in solution by means of nmr spectroscopy. At a temperature of 269 K the molecule occurs in a 50/50 mixture of two dumbbell structures (denoted L2L2 and L2L4). L2L2 contains three Watson-Crick C-G base pairs and two two-residue loops (H2-family type) in opposite parts of the molecule. On raising the temperature from 269 to 314 K, the L2L4 conformer becomes increasingly dominant (95% at 314 K). This conformer has a partially disrupted closing G-C base pair in the 5'-GTTC-3' loop with only one remaining solvent-accessible hydrogen bond between NH alpha of the cytosine C(1) and O6 of the guanine G(8), whereas the opposite 5'-CTTG-3' loop remains stable. The disruption of the C(1)-G(8) base pair in the L2L4 form is correlated with the presence of a syn orientation for the C(1) base at the 5'-3' loop-stem junction in the 5'-GTTC-3' loop. The two conformers, L2L2 and L2L4, occur in slow equilibrium (2-20 s-1). Moderate line broadening of specific 1H, 13C, and 31P resonances of residues C(1), G(8), T(9), and T(10) at low temperatures, due to chemical exchange between L2L2 and L2L4, show that the interconversion from an anti to syn conformer in residue C(1) has a small local effect on the structure of the dumbbell. T1 relaxation measurements, chemical-shift considerations, and complete band-shape calculations of the exchange process of the G(8) imino proton reveal a possibility for the existence of multiconformational states in the anti-syn equilibrium.
Collapse
Affiliation(s)
- J H Ippel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Mohanty D, Bansal M. Conformational polymorphism in telomeric structures: loop orientation and interloop pairing in d(G4TnG4). Biopolymers 1994; 34:1187-211. [PMID: 7948732 DOI: 10.1002/bip.360340908] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sequence repeats constituting the telomeric regions of chromosomes are known to adopt a variety of unusual structures, consisting of a G tetraplex stem and short stretches of thymines or thymines and adenines forming loops over the stem. Detailed model building and molecular mechanics studies have been carried out for these telomeric sequences to elucidate different types of loop orientations and possible conformations of thymines in the loop. The model building studies indicate that a minimum of two thymines have to be interspersed between guanine stretches to form folded-back structures with loops across adjacent strands in a G tetraplex (both over the small as well as large groove), while the minimum number of thymines required to build a loop across the diagonal strands in a G tetraplex is three. For two repeat sequences, these hairpins, resulting from different types of folding, can dimerize in three distinct ways--i.e., with loops across adjacent strands and on same side, with loops across adjacent strands and on opposite sides, and with loops across diagonal strands and on opposite sides--to form hairpin dimer structures. Energy minimization studies indicate that all possible hairpin dimers have very similar total energy values, though different structures are stabilized by different types of interactions. When the two loops are on the same side, in the hairpin dimer structures of d(G4TnG4), the thymines form favorably stacked tetrads in the loop region and there is interloop hydrogen bonding involving two hydrogen bonds for each thymine-thymine pair. Our molecular mechanics calculations on various folded-back as well as parallel tetraplex structures of these telomeric sequences provide a theoretical rationale for the experimentally observed feature that the presence of intervening thymine stretches stabilizes folded-back structures, while isolated stretches of guanines adopt a parallel tetraplex structure.
Collapse
Affiliation(s)
- D Mohanty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | |
Collapse
|
17
|
Hirao I, Kawai G, Yoshizawa S, Nishimura Y, Ishido Y, Watanabe K, Miura K. Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat. Nucleic Acids Res 1994; 22:576-82. [PMID: 8127706 PMCID: PMC307846 DOI: 10.1093/nar/22.4.576] [Citation(s) in RCA: 165] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The three-dimensional structure of a short DNA fragment, d(GCGAAGC) exhibiting an extraordinarily stable hairpin structure was determined by nuclear magnetic resonance spectroscopy. Two possible models were obtained by molecular modelling using distance and torsion constraints. Only one of these two models is the correct structure, which can clearly explain all the 1H chemical shifts. d(GCGAAGC) is folded back on itself between A4 and A5, and all the sugars in the fragment adopt the C2'-endo conformation. This compact molecule is stabilized by regular extensive base-stacking interaction within each B-form helical strand of G1C2G3A4 and A5G6C7, and by two G-C and one G3-A5 base pairs. The molecule is hard to differentiate into stem and loop regions, so that we classify it as a turn (hairpin-turn) structure experted by a single-stranded DNA. This highly stacked structure shows high thermostability and strong resistance against nucleases contained in E. coli extracts and in human serum.
Collapse
Affiliation(s)
- I Hirao
- Laboratory of Pharmaceutical Chemistry, Tokyo College of Pharmacy, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Hilbers CW, Heus HA, van Dongen MJP, Wijmenga SS. The Hairpin Elements of Nucleic Acid Structure: DNA and RNA Folding. ACTA ACUST UNITED AC 1994. [DOI: 10.1007/978-3-642-78666-2_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
19
|
Rentzeperis D, Alessi K, Marky LA. Thermodynamics of DNA hairpins: contribution of loop size to hairpin stability and ethidium binding. Nucleic Acids Res 1993; 21:2683-9. [PMID: 8332464 PMCID: PMC309599 DOI: 10.1093/nar/21.11.2683] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A combination of calorimetric and spectroscopic techniques was used to evaluate the thermodynamic behavior of a set of DNA hairpins with the sequence d(GCGCTnGCGC), where n = 3, 5 and 7, and the interaction of each hairpin with ethidium. All three hairpins melt in two-state monomolecular transitions, with tm's ranging from 79.1 degrees C (T3) to 57.5 degrees C (T7), and transition enthalpies of approximately 38.5 kcal mol-1. Standard thermodynamic profiles at 20 degrees C reveal that the lower stability of the T5 and T7 hairpins corresponds to a delta G degree term of +0.5 kcal mol-1 per thymine residue, due to the entropic ordering of the thymine loops and uptake of counterions. Deconvolution of the ethidium-hairpin calorimetric titration curves indicate two sets of binding sites that correspond to one ligand in the stem with binding affinity, Kb, of approximately 1.8 x 10(6) M-1, and two ligands in the loops with Kb of approximately 4.3 x 10(4) M-1. However, the binding enthalpy, delta Hb, ranges from -8.6 (T3) to -11.6 kcal mol-1 (T7) for the stem site, and -6.6 (T3) to -12.7 kcal mol-1 (T7) for the loop site. Relative to the T3 hairpin, we obtained an overall thermodynamic contribution (per dT residue) of delta delta Hb = delta(T delta Sb) = -0.7(5) kcal mol-1 for the stem sites and delta delta Hb = delta(T delta Sb) = -1.5 kcal mol-1 for the loop sites. Therefore, the induced structural perturbations of ethidium binding results in a differential compensation of favorable stacking interactions with the unfavorable ordering of the ligands.
Collapse
Affiliation(s)
- D Rentzeperis
- Department of Chemistry, New York University, New York 10003
| | | | | |
Collapse
|
20
|
X Ma MY, McCallum K, Climie SC, Kuperman R, Lin WC, Sumner-Smith M, Barnett RW. Design and synthesis of RNA miniduplexes via a synthetic linker approach. 2. Generation of covalently closed, double-stranded cyclic HIV-1 TAR RNA analogs with high Tat-binding affinity. Nucleic Acids Res 1993; 21:2585-9. [PMID: 8332456 PMCID: PMC309585 DOI: 10.1093/nar/21.11.2585] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We recently developed an approach which allows rapid generation of short, double-stranded oligonucleotides whereby one end of the duplex was joined and stabilized by a synthetic linker of specific design (miniduplexes)(6). Model miniduplexes based on the HIV-1 TAR RNA hairpin were shown to be thermodynamically stable and good substrates for binding by the HIV-1 Tat protein which normally bind to natural TAR (6). In this study, we have extended our studies to the design, synthesis and analysis of the binding properties of covalently closed, double-stranded, cyclic RNA miniduplexes. A strategy using automated chemical synthesis and T4 RNA ligase-catalyzed cyclization was employed to generate cyclic oligoribonucleotides. When both ends of a shortened, wild-type TAR RNA stem (9 bp) were covalently linked through either nucleotidic loops (4-6 nt) or synthetic linkers (derivatized from hexaethylene glycol), the resulting cyclic TAR RNA analogs were good substrates for binding by both Tat-derived peptide or full-length Tat protein. Interestingly, the cyclic TAR analogs failed to show any binding if the synthetic linker was reduced in length (e.g. derivatized from triethylene glycol), although such linkers are acceptable in the hairpin-shaped miniduplexes series (6). This implies that RNA conformational changes are required for Tat binding and that these changes are restricted in certain cyclic variants. Our findings suggest that covalently-closed nucleic acid miniduplexes may be useful both to study nucleic acid-protein interactions as well as to provide a basis for therapeutic intervention as transcription decoys.
Collapse
Affiliation(s)
- M Y X Ma
- Allelix Biopharmaceuticals Inc., Mississauga, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Erie DA, Suri AK, Breslauer KJ, Jones RA, Olson WK. Theoretical predictions of DNA hairpin loop conformations: correlations with thermodynamic and spectroscopic data. Biochemistry 1993; 32:436-54. [PMID: 8422353 DOI: 10.1021/bi00053a008] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A computational procedure for generating conformations of DNA hairpin loop structures from a broad range of low-energy starting states is described. The starting point of the modeling is the distribution of oligonucleotide chain conformations obtained from Monte Carlo simulations of feasible dinucleotide steps. Structures which meet the spatial criteria for hairpin loop formation are selected from the distributions and subsequently minimized using all-atom molecular mechanics. Both d(CTnG) and d(CAnG) oligomers, where n = 3, 4, or 5, are modeled. These sequences are chosen because of the large number of published NMR and thermodynamic studies on DNA hairpins containing thymine or adenine residues. The minimized three-dimensional hairpin loop structures are compared with one another as well as analyzed in terms of available experimental data. The computational approach provides the first detailed analysis of DNA hairpin loop structure in terms of a multistate conformational model. Investigation of the minimized conformations reveals several interesting structural features. First, hairpin loops of the same sequence adopt several distinctly different conformations, as opposed to minor variants of the same equilibrium structure, that could potentially interconvert in solution. Second, in contrast to double-helical nucleic acids, the hairpin loop models exhibit hydrophobic and hydrophilic surfaces. The different disposition of hydrophobic groups in loops versus duplexes could modulate both protein-nucleic acid interactions and nucleic acid self-associations. Third, perpendicular aromatic interactions of loop residues are observed in many of the computed hairpins. This sort of interaction might be important in the stabilization of non-hydrogen-bonded nucleic acid secondary and tertiary structures. The predicted structural features in the models help, in addition, to account for the unusual thermodynamic properties of DNA hairpin loops. Comparison of the theoretically-generated NOEs in different structures further reveals that very different molecular structures and interactions can, in principle, produce the same NOEs. The multistate description suggested by this observation differs from the conventional interpretation of DNA solution structure in terms of the fluctuations about a single preferred chain conformation. There is not necessarily only one set of closely related structures consistent with the observed data.
Collapse
Affiliation(s)
- D A Erie
- Department of Chemistry, Rutgers, State University of New Jersey, New Brunswick 08903
| | | | | | | | | |
Collapse
|
22
|
Erie DA, Breslauer KJ, Olson WK. A Monte Carlo method for generating structures of short single-stranded DNA sequences. Biopolymers 1993; 33:75-105. [PMID: 8427940 DOI: 10.1002/bip.360330109] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A Monte Carlo method has been developed for generating the conformations of short single-stranded DNAs from arbitrary starting states. The chain conformers are constructed from energetically favorable arrangements of the constituent mononucleotides. Minimum energy states of individual dinucleotide monophosphate molecules are identified using a torsion angle minimizer. The glycosyl and acyclic backbone torsions of the dimers are allowed to vary, while the sugar rings are held fixed in one of the two preferred puckered forms. A total of 108 conformationally distinct states per dimer are considered in this first stage of minimization. The torsion angles within 5 kcal/mole of the global minimum in the resulting optimized states are then allowed to vary by +/- 10 degrees in an effort to estimate the breadth of the different local minima. The energies of a total of 2187 (3(7)) angle combinations are examined per local conformational minimum. Finally, the energies of all dinucleotide conformers are scaled so that the populations of differently puckered sugar rings in the theoretical sample match those found in nmr solution studies. This last step is necessitated by limitations in the theoretical methods to predict DNA sugar puckering accurately. The conformer populations of the individual acyclic torsion angles in the composite dimer ensembles are found to be in good agreement with the distributions of backbone conformations deduced from nmr coupling constants and the frequencies of glycosyl conformations in x-ray crystal structures, suggesting that the low energy states are reasonable. The low energy dimer forms (consisting of 150-325 conformational states per dimer step) are next used as variables in a Monte Carlo algorithm, which generates the conformations of single-stranded d(CXnG) chains, where X = A, T and n = 3, 4, 5. The oligonucleotides are built sequentially from the 5' end of the chain using random numbers to select the conformations of overlapping dimer units. The simulations are very fast, involving a total of 10(6) conformations per chain sequence. The potential errors in the buildup procedure are minimized by taking advantage of known rotational interdependences in the sugar-phosphate backbone. The distributions of oligonucleotide conformations are examined in terms of the magnitudes, positions, and orientations of the end-to-end vectors of the chains. The differences in overall flexibility and extension of the oligomers are discussed in terms of the conformations of the constituent dinucleotide steps, while the general methodology is discussed and compared with other nucleic acid model building techniques.
Collapse
Affiliation(s)
- D A Erie
- Department of Chemistry, Rutgers, State University of New Jersey, New Brunswick 08903
| | | | | |
Collapse
|
23
|
Gervais V, Guy A, Téoule R, Fazakerley GV. Solution conformation of an oligonucleotide containing a urea deoxyribose residue in front of a thymine. Nucleic Acids Res 1992; 20:6455-60. [PMID: 1480468 PMCID: PMC334557 DOI: 10.1093/nar/20.24.6455] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Urea residues are produced by ionizing radiation on thymine residues in DNA. We have studied an oligodeoxynucleotide containing a thymine opposite the urea residue, by one and two dimensional NMR spectroscopy. The urea deoxyribose exists as two isomers with respect to the orientation about the peptide bond. For the trans isomer we find that the thymine and urea site are positioned within the helix and are probably hydrogen bonded. The oligonucleotide adopts a globally B form structure although conformational changes are observed around the mismatch site. A minor species is observed, in which the urea deoxyribose and the opposite base adopt an extrahelical position and this corresponds to the isomer cis for the peptide bond.
Collapse
Affiliation(s)
- V Gervais
- Service de Biochimie et de Génétique Moléculaire, DBCM, Centre d'Etudes de Saclay, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
24
|
Boulard Y, Cognet JA, Gabarro-Arpa J, Le Bret M, Sowers LC, Fazakerley GV. The pH dependent configurations of the C.A mispair in DNA. Nucleic Acids Res 1992; 20:1933-41. [PMID: 1579495 PMCID: PMC312309 DOI: 10.1093/nar/20.8.1933] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The structure of the cytosine-adenine mispair in a 7 base pair duplex has been investigated by proton NMR spectroscopy. At low pH, the predominant structure is protonated on the A residue and assumes a wobble conformation consistent with previous findings. The C residue of the mispair is found in a C2'-C3' endo equilibrium. This is confirmed by molecular dynamics calculations which suggest that the conformation of the protonated wobble is flexible and not as rigid as a normal base pair. As the solution pH is raised, a structural transition is observed with an apparent pK of 7.54 at 23 degrees C. At higher pH the predominant structure is one in which both the C and A residues are intrahelical. Evidence is presented that this structure corresponds to a reverse wobble in which the two bases are held together by one hydrogen bond. This structure is much less stable than the protonated form and even at low temperature single strands are observed in slow exchange with the neutral duplex form.
Collapse
Affiliation(s)
- Y Boulard
- Service de Biochimie et de Génétique Moléculaire, Département de Biologie Cellulaire et Moléculaire, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|