1
|
Yuan KN, Xie T, Wang JB, Wang D, Shang M. Photoelectrocatalyzed Alkylation of Phosphonites by Direct Decarboxylative C(sp 3)-P Coupling. Angew Chem Int Ed Engl 2025; 64:e202500744. [PMID: 39865601 DOI: 10.1002/anie.202500744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
A photoelectrocatalytic method is presented that achieves direct decarboxylative C(sp3)-P coupling, providing a modular route to alkylphosphinates and alkylphosphonates from readily available carboxylic acids. The success of this reaction hinges on the synergistic combination of electrochemical anodic oxidation and photocatalytic ligand to metal charge transfer (LMCT) decarboxylation. By employing P(III) reagents as limiting reagents, our approach enables efficient alkyl modification of medicinally important nucleosides and complex molecules derived phosphonites, which were challenging to access by existing methods. Detailed mechanistic studies elucidate the critical roles of Fe catalysts and additives, offering valuable insights into the reaction pathway and laying the foundation for future advancements in photoelectrocatalytic C(sp3)-heteroatom bond-forming reactions.
Collapse
Affiliation(s)
- Kang-Ning Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tian Xie
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia-Bao Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dali Wang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Shang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Dhara D, Hill AC, Ramesh A, Wood MJA, El-Sagheer AH, Brown T. Synthesis, Biophysical and Biological Evaluation of Splice-Switching Oligonucleotides with Multiple LNA-Phosphothiotriester Backbones. J Am Chem Soc 2024; 146:29773-29781. [PMID: 39401255 PMCID: PMC11528411 DOI: 10.1021/jacs.4c11402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/17/2024]
Abstract
Polyanionic antisense oligonucleotides hold great promise as RNA targeting drugs but issues with bioavailability hinder their development. Uncharged phosphorus-based backbones are promising alternatives but robust methods to produce them are limited. We report the synthesis and properties of oligonucleotides containing charge-neutral LNA alkyl phosphothiotriester backbones combined with 2'-O-methyl phosphorothioate nucleotides for therapeutic applications. The nature of the triester alkyl group dictates the success of solid-phase synthesis; tertiary alkyl groups are lost during the P(III) oxidation step, whereas primary alkyl groups are partially cleaved during deprotection. In contrast, oligonucleotides containing secondary phosphothiotriester linkages are stable, and large numbers of triesters can be incorporated. The modified oligonucleotides have excellent duplex stability with complementary RNA and exhibit strong nuclease resistance. To expand synthetic flexibility, oligonucleotides containing multiple internal alkynyl phosphothiotriesters can be conjugated to lipids, carbohydrates, or small molecules through CuAAC click chemistry. Oligonucleotides containing LNA-THP phosphothiotriesters exhibit high levels of pre-mRNA splice switching in eukaryotic cells.
Collapse
Affiliation(s)
- Debashis Dhara
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Alyssa C. Hill
- Department
of Paediatrics, Institute of Developmental and Regenerative Medicine
(IDRM), University of Oxford, Oxford OX3 7TY, U.K.
| | - Abinaya Ramesh
- Department
of Paediatrics, Institute of Developmental and Regenerative Medicine
(IDRM), University of Oxford, Oxford OX3 7TY, U.K.
| | - Matthew J. A. Wood
- Department
of Paediatrics, Institute of Developmental and Regenerative Medicine
(IDRM), University of Oxford, Oxford OX3 7TY, U.K.
| | - Afaf H. El-Sagheer
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Tom Brown
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
3
|
Quemener AM, Centomo ML, Sax SL, Panella R. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development. Molecules 2022; 27:536. [PMID: 35056851 PMCID: PMC8781596 DOI: 10.3390/molecules27020536] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/27/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are an increasingly represented class of drugs. These small sequences of nucleotides are designed to precisely target other oligonucleotides, usually RNA species, and are modified to protect them from degradation by nucleases. Their specificity is due to their sequence, so it is possible to target any RNA sequence that is already known. These molecules are very versatile and adaptable given that their sequence and chemistry can be custom manufactured. Based on the chemistry being used, their activity may significantly change and their effects on cell function and phenotypes can differ dramatically. While some will cause the target RNA to decay, others will only bind to the target and act as a steric blocker. Their incredible versatility is the key to manipulating several aspects of nucleic acid function as well as their process, and alter the transcriptome profile of a specific cell type or tissue. For example, they can be used to modify splicing or mask specific sites on a target. The entire design rather than just the sequence is essential to ensuring the specificity of the ASO to its target. Thus, it is vitally important to ensure that the complete process of drug design and testing is taken into account. ASOs' adaptability is a considerable advantage, and over the past decades has allowed multiple new drugs to be approved. This, in turn, has had a significant and positive impact on patient lives. Given current challenges presented by the COVID-19 pandemic, it is necessary to find new therapeutic strategies that would complement the vaccination efforts being used across the globe. ASOs may be a very powerful tool that can be used to target the virus RNA and provide a therapeutic paradigm. The proof of the efficacy of ASOs as an anti-viral agent is long-standing, yet no molecule currently has FDA approval. The emergence and widespread use of RNA vaccines during this health crisis might provide an ideal opportunity to develop the first anti-viral ASOs on the market. In this review, we describe the story of ASOs, the different characteristics of their chemistry, and how their characteristics translate into research and as a clinical tool.
Collapse
Affiliation(s)
- Anais M. Quemener
- University Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes)-UMR 6290, F-35000 Rennes, France;
| | - Maria Laura Centomo
- Department of Oncology, University of Turin, 10124 Turin, Italy;
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Scott L. Sax
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Riccardo Panella
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| |
Collapse
|
4
|
Dysko A, Baker YR, McClorey G, Wood MJA, Fenner S, Williams G, El-Sagheer A, Brown T. Covalently attached intercalators restore duplex stability and splice-switching activity to triazole-modified oligonucleotides. RSC Chem Biol 2022; 3:765-772. [PMID: 35755188 PMCID: PMC9175110 DOI: 10.1039/d2cb00100d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022] Open
Abstract
Oligonucleotides are rapidly emerging as powerful therapeutics for hard to treat diseases. Short single-stranded oligonucleotides can base pair with target RNA and alter gene expression, providing an attractive therapeutic approach at the genetic level. Whilst conceptually appealing, oligonucleotides require chemical modification for clinical use. One emerging approach is to substitute the phosphodiester backbone with other chemical linkages such as triazole. The triazole linkage is inherently resistant to enzymatic degradation, providing stability in vivo, and is uncharged, potentially improving cell-penetration and in vivo distribution. Triazole linkages, however, are known to reduce RNA target binding affinity. Here we show that by attaching pyrene or anthraquinone to the ribose sugar on the 5′-side of the triazole, it is possible to recover duplex stability and restore the splice switching ability of triazole-containing oligonucleotides. Oligonucleotides can bind to mRNA and alter gene expression, but require backbone modifications for clinical use. We show that attaching pyrene or anthraquinone to the ribose sugar next to an artificial triazole backbone restores duplex stability and splice switching ability in cells.![]()
Collapse
Affiliation(s)
- Anna Dysko
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford, OX1 3TA UK
| | - Ysobel R Baker
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford, OX1 3TA UK
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford UK
| | - Sabine Fenner
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage Hertfordshire SG1 2NY UK
| | - Glynn Williams
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage Hertfordshire SG1 2NY UK
| | - Afaf El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford, OX1 3TA UK
- Chemistry Branch Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University Suez 43721 Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford, OX1 3TA UK
| |
Collapse
|
5
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Su Y, Bayarjargal M, Hale TK, Filichev VV. DNA with zwitterionic and negatively charged phosphate modifications: Formation of DNA triplexes, duplexes and cell uptake studies. Beilstein J Org Chem 2021; 17:749-761. [PMID: 33828619 PMCID: PMC8022206 DOI: 10.3762/bjoc.17.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Two phosphate modifications were introduced into the DNA backbone using the Staudinger reaction between the 3’,5’-dinucleoside β-cyanoethyl phosphite triester formed during DNA synthesis and sulfonyl azides, 4-(azidosulfonyl)-N,N,N-trimethylbutan-1-aminium iodide (N+ azide) or p-toluenesulfonyl (tosyl or Ts) azide, to provide either a zwitterionic phosphoramidate with N+ modification or a negatively charged phosphoramidate for Ts modification in the DNA sequence. The incorporation of these N+ and Ts modifications led to the formation of thermally stable parallel DNA triplexes, regardless of the number of modifications incorporated into the oligodeoxynucleotides (ONs). For both N+ and Ts-modified ONs, the antiparallel duplexes formed with complementary RNA were more stable than those formed with complementary DNA (except for ONs with modification in the middle of the sequence). Additionally, the incorporation of N+ modifications led to the formation of duplexes with a thermal stability that was less dependent on the ionic strength than native DNA duplexes. The thermodynamic analysis of the melting curves revealed that it is the reduction in unfavourable entropy, despite the decrease in favourable enthalpy, which is responsible for the stabilisation of duplexes with N+ modification. N+ONs also demonstrated greater resistance to nuclease digestion by snake venom phosphodiesterase I than the corresponding Ts-ONs. Cell uptake studies showed that Ts-ONs can enter the nucleus of mouse fibroblast NIH3T3 cells without any transfection reagent, whereas, N+ONs remain concentrated in vesicles within the cytoplasm. These results indicate that both N+ and Ts-modified ONs are promising for various in vivo applications.
Collapse
Affiliation(s)
- Yongdong Su
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand
| | - Maitsetseg Bayarjargal
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand
| | - Tracy K Hale
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Vyacheslav V Filichev
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Clavé G, Reverte M, Vasseur JJ, Smietana M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem Biol 2021; 2:94-150. [PMID: 34458777 PMCID: PMC8341215 DOI: 10.1039/d0cb00136h] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, several drugs derived from nucleic acids have been approved for commercialization and many more are in clinical trials. The sensitivity of these molecules to nuclease digestion in vivo implies the need to exploit resistant non-natural nucleotides. Among all the possible modifications, the one concerning the internucleoside linkage is of particular interest. Indeed minor changes to the natural phosphodiester may result in major modifications of the physico-chemical properties of nucleic acids. As this linkage is a key element of nucleic acids' chemical structures, its alteration can strongly modulate the plasma stability, binding properties, solubility, cell penetration and ultimately biological activity of nucleic acids. Over the past few decades, many research groups have provided knowledge about non-natural internucleoside linkage properties and participated in building biologically active nucleic acid derivatives. The recent renewing interest in nucleic acids as drugs, demonstrated by the emergence of new antisense, siRNA, aptamer and cyclic dinucleotide molecules, justifies the review of all these studies in order to provide new perspectives in this field. Thus, in this review we aim at providing the reader insights into modified internucleoside linkages that have been described over the years whose impact on annealing properties and resistance to nucleases have been evaluated in order to assess their potential for biological applications. The syntheses of modified nucleotides as well as the protocols developed for their incorporation within oligonucleotides are described. Given the intended biological applications, the modifications described in the literature that have not been tested for their resistance to nucleases are not reported.
Collapse
Affiliation(s)
| | - Maeva Reverte
- IBMM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | |
Collapse
|
8
|
Epple S, Thorpe C, Baker YR, El-Sagheer AH, Brown T. Consecutive 5'- and 3'-amide linkages stabilise antisense oligonucleotides and elicit an efficient RNase H response. Chem Commun (Camb) 2021; 56:5496-5499. [PMID: 32292963 DOI: 10.1039/d0cc00444h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antisense oligonucleotides are now entering the clinic for hard-to-treat diseases. New chemical modifications are urgently required to enhance their drug-like properties. We combine amide coupling with standard oligonucleotide synthesis to assemble backbone chimera gapmers that trigger an efficient RNase H response while improving serum life time and cellular uptake.
Collapse
Affiliation(s)
- Sven Epple
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.
| | - Cameron Thorpe
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.
| | - Ysobel R Baker
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK. and Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
9
|
Hong EJ, Kim YS, Choi DG, Shim MS. Cancer-targeted photothermal therapy using aptamer-conjugated gold nanoparticles. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Abstract
Antisense oligodeoxynucleotides are a promising new class of antiviral agent. Because they bind in a sequence-specific manner to complementary regions of mRNA, oligos can inhibit gene expression in a sequence-specific manner. The ‘antisense’ approach has been used successfully to block cellular expression and replication of several viruses including Human Immunodeficiency Virus-1 (HIV-1), and Herpes Simplex Virus (HSV). However, the antiviral effect of oligodeoxynucleotides is not limited to sequence-specific inhibition of gene expression. Non sequence-specific effects are frequently observed, presumably as a result of their properties as polyanions. Occasionally (e.g. for HIV-1) these non sequence-specific effects are also therapeutic. The prospects for antisense oligodeoxynucleotide therapy for viral disease are discussed.
Collapse
Affiliation(s)
- J. L. Tonkinson
- Department of Medicine, Columbia University, College of Physicians and Surgeons, 630 W. 168 St., New York, NY 10032, USA
| | - C. A. Stein
- Department of Medicine, Columbia University, College of Physicians and Surgeons, 630 W. 168 St., New York, NY 10032, USA
| |
Collapse
|
11
|
Hildyard JC, Wells DJ. Investigating Synthetic Oligonucleotide Targeting of Mir31 in Duchenne Muscular Dystrophy. PLOS CURRENTS 2016; 8. [PMID: 27525173 PMCID: PMC4972457 DOI: 10.1371/currents.md.99d88e72634387639707601b237467d7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exon-skipping via synthetic antisense oligonucleotides represents one of the most promising potential therapies for Duchenne muscular dystrophy (DMD), yet this approach is highly sequence-specific and thus each oligonucleotide is of benefit to only a subset of patients. The discovery that dystrophin mRNA is subject to translational suppression by the microRNA miR31, and that miR31 is elevated in the muscle of DMD patients, raises the possibility that the same oligonucleotide chemistries employed for exon skipping could be directed toward relieving this translational block. This approach would act synergistically with exon skipping where possible, but by targeting the 3'UTR it would further be of benefit to the many DMD patients who express low levels of in-frame transcript. We here present investigations into the feasibility of combining exon skipping with several different strategies for miR31-modulation, using both in vitro models and the mdx mouse (the classical animal model of DMD), and monitoring effects on dystrophin at the transcriptional and translational level. We show that despite promising results from our cell culture model, our in vivo data failed to demonstrate similarly reproducible enhancement of dystrophin translation, suggesting that miR31-modulation may not be practical under current oligonucleotide approaches. Possible explanations for this disappointing outcome are discussed, along with suggestions for future investigations.
Collapse
Affiliation(s)
- John Cw Hildyard
- Department of Comparative and Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Dominic J Wells
- Department of Comparative and Biomedical Sciences, The Royal Veterinary College, London, UK
| |
Collapse
|
12
|
Hollins AJ, Benboubetra M, Omidi Y, Zinselmeyer BH, Schatzlein AG, Uchegbu IF, Akhtar S. Evaluation of generation 2 and 3 poly(propylenimine) dendrimers for the potential cellular delivery of antisense oligonucleotides targeting the epidermal growth factor receptor. Pharm Res 2016; 21:458-66. [PMID: 15070097 DOI: 10.1023/b:pham.0000019300.04836.51] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To evaluate low generation, G2 and G3, poly(propylenimine) dendrimers for the potential cellular delivery of antisense oligonucleotides (ODNs) targeting the epidermal growth factor receptor (EGFR) in A431 epidermoid carcinoma cells. METHODS Cell cytotoxicity of the dendrimers was evaluated using trypan blue exclusion assays. Cellular uptake studies of fluorescently labeled ODNs were performed using fluorescence-activated cell sorting analysis. Intracellular fate of dendrimer-delivered ODNs was assessed in both fixed and live cells using fluorescent microscopy. Antisense ODN activity was assessed in terms of cancer cell growth, inhibition of target EGFR protein, and reduction in mRNA levels. RESULTS G2 dendrimer (DAB-8) was less toxic than G3 (DAB-16) dendrimer in A431 cells, with IC50 of >175 and approximately 30 microg/ml, respectively. Uptake of fluorescently labeled ODN:dendrimer complexes was increased by up to 100-fold compared to a marker of fluid-phase endocytosis and up to 9-fold over free ODN at the optimal dendrimer:ODN (w/w) ratio of 5:1. Uptake of dendrimer:ODN complexes was significantly reduced at 4 degrees C (p < 0.05). Live cell fluorescent microscopy resulted in an intracellular distribution of dendrimer:ODN complexes that was suggestive of endocytic uptake; in contrast, cell fixation resulted in an artefactual nuclear localization. Treatment of A431 cells with anti-EGFR antisense ODN:dendrimer complexes inhibited cell growth, protein, and mRNA expression to levels comparable to Oligofectamine-mediated delivery. CONCLUSIONS G2 and G3 poly(propylenimine) dendrimers markedly improved the delivery and activity of ODNs and thus may represent general reagents for the delivery of ODNs to cells in culture.
Collapse
Affiliation(s)
- Andrew J Hollins
- Centre for Genome-based Therapeutics, Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3XF, Wales, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Saneyoshi H, Shimamura K, Sagawa N, Ando Y, Tomori T, Okamoto I, Ono A. Development of a photolabile protecting group for phosphodiesters in oligonucleotides. Bioorg Med Chem Lett 2015; 25:2129-32. [PMID: 25881825 DOI: 10.1016/j.bmcl.2015.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 11/17/2022]
Abstract
A photolabile protecting group, consisting of an o-nitrobenzyl group and a 3-(2'-hydroxy-3',6'-dimethylphenyl)-2,2-dimethylpropyl moiety, was developed for phosphodiesters in oligodeoxyribonucleotides. Deprotection was triggered by photoirradiation and subsequent spontaneous cyclization to release the naked oligonucleotide.
Collapse
Affiliation(s)
- Hisao Saneyoshi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Kanami Shimamura
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Naoki Sagawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yuki Ando
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Takahito Tomori
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Itaru Okamoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|
14
|
Costa JA, Leal-Pinto E, Henderson SC, Zabel T, Hawkins ME, Hanss B. Use of a Pteridine Moiety to Track DNA Uptake in Cells. Pteridines 2014; 23:81-89. [PMID: 24465092 DOI: 10.1515/pteridines.2012.23.1.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fluorescence labeled oligonucleotides have a long history of being used to monitor nucleic acid transport and uptake. However, it is not known if the fluorescent moiety itself physically limits the number of pathways that can be used by the cell due to steric, hydrophobic, or other chemical characteristics. Here, we report a method for comparing the uptake kinetics of oligonucleotides labeled either with the fluorescent pteridine, 3-methyl-8-(2-deoxy-β-D-ribofuranosyl) isoxanthopterin (3MI), or the common fluorophore 5-carboxyfluorescein (5-FAM). We use a multiphoton microscopic technique to monitor nucleic acid uptake LLC-PK1, a pig renal tubular cell line that is known to have multiple uptake pathways. We find that the two fluorophores enter the cells at different rates, suggesting that choice of fluorescent moiety influences the uptake pathway used by a cell. Finally, we reconstituted an LLC-PK1 membrane channel that is selective for nucleic acids in planar lipid bilayers, and tested the ability of the labeled nucleic acids to permeate the channel. We find that 3MI, and not 5-FAM labeled oligonucleotides can traverse the plasma membrane through the channel. These results have implications for future studies aimed at delivering pteridine moieties to cells and for tracking nucleic acid transport into tissues.
Collapse
Affiliation(s)
- Justin A Costa
- Division of Nephrology, Department of Medicine, Mt. Sinai School of Medicine, New York, NY
| | - Edgar Leal-Pinto
- Department of Physiology and Biophysics, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Scott C Henderson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA
| | | | - Mary E Hawkins
- Laboratory of Receptor Biology and Gene Expression, NCI/NIH, Bethesda, MD
| | - Basil Hanss
- Division of Nephrology, Department of Medicine, Mt. Sinai School of Medicine, New York, NY
| |
Collapse
|
15
|
Sharma VK, Rungta P, Prasad AK. Nucleic acid therapeutics: basic concepts and recent developments. RSC Adv 2014. [DOI: 10.1039/c3ra47841f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
16
|
Szymanski CJ, Yi H, Liu JL, Wright ER, Payne CK. Imaging intracellular quantum dots: fluorescence microscopy and transmission electron microscopy. Methods Mol Biol 2013; 1026:21-33. [PMID: 23749566 DOI: 10.1007/978-1-62703-468-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantum dots (QDs) and other nanoparticles require delivery and targeting for most intracellular applications. Despite many advances, intracellular delivery and targeting remains inefficient with many QDs remaining bound to the plasma membrane rather than internalized into the cell. The fluorescence resulting from these extracellular QDs results in a background signal that competes with intracellular QDs of interest. We present two methods for the reduction and discrimination of signal resulting from plasma membrane-bound QDs. The first method, a photophysical approach, uses an extracellular quencher to greatly reduce the fluorescence signal from extracellular QDs. This method is compatible with fast, widefield, fluorescence imaging in live cells. Results are presented for two extracellular quenchers, QSY-21 and trypan blue, used in combination with 655 nm emitting QDs. The use of an extracellular quencher can be extended to a wide variety of fluorophores. The second method uses transmission electron microscopy (TEM) to image thin (60-70 nm) slices of resin-embedded cells. The use of sectioned cells and high-resolution TEM makes it possible to discriminate between plasma membrane-bound and intracellular QDs. To overcome the difficulties associated with using TEM to image individual QDs in cells, we have utilized a silver enhancement method that significantly improves the contrast of QDs in TEM images.
Collapse
|
17
|
Krishna H, Caruthers MH. Alkynyl phosphonate DNA: a versatile "click"able backbone for DNA-based biological applications. J Am Chem Soc 2012; 134:11618-31. [PMID: 22612466 DOI: 10.1021/ja3026714] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major hurdles associated with DNA-based biological applications include, among others, targeted cell delivery, undesirable nonspecific effects, toxicity associated with various analogues or the reagents used to deliver oligonucleotides to cells, and stability toward intracellular enzymes. Although a plethora of diverse analogues have been investigated, a versatile methodology that can systematically address these challenges has not been developed. In this contribution, we present a new, Clickable, and versatile chemistry that can be used to rapidly introduce diverse functionality for studying these various problems. As a demonstration of the approach, we synthesized the core analogue, which is useful for introducing additional functionality, the triazolylphosphonate, and present preliminary data on its biological properties. We have developed a new phosphoramidite synthon--the alkynyl phosphinoamidite, which is compatible with conventional solid-phase oligonucleotide synthesis. Postsynthesis, the alkynylphosphonate can be functionalized via "Click" chemistry to generate the 1,2,3-triazolyl or substituted 1,2,3-triazolyl phosphonate-2'-deoxyribonucleotide internucleotide linkage. This manuscript describes the automated, solid-phase synthesis of mixed backbone oligodeoxyribonucleotides (ODNs) having 1,2,3-triazolylphosphonate (TP) as well as phosphate or thiophosphate internucleotide linkages and also 2'-OMe ribonucleotides and locked nucleic acids (LNAs) at selected sites. Nuclease stability assays demonstrate that the TP linkage is highly resistant toward 5'- and 3'-exonucleases, whereas melting studies indicate a slight destabilization when a TP-modified ODN is hybridized to its complementary RNA. A fluorescently labeled 16-mer ODN modified with two TP linkages shows efficient cellular uptake during passive transfection. Of particular interest, the subcellular distribution of TP-modified ODNs is highly dependent on cell type; a significant nuclear uptake is observed in HeLa cells, whereas diffuse cytoplasmic fluorescence is found in the WM-239A cell line. Cytoplasmic distribution is also present in human neuroblastoma cells (SK-N-F1), but Jurkat cells show both diffuse and punctate cytoplasmic uptake. Our results demonstrate that triazolylphosphonate ODNs are versatile additions to the oligonucleotide chemist's toolbox relative to designing new biological research reagents.
Collapse
Affiliation(s)
- Heera Krishna
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
18
|
Grimpe B. Deoxyribozymes and bioinformatics: complementary tools to investigate axon regeneration. Cell Tissue Res 2011; 349:181-200. [PMID: 22190188 PMCID: PMC7087747 DOI: 10.1007/s00441-011-1291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/17/2011] [Indexed: 11/28/2022]
Abstract
For over 100 years, scientists have tried to understand the mechanisms that lead to the axonal growth seen during development or the lack thereof during regeneration failure after spinal cord injury (SCI). Deoxyribozyme technology as a potential therapeutic to treat SCIs or other insults to the brain, combined with a bioinformatics approach to comprehend the complex protein-protein interactions that occur after such trauma, is the focus of this review. The reader will be provided with information on the selection process of deoxyribozymes and their catalytic sequences, on the mechanism of target digestion, on modifications, on cellular uptake and on therapeutic applications and deoxyribozymes are compared with ribozymes, siRNAs and antisense technology. This gives the reader the necessary knowledge to decide which technology is adequate for the problem at hand and to design a relevant agent. Bioinformatics helps to identify not only key players in the complex processes that occur after SCI but also novel or less-well investigated molecules against which new knockdown agents can be generated. These two tools used synergistically should facilitate the pursuit of a treatment for insults to the central nervous system.
Collapse
Affiliation(s)
- Barbara Grimpe
- Applied Neurobiology, Department of Neurology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Laing BM, Barrow-Laing L, Harrington M, Long EC, Bergstrom DE. Properties of double-stranded oligonucleotides modified with lipophilic substituents. Bioconjug Chem 2011; 21:1537-44. [PMID: 20672836 DOI: 10.1021/bc100201n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have synthesized a series of short, self-complementary oligonucleotide sequences modified at their 5'- and/or 3'- termini with a lipophilic dodecane (C12); these systems serve as models to assess the biophysical properties of double-stranded DNA (dsDNA) equipped with potentially stabilizing lipophilic substituents. Addition of C12 to the 5'-termini of self-complementary 10 nucleotide sequences increased their duplex melting temperatures (T(m)) by approximately 4-8 degrees C over their corresponding unmodified sequences. C12 functionalities added to both the 3'- and 5'-termini increased T(m) values by approximately 10-12 degrees C. The observed increases in T(m) correlated with greater duplex stabilities as determined by the free energy values (DeltaG) derived from T(m) plots. There is a greater degree of stabilization when C12 is positioned with a C.G base pair at the termini, and the stabilizing effect of lipophilic groups far exceeds the effect seen in adding an additional base pair to both ends of DNA. Stable, short dsDNA sequences are of potential interest in the development of transcription factor decoy oligonucleotides as possible therapeutic agents and/or biological tools. These results suggest that the stability of short dsDNA sequences are improved by lipophilic substituents and can be used as the basis for the design of dsDNAs with improved biological stabilities and function under physiological conditions.
Collapse
Affiliation(s)
- Brian M Laing
- Department of Medicinal Chemistry and Molecular Pharmacology and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
20
|
Kher G, Trehan S, Misra A. Antisense Oligonucleotides and RNA Interference. CHALLENGES IN DELIVERY OF THERAPEUTIC GENOMICS AND PROTEOMICS 2011. [PMCID: PMC7150054 DOI: 10.1016/b978-0-12-384964-9.00007-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Kang C, Yuan X, Li F, Pu P, Yu S, Shen C, Zhang Z, Zhang Y. Evaluation of folate-PAMAM for the delivery of antisense oligonucleotides to rat C6 glioma cells in vitro and in vivo. J Biomed Mater Res A 2010; 93:585-94. [PMID: 19591231 DOI: 10.1002/jbm.a.32525] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the current study, we evaluated the efficiency of folate-polyamidoamine dendrimers conjugates (FA-PAMAM) for the in situ delivery of therapeutic antisense oligonucleotides (ASODN) that could inhibit the growth of C6 glioma cells. Folic acid was coupled to the surface amino groups of G5-PAMAM dendrimer (G5D) through a 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide bond, and ASODNs corresponding to rat epidermal growth factor receptor (EGFR) were then complexed with FA-PAMAM. At an ASODN to PAMAM ratio of 16:1, agarose electrophoresis indicated that antisense oligonucleotides were completely complexed with PAMAM or FA-PAMAM. The ASODN transfection rates mediated by FA-PAMAM and PAMAM were superior to oligofectamine, resulting in greater suppression of EGFR expression and glioma cell growth. Stereotactic injection of EGFR ASODN:FA-PAMAM complexes into established rat C6 intracranial gliomas resulted in greater suppression of tumor growth and longer survival time of tumor-bearing rats compared with PAMAM and oligofectamine-mediated EGFR-ASODN therapy. The current study demonstrates the suitability of folate-PAMAM dendrimer conjugates for efficient EGFR ASODN delivery into glioma cells, wherein they release the ASODN from the FA-PAMAM to knock down EGFR expression in C6 glioma cells, both in vitro and in vivo. FA-PAMAM may thus represent a novel delivery system for short oligonucleotides in glioma-targeted therapy.
Collapse
Affiliation(s)
- Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Although Nature's antisense approaches are clearly impressive, this Perspectives article focuses on the experimental uses of antisense reagents (ASRs) for control of biological processes. ASRs comprise antisense oligonucleotides (ASOs), and their catalytically active counterparts ribozymes and DNAzymes, as well as small interfering RNAs (siRNAs). ASOs and ribozymes/DNAzymes target RNA molecules on the basis of Watson-Crick base pairing in sequence-specific manner. ASOs generally result in destruction of the target RNA by RNase-H mediated mechanisms, although they may also sterically block translation, also resulting in loss of protein production. Ribozymes and DNAzymes cleave target RNAs after base pairing via their antisense flanking arms. siRNAs, which contain both sense and antisense regions from a target RNA, can mediate target RNA destruction via RNAi and the RISC, although they can also function at the transcriptional level. A considerable number of ASRs (mostly ASOs) have progressed into clinical trials, although most have relatively long histories in Phase I/II settings. Clinical trial results are surprisingly difficult to find, although few ASRs appear to have yet established efficacy in Phase III levels. Evolution of ASRs has included: (a) Modifications to ASOs to render them nuclease resistant, with analogous modifications to siRNAs being developed; and (b) Development of strategies to select optimal sites for targeting. Perhaps the biggest barrier to effective therapies with ASRs is the "Delivery Problem." Various liposomal vehicles have been used for systemic delivery with some success, and recent modifications appear to enhance systemic delivery, at least to liver. Various nanoparticle formulations are now being developed which may also enhance delivery. Going forward, topical applications of ASRs would seem to have the best chances for success. In summary, modifications to ASRs to enhance stability, improve targeting, and incremental improvements in delivery vehicles continue to make ASRs attractive as molecular therapeutics, but their advance toward the bedside has been agonizingly slow.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- DNA, Catalytic/chemistry
- DNA, Catalytic/therapeutic use
- Drug Delivery Systems/methods
- Drug Delivery Systems/trends
- Humans
- Oligonucleotides, Antisense/adverse effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/toxicity
- RNA, Catalytic/chemistry
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/therapeutic use
Collapse
Affiliation(s)
- Wei-Hua Pan
- Gittlen Cancer Research Foundation, Hershey Medical Center, Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
23
|
Nagahama K, Veedu RN, Wengel J. Nuclease resistant methylphosphonate-DNA/LNA chimeric oligonucleotides. Bioorg Med Chem Lett 2009; 19:2707-9. [PMID: 19375912 DOI: 10.1016/j.bmcl.2009.03.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 10/21/2022]
Abstract
Synthesis of chimeric 9-mer oligonucleotides containing methylphosphonate-linkages and locked nucleic acid (LNA) monomers, their binding affinity towards complementary DNA and RNA, and their 3'-exonucleolytic stability are described. The obtained methylphosphonate-DNA/LNA chimeric oligonucleotides display similarly high RNA affinity and RNA selectivity as a corresponding 9-mer DNA/LNA chimeric oligonucleotide, but much higher resistance towards 3'-exonucleolytic degradation.
Collapse
Affiliation(s)
- Koji Nagahama
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Odense M, Denmark
| | | | | |
Collapse
|
24
|
Bennett CF, Chiang MY, Chan H, Grimm S. Use of Cationic Lipids to Enhance the Biological Activity of Antisense Oligonucleotides. J Liposome Res 2008. [DOI: 10.3109/08982109309147445] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Mansoor M, Melendez AJ. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:275-95. [PMID: 19787090 PMCID: PMC2733095 DOI: 10.4137/grsb.s418] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antisense oligonucleotides (As-ODNs) are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt), 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.
Collapse
Affiliation(s)
- Moizza Mansoor
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
26
|
|
27
|
Stephens AC, Ranlall NF, Rivers RPA. Suppression of HUVEC tissue factor synthesis by antisense oligodeoxynucleotide. Thromb Res 2007; 122:99-107. [PMID: 17920661 DOI: 10.1016/j.thromres.2007.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 11/28/2022]
Abstract
Tissue factor (TF) is an important regulator and effector molecule of coagulation. It is primary known as a cofactor for factor VIIa-mediated triggering of blood coagulation, which proceeds in a cascade of extracellular reactions, ultimately resulting in thrombin formation. In sepsis, expression of TF by activated monocytes, macrophages and endothelial cells may lead to disseminated intravascular coagulation. Further studies have suggested that TF also plays non-haemostatic roles in blood vessel development, tumor angiogenesis, metastasis and inflammation. In the present study we examined the feasibility of inhibiting lipopolysaccharide (LPS)-induced TF expression in cultured human umbilical vein endothelial cells (HUVECs) using a modified phosphorothioate antisense oligodeoxynucleotide targeted to the TF mRNA. CD31 receptor-mediated endocytosis was used as a means of delivering TF antisense oligomer to HUVECs. This DNA carrier system consists of anti-CD31 antibody conjugated to the antisense. Co-exposure of HUVECs with TF antisense and LPS resulted in 54.6+/-3.2% suppression of TF activity when compared with control LPS stimulated cells. The antisense also reduced the LPS-induced TF mRNA level. Control experiments with TF sense and mismatched antisense oligomers were performed to exclude non-specific inhibitory effects. The cytotoxicity of the antisense oligomer conjugate was also evaluated. Results demonstrate that this TF antisense oligomer specifically suppressed the synthesis of biologically active endothelial TF and that antisense oligomers might represent a useful tool in the investigation of endothelial TF function/biology.
Collapse
Affiliation(s)
- Alick C Stephens
- King's College London, Department of Asthma, Allergy and Respiratory Science, 5th Floor Thomas Guy House, Guy's Hospital, London SE1 9RT, UK.
| | | | | |
Collapse
|
28
|
Zenkova MA, Karpova GG. Imperfectly matched nucleic acid complexes and their biochemical manifestation. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1993v062n04abeh000023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Kameyama S, Horie M, Kikuchi T, Omura T, Tadokoro A, Takeuchi T, Nakase I, Sugiura Y, Futaki S. Acid wash in determining cellular uptake of Fab/cell-permeating peptide conjugates. Biopolymers 2007; 88:98-107. [PMID: 17252560 DOI: 10.1002/bip.20689] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Successful intracellular delivery of various bioactive molecules has been reported using cell-permeating peptides (CPPs) as delivery vectors. To determine the effects of CPPs on the cellular uptake of immunoglobulin Fab fragment, conjugates of a radio-iodinated Fab fragment with CPPs (CPP-(125)I-Fab) derived from HIV-1 TAT, HIV-1 REV, and Antennapedia (ANP) were prepared. These vectors are rich in basic amino acids, and their strong adsorption on cell surfaces often results in overestimation of internalized peptides. Cell wash with an acidic buffer (0.2M glycine-0.15M NaCl, pH 3.0) was thus employed in this study to remove cell-surface adsorbed CPP-(125)I-Fab conjugates. This procedure enabled clearer understanding of the methods of internalization of CPP-(125)I-Fab conjugates. The kinetics of internalization of REV-(125)I-Fab conjugate was rapid, and a considerable fraction of REV-(125)I-Fab was taken up by HeLa cells as early as 5 min after administration. It was also shown that cellular uptake of these conjugates was significantly inhibited in the presence of endocytosis/ macropinocytosis inhibitors, in the order REV-(125)I-Fab > or = TAT-(125)I-Fab > or = ANP-(125)I-Fab; this order was the same as for effectiveness of intracellular delivery. Simultaneous cell washing with phosphate-buffered saline (PBS) and this acidic buffer effectively separated the internalized conjugates from the cell-surface-adsorbed ones, and considerable differences were observed in these amounts dependent on the employed CPPs.
Collapse
Affiliation(s)
- Shouju Kameyama
- Research Planning, Bipha Corporation, Chitose, Hokkaido, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 2007; 59:164-82. [PMID: 17481774 DOI: 10.1016/j.addr.2007.03.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 03/04/2007] [Indexed: 01/05/2023]
Abstract
RNA interference (RNAi) is an evolutionary conserved cellular process for the regulation of gene expression. In mammalian cells, RNAi is induced via short (21-23 nt) duplexes of RNA, termed small interfering RNA (siRNA), that can elicit highly sequence-specific gene silencing. However, synthetic siRNA duplexes are polyanionic macromolecules that do not readily enter cells and typically require the use of a delivery vector for effective gene silencing in vitro and in vivo. Choice of delivery system is usually made on its ability to enhance cellular uptake of siRNA. However, recent gene expression profiling (toxicogenomics) studies have shown that separate from their effects on cellular uptake, delivery systems can also elicit wide ranging gene changes in target cells that may impact on the 'off-target' effects of siRNA. Furthermore, if delivery systems also alter the expression of genes targeted for silencing, then siRNA activity may be compromised or enhanced depending on whether the target gene is up-regulated or down-regulated respectively. Citing recent examples from the literature, this article therefore reviews the toxicogenomics of non-viral delivery systems and highlights the importance of understanding the genomic signature of siRNA delivery reagents in terms of their impact on gene silencing activity and specificity. Such information will be essential in the selection of optimally acting siRNA-delivery system combinations for the many applications of RNA interference.
Collapse
Affiliation(s)
- Saghir Akhtar
- SA Pharma, Vesey Road 1, Sutton Coldfield, West Midlands, B73 5NP, United Kingdom.
| | | |
Collapse
|
31
|
Mahato RI, Cheng K, Guntaka RV. Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opin Drug Deliv 2006; 2:3-28. [PMID: 16296732 DOI: 10.1517/17425247.2.1.3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antisense oligodeoxynucleotides, triplex-forming oligodeoxynucleotides and double-stranded small interfering RNAs have great potential for the treatment of many severe and debilitating diseases. Concerted efforts from both industry and academia have made significant progress in turning these nucleic acid drugs into therapeutics, and there is already one FDA-approved antisense drug in the clinic. Despite the success of one product and several other ongoing clinical trials, challenges still exist in their stability, cellular uptake, disposition, site-specific delivery and therapeutic efficacy. The principles, strategies and delivery consideration of these nucleic acids are reviewed. Furthermore, the ways to overcome the biological barriers are also discussed so that therapeutic concentrations at their target sites can be maintained for a desired period.
Collapse
MESH Headings
- Animals
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- Drug Carriers
- Gene Expression Regulation
- Gene Silencing
- Gene Targeting/methods
- Genetic Therapy/methods
- Humans
- Nucleic Acid Conformation/drug effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Biosynthesis/drug effects
- RNA Interference
- RNA Splicing/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Ram I Mahato
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, 26 South Dunlap Street, Feurt Bldg RM 406, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
32
|
Jonathan Rudolph M, Reitman MS, MacMillan EW, Cook AF. PHOSPHONOACETATE DERIVATIVES OF OLIGODEOXYRIBONUCLEOTIDES. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319608002728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Guo LH, Schluesener HJ. Binding and uptake of immunostimulatory CpG oligodeoxynucleotides by human neuroblastoma cells. Oligonucleotides 2005; 14:287-98. [PMID: 15665596 DOI: 10.1089/oli.2004.14.287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oligodeoxynucleotides (ODNs) that contain unmethylated CpG dinucleotides (CpG-ODN) trigger a strong innate immune response in vertebrates. They have been used to eradicate experimental neuroblastoma, but a direct interaction of CpG-ODN with neuroblastoma cells has not been investigated. We have analyzed uptake, binding, and intracellular distribution of CpG-ODN in the neuroblastoma cells line SKNSH. Our results indicate that cellular uptake of CpG-ODN is dose, time, temperature, and energy dependent but independent of the CpG motif. After internalization, CpGODN localized to the cytoplasm and showed a typical speckled distribution pattern. The intracellular distribution pattern and binding proteins are CpG motif independent as well. Thus, CpG-ODNs are taken up by neuroblastoma cells by a nonspecific transfer mechanism for oligonucleotides and interact with intracellular proteins. These mechanisms might help us to understand the biodistribution of oligo within tumors and might be helpful in evaluating the therapeutic effects of oligonucleotides and rational drug design.
Collapse
Affiliation(s)
- Liang-Hao Guo
- Institute of Brain Research, University of Tuebingen, D-72076, Tuebingen, Germany
| | | |
Collapse
|
34
|
Gilmore IR, Fox SP, Hollins AJ, Sohail M, Akhtar S. The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J Drug Target 2005; 12:315-40. [PMID: 15545082 DOI: 10.1080/10611860400006257] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RNA interference (RNAi) is a natural cellular process that effects post-transcriptional gene silencing in eukaryotic systems. Small interfering RNA (siRNA) molecules are the key intermediaries in this process which when exogenously administered can inhibit or "silence" the expression of any given target gene. Thus, siRNA molecules hold great promise as biological tools and as potential therapeutic agents for targeted inhibition of disease-causing genes. However, key challenges to the effective and widespread use of these polyanionic, macromolecular duplexes of RNA are their appropriate design and efficient delivery to cells in vitro and in vivo. This review highlights the current strategies used in the design of effective siRNA molecules and also summarises the main strategies being considered for the exogenous delivery of siRNA for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Ian R Gilmore
- Centre for Genome-based Therapeutics, The Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff CF10 3XF, UK
| | | | | | | | | |
Collapse
|
35
|
Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 2005; 7:E61-77. [PMID: 16146351 PMCID: PMC2751499 DOI: 10.1208/aapsj070109] [Citation(s) in RCA: 422] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 04/08/2004] [Indexed: 12/18/2022] Open
Abstract
The past several years have witnessed the evolution of gene medicine from an experimental technology into a viable strategy for developing therapeutics for a wide range of human disorders. Numerous prototype DNA-based biopharmaceuticals can now control disease progression by induction and/or inhibition of genes. These potent therapeutics include plasmids containing transgenes, oligonucleotides, aptamers, ribozymes, DNAzymes, and small interfering RNAs. Although only 2 DNA-based pharmaceuticals (an antisense oligonucleotide formulation, Vitravene, (USA, 1998), and an adenoviral gene therapy treatment, Gendicine (China, 2003), have received approval from regulatory agencies; numerous candidates are in advanced stages of human clinical trials. Selection of drugs on the basis of DNA sequence and structure has a reduced potential for toxicity, should result in fewer side effects, and therefore should eventually yield safer drugs than those currently available. These predictions are based on the high selectivity and specificity of such molecules for recognition of their molecular targets. However, poor cellular uptake and rapid in vivo degradation of DNA-based therapeutics necessitate the use of delivery systems to facilitate cellular internalization and preserve their activity. This review discusses the basis of structural design, mode of action, and applications of DNA-based therapeutics. The mechanisms of cellular uptake and intracellular trafficking of DNA-based therapeutics are examined, and the constraints these transport processes impose on the choice of delivery systems are summarized. Finally, the development of some of the most promising currently available DNA delivery platforms is discussed, and the merits and drawbacks of each approach are evaluated.
Collapse
MESH Headings
- Antisense Elements (Genetics)/administration & dosage
- Antisense Elements (Genetics)/pharmacokinetics
- Antisense Elements (Genetics)/therapeutic use
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/pharmacokinetics
- Aptamers, Nucleotide/therapeutic use
- Biological Transport
- DNA/administration & dosage
- DNA/genetics
- DNA/pharmacokinetics
- DNA/therapeutic use
- DNA, Catalytic/administration & dosage
- DNA, Catalytic/pharmacokinetics
- DNA, Catalytic/therapeutic use
- DNA, Recombinant/administration & dosage
- DNA, Recombinant/genetics
- DNA, Recombinant/pharmacokinetics
- DNA, Recombinant/therapeutic use
- Dosage Forms
- Drug Delivery Systems
- Drug Design
- Genes, Transgenic, Suicide
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/pharmacokinetics
- Genetic Vectors/therapeutic use
- Humans
- Liposomes/administration & dosage
- Liposomes/classification
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/therapeutic use
- RNA, Catalytic/administration & dosage
- RNA, Catalytic/pharmacokinetics
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/pharmacokinetics
- RNA, Small Interfering/therapeutic use
- Transgenes
Collapse
Affiliation(s)
- Siddhesh D. Patil
- Department of Pharmaceutical Sciences, University of Connecticut, 06269 Storrs, CT
| | - David G. Rhodes
- Department of Pharmaceutical Sciences, University of Connecticut, 06269 Storrs, CT
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences, University of Connecticut, 06269 Storrs, CT
| |
Collapse
|
36
|
Roth CM, Sundaram S. Engineering synthetic vectors for improved DNA delivery: insights from intracellular pathways. Annu Rev Biomed Eng 2004; 6:397-426. [PMID: 15255775 DOI: 10.1146/annurev.bioeng.6.040803.140203] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Significant progress has been made in the area of nonviral gene delivery to date. Yet, synthetic vectors remain less efficient by orders of magnitude than their viral counterparts. Research continues toward unraveling and overcoming various barriers to the efficient delivery of DNA, whether in plasmid form encoding a gene or as an oligonucleotide for the selective inhibition of target gene expression. Novel components for overcoming these hurdles are continually being incorporated into the design of synthetic vectors, leading to increasingly more virus-like particles. Despite these advances, general principles defining the design of synthetic vectors are yet to be developed fully. A more quantitative analysis of the cellular uptake and intracellular processing of these vectors is required for the rational manipulation of vector design. Mathematical frameworks with a more conceptual basis will help obtain an integrated perspective on these complex systems. In this review, we critically examine the progress made toward the improved design of synthetic vectors by the strategic exploitation of intracellular mechanisms and explore newer possibilities to overcome obstacles in the practical realization of this field.
Collapse
Affiliation(s)
- Charles M Roth
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
37
|
Akhtar S, Juliano RL. Cellular uptake and intracellular fate of antisense oligonucleotides. Trends Cell Biol 2004; 2:139-44. [PMID: 14731968 DOI: 10.1016/0962-8924(92)90100-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antisense oligonucleotides with sequences complementary to a given genetic target can enter cells in sufficient quantities to selectively inhibit gene expression. Thus, they have a potential therapeutic use in preventing undesirable gene expression in diseases such as cancer and AIDS. However, it is remarkable that these molecules, which have high molecular weights and are often charged, gain entry to cells at all. In this article, we review the possible mechanisms by which oligonucleotides enter cells and their subsequent intracellular fates. We also discuss current approaches for improving cellular uptake and delivery of antisense nucleic acids to their intended targets.
Collapse
Affiliation(s)
- S Akhtar
- Pharmaceutical Sciences Institute, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | |
Collapse
|
38
|
Abstract
Oligonucleotides (ONs) are a new class of therapeutic compounds under investigation for the treatment of a variety of disease states, such as cancer and HIV, and for FDA approval of an anti-CMV retinitis antisense molecule (Vitravene trade mark, Isis Pharmaceuticals). However, these molecules are limited not only by poor cellular uptake, but also by a general lack of understanding regarding the mechanism(s) of ON cellular uptake. As a result, various delivery vehicles have been developed that circumvent the proposed mechanism of uptake, endocytosis, while improving target specific delivery and/or drug stability. This review describes various traditional and novel delivery mechanisms that have been employed to improve ON cellular delivery, cost effectiveness, and therapeutic efficacy.
Collapse
Affiliation(s)
- Melanie A Lysik
- Midwestern University, College of Pharmacy-Glendale, Department of Pharmaceutical Sciences, 19555 N 59th Avenue, Glendale, Arizona 18308, USA.
| | | |
Collapse
|
39
|
Van Oekelen D, Luyten WHML, Leysen JE. Ten years of antisense inhibition of brain G-protein-coupled receptor function. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:123-42. [PMID: 12738054 DOI: 10.1016/s0165-0173(03)00153-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antisense oligonucleotides (AOs) are widely used as tools for inhibiting gene expression in the mammalian central nervous system. Successful gene suppression has been reported for different targets such as neurotransmitter receptors, neuropeptides, ion channels, trophic factors, cytokines, transporters, and others. This illustrates their potential for studying the expression and function of a wide range of proteins. AOs may even find therapeutic applications and provide an attractive strategy for intervention in diseases of the central nervous system (CNS). However, a lack of effectiveness and/or specificity could be a major drawback for research or clinical applications. Here we provide a critical overview of the literature from the past decade on AOs for the study of G-protein-coupled receptors (GPCRs). The following aspects will be considered: mechanisms by which AOs exert their effects, types of animal model system used, detection of antisense action, effects of AO design and delivery characteristics, non-antisense effects and toxicological properties, controls used in antisense studies to assess specificity, and our results (failures and successes). Although the start codon of the mRNA is the most popular region (46%) to target by AOs, targeting the coding region of GPCRs is almost as common (41%). Moreover, AOs directed to the coding region of the GPCR mRNA induce the highest reductions in receptor levels. To resist degradation by nucleases, the modified phosphorothioate AO (S-AO) is the most widely used and effective oligonucleotide. However, the end-capped phosphorothioate AOs (ECS-AOs) are increasingly used due to possible toxic and non-specific effects of the S-AO. Other parameters affecting the activity of a GPCR-targeting AO are the length (mostly an 18-, 20- or 21-mer) and the GC-content (mostly varying from 30 to 80%). Interestingly, one-third of the AOs successfully targeting GPCRs possess a GC/AT ratio of 61-70%. AO-induced reductions in GPCR expression levels and function range typically from 21 to 40% and 41 to 50%, respectively. In contrast to many antisense reviews, we therefore conclude that the functional activity of a GPCR after AO treatment correlates mostly with the density of the target receptors (maximum factor 2). However, AOs are no simple tools for experimental use in vivo. Despite successful results in GPCR research, no general guidelines exist for designing a GPCR-targeting AO or, in general, for setting up a GPCR antisense experiment. It seems that the correct choice of a GPCR targeting AO can only be ascertained empirically. This disadvantage of antisense approaches results mostly from incomplete knowledge about the internalisation and mechanism of action of AOs. Together with non-specific effects of AOs and the difficulties of assessing target specificity, this makes the use of AOs a complex approach from which conclusions must be drawn with caution. Further antisense research has to be carried out to ensure the adequate use of AOs for studying GPCR function and to develop antisense as a valuable therapeutic modality.
Collapse
Affiliation(s)
- Dirk Van Oekelen
- Discovery Research, Janssen Research Foundation, B-2340 Beerse, Belgium
| | | | | |
Collapse
|
40
|
Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid/chitosan complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:51-64. [PMID: 11513804 DOI: 10.1016/s0005-2736(01)00362-5] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chitosan is useful as a non-viral vector for gene delivery. Although there are several reports supporting the use of chitosan for gene delivery, studies regarding effects on transfection and the chitosan-specific transfection mechanism remain insufficient. In this report, the level of expression with plasmid/chitosan was observed to be no less than that with plasmid/lipofectin complexes in SOJ cells. The transfection mechanism of plasmid/chitosan complexes as well as the relationship between transfection activity and cell uptake was analyzed by using fluorescein isothiocyanate-labeled plasmid and Texas Red-labeled chitosan. In regard to effects on transfection, there were several factors to affect transfection activity and cell uptake, for example: the molecular mass of chitosan, stoichiometry of complex, as well as serum concentration and pH of transfection medium. The level of transfection with plasmid/chitosan complexes was found to be highest when the molecular mass of chitosan was 40 or 84 kDa, ratio of chitosan nitrogen to DNA phosphate (N/P ratio) was 5, and transfection medium contained 10% serum at pH 7.0. We also investigated the transfection mechanism, and found that plasmid/chitosan complexes most likely condense to form large aggregates (5-8 microm), which absorb to the cell surface. After this, plasmid/chitosan complexes are endocytosed, and possibly released from endosomes due to swelling of lysosomal in addition to swelling of plasmid/chitosan complex, causing the endosome to rupture. Finally, complexes were also observed to accumulate in the nucleus using a confocal laser scanning microscope.
Collapse
Affiliation(s)
- T Ishii
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
41
|
Morvan F, Brès JC, Lefebvre I, Vasseur JJ, Pompon A, Imbach JL. Kinetics study of the biotransformation of an oligonucleotide prodrug in cells extract by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:1159-63. [PMID: 11562977 DOI: 10.1081/ncn-100002510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The fate of a dodecathymidine prodrug in cell extract was monitored by MALDI-TOF MS. This technique allows a facile identification and a relative quantification of metabolites produced. We showed that the relative peak intensities were similar to the relative metabolite proportions that permitted the determination of their half-lives. The oligonucleotide prodrug was fully metabolized to yield the T12 phosphorothioate likely through a carboxyesterase mediated mechanism.
Collapse
Affiliation(s)
- F Morvan
- Laboratoire de Chimie Organique Biomoléculaire de Synthèse, UMR 5625 CNRS-UM II, Université Montpellier II, Place E. Bataillon, 34095 Montpellier, France
| | | | | | | | | | | |
Collapse
|
42
|
Brès JC, Morvan F, Lefebvre I, Vasseur JJ, Pompon A, Imbach JL. Kinetics study of the biotransformation of an oligonucleotide prodrug in cells extract by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 753:123-30. [PMID: 11302437 DOI: 10.1016/s0378-4347(00)00502-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fate of a dodecathymidine prodrug in cell extract was monitored by MALDI-TOF MS. This technique allows a facile identification and a relative quantification of metabolites produced. We showed that the relative peak intensities were similar to the relative metabolite proportions that permitted the determination of their half-lives. We found a good fit between the calculated kinetics curves and the experimental points. The oligonucleotide prodrug was fully metabolized to yield the dodecathymidine phosphorothioate likely through a carboxyesterase mediated mechanism.
Collapse
Affiliation(s)
- J C Brès
- Laboratoire de Chimie Organique Biomoléculaire de Synthèse, UMR 5625 CNRS-UM II, Université Montpellier II, France
| | | | | | | | | | | |
Collapse
|
43
|
Griffoni C, Laktionov PP, Rykova EY, Spisni E, Riccio M, Santi S, Bryksin A, Volodko N, Kraft R, Vlassov V, Tomasi V. The Rossmann fold of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a nuclear docking site for antisense oligonucleotides containing a TAAAT motif. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:32-46. [PMID: 11341957 DOI: 10.1016/s1388-1981(00)00166-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The subcellular localisation of oligodeoxynucleotides (ODN) is a major limitation for their use against nuclear targets. In this study we demonstrate that an antisense ODN directed against cytosolic phospholipase A(2) (cPLA2) mRNA is efficiently taken up and accumulates in the nuclei of endothelial cells (HUVEC), human monocytes and HeLa cells. Gel shift experiments and incubation of cells with oligonucleotide derivatives show that the anti-cPLA2 oligo binds a 37 kDa protein in nuclear extracts. The TAAAT sequence was identified as the major binding motif for the nuclear protein in competition experiments with mutated ODNs. Modification of the AAA triplet resulted in an ODN which failed to localise in the nucleus. Moreover, inserting a TAAAT motif into an ODN localising in the cytosol did not modify its localisation. The 37 kDa protein was purified and identified after peptide sequencing as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It was shown by confocal microscopy that GAPDH co-localises with anti-cPLA2 ODN in the nucleus and commercial GAPDH effectively binds the oligo. Competition experiments with increasing concentration of NAD(+) co-factor indicate that the GAPDH Rossmann fold is a docking site for antisense oligonucleotides containing a TAAAT motif.
Collapse
Affiliation(s)
- C Griffoni
- Department of Experimental Biology, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Antisense oligonucleotides (ONs) have several properties that make them attractive as therapeutic agents. Hybridization of antisense ONs to their complementary nucleic acid sequences by Watson-Crick base pairing is a highly selective and efficient process. Design of therapeutic antisense agents can be made more rationally as compared to most traditional drugs, i.e., they can be designed on the basis of target RNA sequences and their secondary structures. Despite these advantages, the design and use of antisense ONs as therapeutic agents are still faced with several obstacles. One major obstacle is their inefficient cellular uptake and poor accessibility to target sites. In this article, we will discuss key barriers affecting ON delivery and approaches to overcome these barriers. Current methods of ON delivery will be reviewed with an emphasis on novel non-endocytic methods of delivery. ONs are taken up by cells via an endocytic process. The process of ON release from endosomes is a very inefficient process and, hence, ONs end up being degraded in the endosomes. Thus, ONs do not reach their intended site of action in the cytoplasm or nucleus. Delivery systems ensuring a cytoplasmic delivery of ONs have the potential to increase the amount of ON reaching the target. Here, we shall examine various ON delivery methods that bypass the endosomal pathway. The advantages and disadvantages of these methods compared to other existing methods of ON delivery will be discussed.
Collapse
Affiliation(s)
- S Dokka
- West Virginia University, Department of Basic Pharmaceutical Sciences, School of Pharmacy, P.O. Box 9530, Morgantown, WV 26506, USA
| | | |
Collapse
|
45
|
Wu-Pong S. Alternative interpretations of the oligonucleotide transport literature: insights from nature. Adv Drug Deliv Rev 2000; 44:59-70. [PMID: 11035198 DOI: 10.1016/s0169-409x(00)00084-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elucidation of the mechanism of oligonucleotide (ON) cellular internalization has met an impasse at the lipid penetration stage. ON internalization is commonly regarded to involve endocytosis, yet the method by which the ON penetrates the endosome membrane remains a mystery despite more than 10 years of research by multiple laboratories. In addition, the literature regarding this topic is fraught with discrepancies and inconsistencies. Therefore, the goal of this review is to propose and illustrate the feasibility of the notion that the literature discrepancies are perhaps an indication of a complex transport mechanism involving more than one uptake pathway. Accordingly, ON- and cell-differences in uptake may be attributed to differences in the relative importance of these pathways for different cell types and ONs. An example of one such pathway is reviewed and critiqued in this communication with respect to its hypothetical role in ON uptake. Other innovative mechanisms should similarly be considered to stimulate new ideas, discussion and research in this unique and interesting field.
Collapse
Affiliation(s)
- S Wu-Pong
- Department of Pharmaceutics, Box 980533, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
46
|
Islam A, Handley SL, Thompson KS, Akhtar S. Studies on uptake, sub-cellular trafficking and efflux of antisense oligodeoxynucleotides in glioma cells using self-assembling cationic lipoplexes as delivery systems. J Drug Target 2000; 7:373-82. [PMID: 10721799 DOI: 10.3109/10611869909085520] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cellular uptake of antisense oligodeoxynucleotides (ODNs) may be enhanced by the use of carriers such as cationic liposomes or lipoplexes, but little is known about the intracellular fate and subcellular trafficking of these systems in target cells. In this study, we report on the cellular uptake and biodistribution of ODNs in the presence and absence of optimised self-assembled cationic lipoplexes using the C6 glioma cell line as an in vitro model. Biotin or radiolabelled 15-mer phosphorothioate (PS) ODNs were synthesised and their cellular uptake and subcellular biodistribution characterised in the presence and absence of an optimised cationic lipoplex delivery system using studies ranging from cellular association, cellular efflux and transmission electron microscopy (TEM). Ultrastructural studies clearly showed PS ODNs in the absence of liposomal delivery to be sequestered within endosomal and lysosomal vesicular bodies indicative of endocytic uptake. ODNs were also visible, to a lesser extent, in the nucleus and cytoplasm. By employing DOSPA (2'-(1",2"-dioleoyloxypropyldimethyl-ammonium bromide)-N-ethyl-6-amidospermine tetra trifluoroacetic acid) and DOPE (dioleoylphosphatidylethanolamine) complex in a 3 : 1 ratio, as a delivery system for ODNs at a optimal lipid/DNA charge ratio of 1 : 1, the level of ODN cellular association was significantly increased by approximately 10-12 fold with a concomitant change in subcellular distribution of PS ODN. TEM studies indicated enhanced penetration of ODN within the cytosol and the cell nucleus with reduced presence in vesicular compartments. Efflux studies confirmed that cationic lipoplexes promoted entry of ODNs into 'deeper' cellular compartments, consistent with endosomal release. Optimised cationic lipoplexes improved cellular delivery of ODNs by enhancing cell association, uptake and by favourably modulating the intracellular trafficking and distribution of ODNs into non-vesicular compartments including the cytosol and nucleus.
Collapse
Affiliation(s)
- A Islam
- Department of Pharmaceutical and Biological Sciences, Pharmaceutical Sciences Institute, Aston University, Birmingham, UK.
| | | | | | | |
Collapse
|
47
|
Sei S, Yang QE, O'Neill D, Yoshimura K, Nagashima K, Mitsuya H. Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain. J Virol 2000; 74:4621-33. [PMID: 10775598 PMCID: PMC111982 DOI: 10.1128/jvi.74.10.4621-4633.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the full sequence of the human immunodeficiency virus type 1 (HIV-1) genome has been known for more than a decade, effective genetic antivirals have yet to be developed. Here we show that, of 22 regions examined, one highly conserved sequence (ACTCTTTGGCAACGA) near the 3' end of the HIV-1 gag-pol transframe region, encoding viral protease residues 4 to 8 and a C-terminal Vpr-binding motif of p6(Gag) protein in two different reading frames, can be successfully targeted by an antisense peptide nucleic acid oligomer named PNA(PR2). A disrupted translation of gag-pol mRNA induced at the PNA(PR2)-annealing site resulted in a decreased synthesis of Pr160(Gag-Pol) polyprotein, hence the viral protease, a predominant expression of Pr55(Gag) devoid of a fully functional p6(Gag) protein, and the excessive intracellular cleavage of Gag precursor proteins, hindering the processes of virion assembly. Treatment with PNA(PR2) abolished virion production by up to 99% in chronically HIV-1-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates with the multidrug-resistant phenotype. This particular segment of the gag-pol transframe gene appears to offer a distinctive advantage over other regions in invading viral structural genes and restraining HIV-1 replication in infected cells and may potentially be exploited as a novel antiviral genetic target.
Collapse
Affiliation(s)
- S Sei
- HIV Clinical Interface Laboratory, SAIC-Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Clark RE. Antisense therapeutics in chronic myeloid leukaemia: the promise, the progress and the problems. Leukemia 2000; 14:347-55. [PMID: 10720125 DOI: 10.1038/sj.leu.2401677] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA sequences which are complementary or 'antisense' to a target mRNA can inhibit expression of that mRNA's protein product. Antisense therapeutics has therefore received attention for inhibiting oncogenes in haematological malignancy, in particular in chronic myeloid leukaemia. However, it is now becoming clear that antisense therapeutics is considerably more problematic than was naively initially assumed. In this article, some of these difficulties are discussed, together with the achievements in CML so far. Considerable further research is required in order to define an optimal antisense therapeutics strategy for clinical use.
Collapse
MESH Headings
- Animals
- Antisense Elements (Genetics)/chemistry
- Antisense Elements (Genetics)/pharmacokinetics
- Antisense Elements (Genetics)/therapeutic use
- Bone Marrow Purging
- Deoxyribonucleases/physiology
- Forecasting
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, myc
- Hematopoietic Stem Cells/drug effects
- Humans
- Leukemia/genetics
- Leukemia/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Lymphoma/therapy
- Mice
- Mice, SCID
- Neoplasm Proteins/physiology
- Neoplastic Stem Cells/drug effects
- Proto-Oncogene Proteins c-myc/biosynthesis
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- Treatment Outcome
Collapse
Affiliation(s)
- R E Clark
- University Department of Haematology, Royal Liverpool University Hospital, UK
| |
Collapse
|
49
|
Tarrasón G, Bellido D, Eritja R, Vilaró S, Piulats J. Intracellular distribution of digoxigenin-labeled phosphorothioate oligonucleotides. Methods Enzymol 2000; 313:257-68. [PMID: 10595360 DOI: 10.1016/s0076-6879(00)13016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- G Tarrasón
- Laboratorio de Bioinvestigación, Merck Farma y Química, Barcelona, Spain
| | | | | | | | | |
Collapse
|
50
|
Hughes J, Astriab A, Yoo H, Alahari S, Liang E, Sergueev D, Shaw BR, Juliano RL. In vitro transport and delivery of antisense oligonucleotides. Methods Enzymol 1999; 313:342-58. [PMID: 10595365 DOI: 10.1016/s0076-6879(00)13021-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A variety of techniques are currently available to enhance the cellular uptake and pharmacological effectiveness of antisense oligonucleotides in the in vitro setting. The choice of technique will depend on the context of investigation, the likelihood of cytotoxity due to the delivery agents, and the ease and convenience of the approach. The considerations for the delivery of antisense molecules in the in vivo setting are likely to be quite different from the cell culture situation emphasized in this article.
Collapse
Affiliation(s)
- J Hughes
- Department of Pharmaceutics, University of Florida, Gainesville 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|