1
|
Jeanneau S, Jacques PÉ, Lafontaine DA. Investigating the role of RNA structures in transcriptional pausing using in vitro assays and in silico analyses. RNA Biol 2022; 19:916-927. [PMID: 35833713 PMCID: PMC9291695 DOI: 10.1080/15476286.2022.2096794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Transcriptional pausing occurs across the bacterial genome but the importance of this mechanism is still poorly understood. Only few pauses were observed during the previous decades, leaving an important gap in understanding transcription mechanisms. Using the well-known Escherichia coli hisL and trpL pause sites as models, we describe here the relation of pause sites with upstream RNA structures suspected to stabilize pausing. We find that the transcription factor NusA influences the pause half-life at leuL, pheL and thrL pause sites. Using a mutagenesis approach, we observe that transcriptional pausing is affected in all tested pause sites, suggesting that the upstream RNA sequence is important for transcriptional pausing. Compensatory mutations assessing the presence of RNA hairpins did not yield clear conclusions, indicating that complex RNA structures or transcriptional features may be playing a role in pausing. Moreover, using a bioinformatic approach, we explored the relation between a DNA consensus sequence important for pausing and putative hairpins among thousands of pause sites in E. coli. We identified 2125 sites presenting hairpin-dependent transcriptional pausing without consensus sequence, suggesting that this mechanism is widespread across E. coli. This study paves the way to understand the role of RNA structures in transcriptional pausing.
Collapse
Affiliation(s)
- Simon Jeanneau
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pierre-Étienne Jacques
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Incarnato D, Morandi E, Anselmi F, Simon LM, Basile G, Oliviero S. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res 2017; 45:9716-9725. [PMID: 28934475 PMCID: PMC5766169 DOI: 10.1093/nar/gkx617] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/07/2023] Open
Abstract
Defining the in vivo folding pathway of cellular RNAs is essential to understand how they reach their final native conformation. We here introduce a novel method, named Structural Probing of Elongating Transcripts (SPET-seq), that permits single-base resolution analysis of transcription intermediates' secondary structures on a transcriptome-wide scale, enabling base-resolution analysis of the RNA folding events. Our results suggest that cotranscriptional RNA folding in vivo is a mixture of cooperative folding events, in which local RNA secondary structure elements are formed as they get transcribed, and non-cooperative events, in which 5'-halves of long-range helices get sequestered into transient non-native interactions until their 3' counterparts have been transcribed. Together our work provides the first transcriptome-scale overview of RNA cotranscriptional folding in a living organism.
Collapse
Affiliation(s)
- Danny Incarnato
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Edoardo Morandi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Francesca Anselmi
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Lisa M. Simon
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Giulia Basile
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| | - Salvatore Oliviero
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Via Accademia Albertina, 13, Torino, Italy
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
3
|
Larson MH, Mooney RA, Peters JM, Windgassen T, Nayak D, Gross CA, Block SM, Greenleaf WJ, Landick R, Weissman JS. A pause sequence enriched at translation start sites drives transcription dynamics in vivo. Science 2014; 344:1042-7. [PMID: 24789973 DOI: 10.1126/science.1251871] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcription by RNA polymerase (RNAP) is interrupted by pauses that play diverse regulatory roles. Although individual pauses have been studied in vitro, the determinants of pauses in vivo and their distribution throughout the bacterial genome remain unknown. Using nascent transcript sequencing, we identified a 16-nucleotide consensus pause sequence in Escherichia coli that accounts for known regulatory pause sites as well as ~20,000 new in vivo pause sites. In vitro single-molecule and ensemble analyses demonstrate that these pauses result from RNAP-nucleic acid interactions that inhibit next-nucleotide addition. The consensus sequence also leads to pausing by RNAPs from diverse lineages and is enriched at translation start sites in both E. coli and Bacillus subtilis. Our results thus reveal a conserved mechanism unifying known and newly identified pause events.
Collapse
Affiliation(s)
- Matthew H Larson
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tricia Windgassen
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Dhananjaya Nayak
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven M Block
- Department of Biological Sciences, Stanford University, Stanford, CA 94025, USA. Department of Applied Physics; Stanford University, Stanford, CA 94025, USA
| | | | - Robert Landick
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA. Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Abstract
Ribosomal RNA transcription initiation requires the melting of DNA to form an open complex, formation of the first few phosphodiester bonds, commencement of RNA polymerase I movement along the DNA, clearance of the promoter, and the formation of a steady-state ternary elongation complex. We examined DNA melting and promoter clearance by using potassium permanganate, diethylpyrocarbonate and methidiumpropylEDTA.Fe(II) footprinting. In combination, these methods demonstrated: (1) TIF-IB and RNA polymerase I are the only proteins required for formation of an initial approximately 9 base-pair open promoter region. This finding contradicts earlier results using diethylpyrocarbonate alone, which suggested an RNA synthesis requirement for stable melting. (2) DNA melting is temperature-dependent, with a tm between 15 and 20 degrees C. (3) Temperature-dependency of melting, as well as stalling the polymerase at sites close to the transcription start site revealed that the melted DNA region initially opens upstream of the transcription initiation site, and enlarges in a downstream direction coordinate with initiation, eventually attaining a steady-state transcription bubble of approximately 19 base-pairs. (4) The RNA-DNA hybrid protects the template DNA from single-strand footprinting reagents. The hybrid is 9 bp in length, consistent with the longer hybrid estimated by some for the Escherichia coli polymerase and with the hybrids estimated for eukaryotic polymerases II and III.
Collapse
Affiliation(s)
- B F Kahl
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | | | |
Collapse
|
5
|
Lee DN, Landick R. Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. J Mol Biol 1992; 228:759-77. [PMID: 1281887 DOI: 10.1016/0022-2836(92)90862-e] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNA polymerases pause conspicuously at certain positions on a DNA template. At the well-studied pause sites in the attenuation control regions that precede the trp and his operons, both formation of secondary structure in the nascent transcript and the DNA sequence immediately downstream contribute to pausing. The mechanisms of these effects are unknown. We report here studies on the structure of the RNA and DNA strands in purified trp and his paused transcription complexes in comparison to ten elongation complexes halted by nucleoside triphosphate deprivation. A 14 to 22 nucleotide region of the DNA strands was accessible to modification by KMnO4 or diethylpyrocarbonate in both the paused and halted transcription complexes. However, the region in front of the nucleotide-addition site was reactive only in some halted complexes. In both types of complexes, approximately eight nucleotides on the template strand immediately preceding the 3' end were protected from modification. We also examined the sensitivity of the nascent transcript to RNase A and found that the 3'-proximal eight nucleotide region could be cleaved without complete loss of the potential for elongation. However, a model RNA:DNA hybrid designed to mimic a hybrid in the transcription complex could also be cleaved under similar conditions. Together, the results suggest that the 3'-proximal eight nucleotides of transcript may pair with the DNA template and that this structure is not disrupted by hairpin formation at a pause site. Rather, pausing may result from distinct interactions between RNA polymerase and both the pause RNA hairpin and the downstream DNA sequence.
Collapse
Affiliation(s)
- D N Lee
- Department of Biology, Washington University, St Louis, MO 63130
| | | |
Collapse
|