1
|
Panicker IS, Browning GF, Markham PF. The Effect of an Alternate Start Codon on Heterologous Expression of a PhoA Fusion Protein in Mycoplasma gallisepticum. PLoS One 2015; 10:e0127911. [PMID: 26010086 PMCID: PMC4444185 DOI: 10.1371/journal.pone.0127911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 04/20/2015] [Indexed: 11/18/2022] Open
Abstract
While the genomes of many Mycoplasma species have been sequenced, there are no collated data on translational start codon usage, and the effects of alternate start codons on gene expression have not been studied. Analysis of the annotated genomes found that ATG was the most prevalent translational start codon among Mycoplasma spp. However in Mycoplasma gallisepticum a GTG start codon is commonly used in the vlhA multigene family, which encodes a highly abundant, phase variable lipoprotein adhesin. Therefore, the effect of this alternate start codon on expression of a reporter PhoA lipoprotein was examined in M. gallisepticum. Mutation of the start codon from ATG to GTG resulted in a 2.5 fold reduction in the level of transcription of the phoA reporter, but the level of PhoA activity in the transformants containing phoA with a GTG start codon was only 63% of that of the transformants with a phoA with an ATG start codon, suggesting that GTG was a more efficient translational initiation codon. The effect of swapping the translational start codon in phoA reporter gene expression was less in M. gallisepticum than has been seen previously in Escherichia coli or Bacillus subtilis, suggesting the process of translational initiation in mycoplasmas may have some significant differences from those used in other bacteria. This is the first study of translational start codon usage in mycoplasmas and the impact of the use of an alternate start codon on expression in these bacteria.
Collapse
Affiliation(s)
- Indu S. Panicker
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| | - Philip F. Markham
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
de Smit MH, Verlaan PWG, van Duin J, Pleij CWA. Intracistronic transcriptional polarity enhances translational repression: a new role for Rho. Mol Microbiol 2009; 69:1278-89. [PMID: 19172759 DOI: 10.1111/j.1365-2958.2008.06360.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transcriptional polarity in Escherichia coli occurs when cryptic Rho-dependent transcription terminators become activated as a consequence of reduced translation. Whether this is due to an increased spacing between the RNA polymerase and the leading ribosome or to prior functional inactivation of a subpopulation of the mRNAs has been a matter of discussion. Transcriptional polarity results in decreased synthesis of inefficiently translated mRNAs and therefore in decreased expression of downstream genes in the same operon (intercistronic polarity). By analogy, expression of the gene in which the conditional termination occurs is also expected to decrease, but this has so far not been demonstrated experimentally. To study the relevance of this intracistronic polarity for expression regulation in vivo, the polarity-prone IacZ reporter gene was fused to a range of mutated ribosome binding sites, repressed to different degrees by local RNA structure. Quantitative analysis of protein and mRNA synthesis shows that polarity occurs on functionally active mRNA molecules and that it indeed affects expression of the cistron carrying the terminator, thus enhancing the effect of translational repression. These findings point to a novel regulatory function of transcriptional polarity, reminiscent of transcriptional attenuation but opposite in effect.
Collapse
Affiliation(s)
- Maarten H de Smit
- Section Genexpress, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, PO Box 9502, 2300 RA Leiden, the Netherlands.
| | | | | | | |
Collapse
|
3
|
Dreyfus M. Killer and protective ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:423-66. [PMID: 19215779 DOI: 10.1016/s0079-6603(08)00811-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In prokaryotes, translation influences mRNA decay. The breakdown of most Escherichia coli mRNAs is initiated by RNase E, a 5'-dependent endonuclease. Some mRNAs are protected by ribosomes even if these are located far upstream of cleavage sites ("protection at a distance"), whereas others require direct shielding of these sites. I argue that these situations reflect different modes of interaction of RNase E with mRNAs. Protection at a distance is most impressive in Bacilli, where ribosomes can protect kilobases of unstable downstream sequences. I propose that this protection reflects the role in mRNA decay of RNase J1, a 5'-->3' exonuclease with no E. coli equivalent. Finally, recent years have shown that besides their protective role, ribosomes can also cleave their mRNA under circumstances that cause ribosome stalling. The endonuclease associated with this "killing" activity, which has a eukaryotic counterpart ("no-go decay"), is not characterized; it may be borne by the distressed ribosome itself.
Collapse
|
4
|
In vivo dynamics of intracistronic transcriptional polarity. J Mol Biol 2008; 385:733-47. [PMID: 19059415 DOI: 10.1016/j.jmb.2008.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 11/09/2008] [Accepted: 11/12/2008] [Indexed: 11/24/2022]
Abstract
Transcriptional polarity occurs in Escherichia coli when cryptic Rho-dependent transcription terminators become activated as a consequence of reduced translation. Increased spacing between RNA polymerase and the leading ribosome allows the transcription termination factor Rho to bind to mRNA, migrate to the RNA polymerase, and induce termination. Transcriptional polarity results in decreased synthesis of inefficiently translated mRNAs and, therefore, in decreased expression not only of downstream genes in the same operon (intercistronic polarity) but also of the cistron in which termination occurs (intracistronic polarity). To quantitatively measure the effect of different levels of translation on intracistronic transcription termination, the polarity-prone lacZ reporter gene was fused to a range of mutated ribosome binding sites, repressed to different degrees by local RNA structure. The results show that polarity gradually increases with decreasing frequency of translational initiation, as expected. Closer analysis, with the help of a newly developed kinetic model, reveals that efficient intracistronic termination requires very low translational initiation frequencies. This finding is unexpected because Rho is a relatively small protein that binds rapidly to its RNA target, but it appears to be true also for other examples of transcriptional polarity reported in the literature. The conclusion must be that polarity is more complex than just an increased exposure of the Rho binding site as the spacing between the polymerase and the leading ribosome becomes larger. Biological consequences and possible mechanisms are discussed.
Collapse
|
5
|
Li W, Zou H, Tao M. Sequences downstream of the start codon and their relations to G + C content and optimal growth temperature in prokaryotic genomes. Antonie van Leeuwenhoek 2007; 92:417-27. [PMID: 17562217 DOI: 10.1007/s10482-007-9170-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 03/30/2007] [Indexed: 11/29/2022]
Abstract
The mechanism of translation initiation is responsible for shaping the mRNA sequences downstream of the start codon. However, this region has not been systematically analyzed in prokaryotes. We used sequence logos and statistic methods to analyze the patterns of overrepresented sequences in this region for 125 species of bacteria and 23 species of archaea. The specific positions are compared to the first 33 amino acids in the proteins. At the 2nd amino acid position, Lys, Ser or Thr is highly overrepresented for 68% to 84% of the genomes examined and Ala is highly overrepresented for 57% of the genomes. Overrepresentation of Lys2 is negatively correlated with the G + C content and overrepresentation of Ser2 or Thr2 is positively correlated with the G + C content of genomes. Ile at the 4th to the 8th positions were found to be overrepresented for 91% of the genomes analyzed and this seemed to be conserved for both bacteria and archaea. Organisms growing at high temperatures have relatively low extent of nucleotides bias at 5' termini of open reading frames (ORFs). The extent of overrepresenting A and underrepresenting G at ORF 5' termini is reduced in thermophiles and hyperthermophiles for both archaea and bacteria.
Collapse
Affiliation(s)
- Wencheng Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | | | | |
Collapse
|
6
|
Dryselius R, Nikravesh A, Kulyté A, Goh S, Good L. Variable coordination of cotranscribed genes in Escherichia coli following antisense repression. BMC Microbiol 2006; 6:97. [PMID: 17118182 PMCID: PMC1661596 DOI: 10.1186/1471-2180-6-97] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 11/21/2006] [Indexed: 12/01/2022] Open
Abstract
Background A majority of bacterial genes belong to tight clusters and operons, which complicates gene functional studies using conventional knock-out methods. Antisense agents can down-regulate the expression of genes without disrupting the genome because they bind mRNA and block its expression. However, it is unclear how antisense inhibition affects expression from genes that are cotranscribed with the target. Results To examine the effects of antisense inhibition on cotranscribed genes, we constructed a plasmid expressing the two reporter genes gfp and DsRed as one transcriptional unit. Incubation with antisense peptide nucleic acid (PNA) targeted to the mRNA start codon region of either the upstream gfp or the downstream DsRed gene resulted in a complete expression discoordination from this artificial construct. The same approach was applied to the three cotranscribed genes in the endogenously expressed lac-operon (lacZ, Y and A) and partial downstream expression coordination was seen when the lacZ start codon was targeted with antisense PNA. Targeting the lacY mRNA start codon region showed no effect on the upstream lacZ gene expression whereas expression from the downstream lacA gene was affected as strongly as the lacY gene. Determination of lacZ and lacY mRNA levels revealed a pattern of reduction that was similar to the Lac-proteins, indicating a relation between translation inhibition and mRNA degradation as a response to antisense PNA treatment. Conclusion The results show that antisense mediated repression of genes within operons affect cotranscribed genes to a variable degree. Target transcript stability appears to be closely related to inhibition of translation and presumably depends on translating ribosomes protecting the mRNA from intrinsic decay mechanisms. Therefore, for genes within operons and clusters it is likely that the nature of the target transcript will determine the inhibitory effects on cotranscribed genes. Consequently, no simple and specific methods for expression control of a single gene within polycistronic operons are available, and a thorough understanding of mRNA regulation and stability is required to understand the results from both knock-down and knock-out methods used in bacteria.
Collapse
Affiliation(s)
- Rikard Dryselius
- Department of Cell and Molecular Biology, Programme for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Abbas Nikravesh
- Department of Cell and Molecular Biology, Programme for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
| | - Agne Kulyté
- Department of Cell and Molecular Biology, Programme for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
- Life Sciences, Södertörns University College, Alfred Nobels allé 3, 14152 Huddinge, Sweden
| | - Shan Goh
- Department of Cell and Molecular Biology, Programme for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
| | - Liam Good
- Department of Cell and Molecular Biology, Programme for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77, Stockholm, Sweden
| |
Collapse
|
7
|
Komarova AV, Tchufistova LS, Dreyfus M, Boni IV. AU-rich sequences within 5' untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J Bacteriol 2005; 187:1344-9. [PMID: 15687198 PMCID: PMC545611 DOI: 10.1128/jb.187.4.1344-1349.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 11/05/2004] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that when the Escherichia coli chromosomal lacZ gene is put under the control of an extended Shine-Dalgarno (SD) sequence (10 or 6 nucleotides in length), the translation efficiency can be highly variable, depending on the presence of AU-rich targets for ribosomal protein S1 in the mRNA leader. Here, the same strains have been used to examine the question of how strong ribosome binding to extended SD sequences affects the stability of lacZ mRNAs translated with different efficiencies. The steady-state concentration of the lacZ transcripts has been found to vary over a broad range, directly correlating with translation efficiency but not with the SD duplex stability. The observed strain-to-strain variations in lacZ mRNA level became far less marked in the presence of the rne-1 mutation, which partially inactivates RNase E. Together, the results show that (i) an SD sequence, even one that is very long, cannot stabilize the lacZ mRNA in E. coli if translation is inefficient; (ii) inefficiently translated lacZ transcripts are sensitive to RNase E; and (iii) AU-rich elements inserted upstream of a long SD sequence enhance translation and stabilize mRNA, despite the fact that they constitute potential RNase E sites. These data strongly support the idea that the lacZ mRNA in E. coli can be stabilized only by translating, and not by stalling, ribosomes.
Collapse
Affiliation(s)
- Anastassia V Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | | | | | | |
Collapse
|
8
|
Boni IV, Artamonova VS, Dreyfus M. The last RNA-binding repeat of the Escherichia coli ribosomal protein S1 is specifically involved in autogenous control. J Bacteriol 2000; 182:5872-9. [PMID: 11004188 PMCID: PMC94711 DOI: 10.1128/jb.182.20.5872-5879.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1999] [Accepted: 08/01/2000] [Indexed: 11/20/2022] Open
Abstract
The ssyF29 mutation, originally selected as an extragenic suppressor of a protein export defect, has been mapped within the rpsA gene encoding ribosomal protein S1. Here, we examine the nature of this mutation and its effect on translation. Sequencing of the rpsA gene from the ssyF mutant has revealed that, due to an IS10R insertion, its product lacks the last 92 residues of the wild-type S1 protein corresponding to one of the four homologous repeats of the RNA-binding domain. To investigate how this truncation affects translation, we have created two series of Escherichia coli strains (rpsA(+) and ssyF) bearing various translation initiation regions (TIRs) fused to the chromosomal lacZ gene. Using a beta-galactosidase assay, we show that none of these TIRs differ in activity between ssyF and rpsA(+) cells, except for the rpsA TIR: the latter is stimulated threefold in ssyF cells, provided it retains at least ca. 90 nucleotides upstream of the start codon. Similarly, the activity of this TIR can be severely repressed in trans by excess S1, again provided it retains the same minimal upstream sequence. Thus, the ssyF stimulation requires the presence of the rpsA translational autogenous operator. As an interpretation, we propose that the ssyF mutation relieves the residual repression caused by normal supply of S1 (i.e., that it impairs autogenous control). Thus, the C-terminal repeat of the S1 RNA-binding domain appears to be required for autoregulation, but not for overall mRNA recognition.
Collapse
Affiliation(s)
- I V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia.
| | | | | |
Collapse
|
9
|
Joyce SA, Dreyfus M. In the absence of translation, RNase E can bypass 5' mRNA stabilizers in Escherichia coli. J Mol Biol 1998; 282:241-54. [PMID: 9735284 DOI: 10.1006/jmbi.1998.2027] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Bacilli, ribosomes or 30 S ribosomal subunits that are stalled or bound on mRNAs can stabilize downstream regions, hence the view that the degradation machinery scans mRNAs from their 5' end. In E. coli, several mRNAs can also be stabilized by secondary structures involving their 5' end. To test whether a bound 30 S subunit can act as a 5' stabilizer in E. coli, we compare here the stabilities of two untranslated variants of the lacZ mRNA, the decay of which is controlled by RNase E. In the first variant, a 35 nt region including the Ribosome Binding Site (RBS) is deleted, whereas in the second it is replaced by an 11 nt-long Shine-Dalgarno (SD) sequence lacking an associated start codon. In the latter variant, an 80 nt fragment encompassing the SD and extending up to the mRNA 5' end was stable in vivo (t1/2>one hour), reflecting 30 S binding. Yet, the full-length message was not more stable than when the SD was absent, although two small decay intermediates retaining the 5' end appear somewhat stabilized. A third variant was constructed in which the RBS is replaced by an insert which can fold back onto the lac leader, creating a putative hairpin involving the mRNA 5' end. The fragment corresponding to this hairpin was stable but, again, the full-length message was not stabilized. Thus, the untranslated lacZ mRNA cannot be protected against RNase E by 5' stabilizers, suggesting that mRNA scanning is not an obligate feature of RNase E-controlled degradation. Altogether, these results suggest important differences in mRNA degradation between E. coli and B. subtilis. In addition, we show that mRNA regions involved in stable hairpins or Shine-Dalgarno pairings can be metabolically stable in E. coli.
Collapse
Affiliation(s)
- S A Joyce
- Laboratoire de Génétique Moléculaire, CNRS URA 1302, Ecole Normale Supérieure, 46 rue d'Ulm, Paris, 75230, France
| | | |
Collapse
|
10
|
Nierlich DP, Murakawa GJ. The decay of bacterial messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:153-216. [PMID: 8821261 DOI: 10.1016/s0079-6603(08)60967-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D P Nierlich
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024, USA
| | | |
Collapse
|
11
|
Abstract
tRNAs with inosine (I) in the first position read three codons ending in U, C and A. However, A-ending codons read with I are rarely used. In Escherichia coli, CGA/U/C are all read solely by tRNAICGArg. CGU and CGC are very common codons, but CGA is very rare. Three independent in vivo assays show that translation of CGA is relatively inefficient. In the first, nine tandem CGA cause a strong rho-mediated polar effect on expression of a lacZ reporter gene. The inhibition is made more extreme by a mutation in ribosomal protein S12 (rpsL), which indicates that ribosomal binding by tRNAICGArg is slow and/or unstable in the CGA cluster. The second assay, in which codons are substituted for the regulatory UGA of the RF2 frameshift, confirms that aa-tRNA selection is slow and/or unstable at CGA. In the third assay, CGA is found to be a poor 5' context for amber suppression, which suggests that an A:I base pair in the P site can interfere with translation of a codon in the A site. Two possible errors, frameshifting and premature termination by RF2, are not significant causes for inefficiency at CGA. It is concluded that the A:I pair destabilizes codon:anticodon complexes during two successive ribosomal cycles, and it is suggested that these properties contribute to the rare usage of codons read with the A:I base pair.
Collapse
Affiliation(s)
- J F Curran
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109
| |
Collapse
|
12
|
Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church GM. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 1993; 175:3303-16. [PMID: 8501034 PMCID: PMC204727 DOI: 10.1128/jb.175.11.3303-3316.1993] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic conditions. Of the 30 cobalamin synthetic genes, 25 are clustered in one operon, cob, and are arranged in three groups, each group encoding enzymes for a biochemically distinct portion of the biosynthetic pathway. We have determined the DNA sequence for the promoter region and the proximal 17.1 kb of the cob operon. This sequence includes 20 translationally coupled genes that encode the enzymes involved in parts I and III of the cobalamin biosynthetic pathway. A comparison of these genes with the cobalamin synthetic genes from Pseudomonas denitrificans allows assignment of likely functions to 12 of the 20 sequenced Salmonella genes. Three additional Salmonella genes encode proteins likely to be involved in the transport of cobalt, a component of vitamin B12. However, not all Salmonella and Pseudomonas cobalamin synthetic genes have apparent homologs in the other species. These differences suggest that the cobalamin biosynthetic pathways differ between the two organisms. The evolution of these genes and their chromosomal positions is discussed.
Collapse
Affiliation(s)
- J R Roth
- Department of Biology, University of Utah, Salt Lake City 84112
| | | | | | | | | |
Collapse
|
13
|
Lynch AS, Wang JC. Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J Bacteriol 1993; 175:1645-55. [PMID: 8383663 PMCID: PMC203958 DOI: 10.1128/jb.175.6.1645-1655.1993] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A homologous set of plasmids expressing tet, lacY, and melB, genes encoding integral cytoplasmic membrane proteins, and tolC and ampC, genes encoding proteins for export through the cytoplasmic membrane, was constructed for studying the effects of transcription and translation of such genes on the hypernegative supercoiling of plasmids in Escherichia coli cells deficient in DNA topoisomerase I. The results support the view that intracellular bacterial DNA is anchored to the cytoplasmic membrane at many points through cotranscriptional synthesis of membrane proteins or proteins designated for export across the cytoplasmic membrane; in the latter case, the presence of the signal peptide appears to be unnecessary for cotranscriptional membrane association.
Collapse
Affiliation(s)
- A S Lynch
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
14
|
Cheng X, Patterson TA. Construction and use of lambda PL promoter vectors for direct cloning and high level expression of PCR amplified DNA coding sequences. Nucleic Acids Res 1992; 20:4591-8. [PMID: 1408761 PMCID: PMC334189 DOI: 10.1093/nar/20.17.4591] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A set of plasmid vectors which allow single-step cloning and expression of PCR-amplified DNA coding sequences has been constructed. The vectors contain the phage lambda PL promoter, a synthetic translation initiation region (TIR), and convenient cloning sites. The cloning sites provide all or part of an AUG translation initiation codon and facilitate the precise fusion of target DNA sequences to vector transcriptional and translational signals. The vectors were constructed with synthetic TIRs because there is evidence which suggests that the efficiency of the phage lambda cII gene TIR present in the parental vector depends strongly on information contained within the cII N-terminal coding sequence. Bovine brain 14-3-3 eta chain cDNA was PCR-amplified and used to demonstrate the expression capacity of the newly constructed vectors. A significant increase in expression of 14-3-3 protein was observed when synthetic TIRs were used in the place of the cII TIR. Expression levels vary from 15% to 48% of total cell protein. The effects of a reported translational enhancer from phage T7 on expression of the 14-3-3 protein are also discussed. The vectors should be generally useful for high level heterologous protein expression in Escherichia coli.
Collapse
Affiliation(s)
- X Cheng
- DuPont Merck Pharmaceutical Company, Wilmington, DE 19880-0400
| | | |
Collapse
|
15
|
Yarchuk O, Jacques N, Guillerez J, Dreyfus M. Interdependence of translation, transcription and mRNA degradation in the lacZ gene. J Mol Biol 1992; 226:581-96. [PMID: 1507217 DOI: 10.1016/0022-2836(92)90617-s] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have constructed a collection of Escherichia coli strains which differ by point mutations in the ribosome binding site (RBS) that drives the translation of the lacZ gene. These mutations affect the Shine-Dalgarno sequence or the initiation codon, or create secondary structures that sequester these elements, and result in a 200-fold variation in beta-galactosidase expression. Surprisingly, these variations of expression are paralleled by nearly equivalent changes in the lacZ mRNA level. The ratio of the beta-galactosidase expression to the mRNA level reflects the average spacing between translating ribosomes: hence, paradoxically, mutations that affect translation initiation do not correspondingly change this spacing. Further analysis of the mRNA level variations shows that they originate from two independent mechanisms. When beta-galactosidase expression exceeds a threshold corresponding roughly to one translation event per transcript, the variations in the efficiency of translation initiation affect largely the chemical and functional lifetimes of the mRNA. We further show that the rate-limiting step in the chemical decay process is an RNase E-dependent cleavage, which is outcompeted by translation initiation. Below this expression threshold, the mRNA lifetime levels out and strain-to-strain variations in mRNA level arise solely from polarity effects. We suggest that, in this activity range, most mRNA molecules that escape polarity are crossed by a single ribosome, and hence are identical from the viewpoint of degradation. Altogether, the tight couplings between translation initiation on one hand, polarity and/or mRNA degradation on the other, result in translation initiation events being closely spaced in time even from inefficient RBS, at the expense of the mRNA level. Finally, we evocate the possible beneficial consequences of a coupling between translation, transcription and mRNA degradation, for the management of cellular resources.
Collapse
Affiliation(s)
- O Yarchuk
- Laboratoire de Génétique Moléculaire (CNRS D 1302), Ecole Normale Supérieure, Paris, France
| | | | | | | |
Collapse
|