1
|
Lin Z, Fan H, Zhang Q, Peng X. Design, Synthesis, and Characterization of Binaphthalene Precursors as Photoactivated DNA Interstrand Cross-Linkers. J Org Chem 2018; 83:8815-8826. [PMID: 29929368 DOI: 10.1021/acs.joc.8b00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most recently, alkylation via photogenerated carbocations has been identified as a novel mechanism for photoinduced DNA interstrand cross-link (ICL) formation by bifunctional aryl compounds. However, most compounds showed a low efficiency for DNA cross-linking. Here, we have developed a series of new 1,1'-binaphthalene analogues that efficiently form DNA ICLs upon 350 nm irradiation via generated 2-naphthalenylmethyl cations. The DNA cross-linking efficiency depends on the substituents at position 4 of the naphthalene moiety as well as the leaving groups. Compounds with NO2, Ph, H, Br, or OMe substituents led to 2-4 times higher DNA ICL yields than those with a boronate ester group. Compounds with trimethylammonium salt as a leaving group showed slightly better cross-linking efficiency than those with bromo as a leaving group. Some of these compounds showed a better cross-linking efficiency than that of traditional alkylating agents, such as nitrogen mustard analogues or quinone methide precursors. These highly efficient photoactivated carbocation precursors allow determination and characterization of the adducts formed between the photogenerated naphthalenyl cations and four natural nucleosides, indicating that the alkylation sites for these naphthalene analogues are dG, dA, and dC.
Collapse
Affiliation(s)
- Zechao Lin
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Heli Fan
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Qi Zhang
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| | - Xiaohua Peng
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery , University of Wisconsin-Milwaukee , 3210 North Cramer Street , Milwaukee , Wisconsin 53211 , United States
| |
Collapse
|
2
|
Ye J, Farrington CR, Millard JT. Polymerase bypass of N7-guanine monoadducts of cisplatin, diepoxybutane, and epichlorohydrin. Mutat Res 2018; 809:6-12. [PMID: 29579534 PMCID: PMC5962418 DOI: 10.1016/j.mrfmmm.2018.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/31/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
DNA oligonucleotides containing site-specific N7-guanine monoadducts of cisplatin, diepoxybutane, and epichlorohydrin were used as templates for DNA synthesis by two bacterial DNA polymerases and human polymerase β. These polymerases were able to bypass the lesions effectively, although the efficiency was decreased, with inhibition increasing with the size of the lesion. Fidelity of incorporation was essentially unaltered, suggesting that N7-guanine monoadducts do not significantly contribute to the mutational spectra of these agents.
Collapse
Affiliation(s)
- Jiayu Ye
- Department of Chemistry, Colby College, Waterville, ME 04901, United States
| | | | - Julie T Millard
- Department of Chemistry, Colby College, Waterville, ME 04901, United States.
| |
Collapse
|
3
|
Nejad MI, Johnson KM, Price NE, Gates KS. A New Cross-Link for an Old Cross-Linking Drug: The Nitrogen Mustard Anticancer Agent Mechlorethamine Generates Cross-Links Derived from Abasic Sites in Addition to the Expected Drug-Bridged Cross-Links. Biochemistry 2016; 55:7033-7041. [PMID: 27992994 DOI: 10.1021/acs.biochem.6b01080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrogen mustard anticancer drugs generate highly reactive aziridinium ions that alkylate DNA. Monoadducts arising from reaction with position N7 of guanine residues are the major DNA adducts generated by these agents. Interstrand cross-links in which the drug bridges position N7 of two guanine residues are formed in low yields relative to those of the monoadducts but are generally thought to be central to medicinal activity. The N7-alkylguanine residues generated by nitrogen mustards are depurinated to yield abasic (Ap) sites in duplex DNA. Here, we show that Ap sites generated by the nitrogen mustard mechlorethamine lead to interstrand cross-links of a type not previously associated with this drug. Gel electrophoretic data were consistent with early evolution of the expected drug-bridged cross-links, followed by the appearance of Ap-derived cross-links. The evidence is further consistent with a reaction pathway involving alkylation of a guanine residue in a 5'-GT sequence, followed by depurination to generate the Ap site, and cross-link formation via reaction of the Ap aldehyde residue with the opposing adenine residue at this site [Price, N. E., Johnson, K. M., Wang, J., Fekry, M. I., Wang, Y., and Gates, K. S. (2014) J. Am. Chem. Soc. 136, 3483-3490]. The monofunctional DNA-alkylating agents 2-chloro-N,N-diethylethanamine 5, (2-chloroethyl)ethylsulfide 6, and natural product leinamycin similarly were found to induce the formation of Ap-derived cross-links in duplex DNA. This work provides the first characterization of Ap-derived cross-links at sequences in which a cytosine residue is located directly opposing the Ap site. Cross-linking processes of this type could be relevant in medicine and biology because Ap sites with directly opposing cytosine residues occur frequently in genomic DNA via spontaneous or enzymatic depurination of guanine and N7-alkylguanine residues.
Collapse
Affiliation(s)
- Maryam Imani Nejad
- Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Kevin M Johnson
- Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Nathan E Price
- Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States.,Department of Biochemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Savreux-Lenglet G, Depauw S, David-Cordonnier MH. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts. Int J Mol Sci 2015; 16:26555-81. [PMID: 26556350 PMCID: PMC4661830 DOI: 10.3390/ijms161125971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.
Collapse
Affiliation(s)
- Gaëlle Savreux-Lenglet
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| |
Collapse
|
5
|
Rudra A, Hou D, Zhang Y, Coulter J, Zhou H, DeWeese TL, Greenberg MM. Bromopyridone Nucleotide Analogues, Anoxic Selective Radiosensitizing Agents That Are Incorporated in DNA by Polymerases. J Org Chem 2015; 80:10675-85. [PMID: 26509218 DOI: 10.1021/acs.joc.5b01833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ionizing radiation is frequently used to kill tumor cells. However, hypoxic solid tumor cells are more resistant to this treatment, providing the impetus to develop molecules that sensitize cells to ionizing radiation. 5-Bromo-2'-deoxyuridine (BrdU) has been investigated as a radiosensitizing agent in the lab and clinic for almost 5 decades. Recent reports that BrdU yields DNA interstrand cross-links (ICLs) in non-base-paired regions motivated us to develop radiosensitizing agents that generate cross-links in duplex DNA selectively under anoxic conditions. 4-Bromo- and 5-bromopyridone analogues of BrdU were synthesized and incorporated into oligonucleotides via solid-phase synthesis. Upon irradiation, these molecules yield DNA interstrand cross-links under anaerobic conditions. The respective nucleotide triphosphates are substrates for some DNA polymerases. ICLs are produced upon irradiation under anoxic conditions when the 4-bromopyridone is present in a PCR product. Because the nucleoside analogue is a poor phosphorylation substrate for human deoxycytidine kinase, a pro-nucleotide form of the 4-bromopyridone was used to incorporate this analogue into cellular DNA. Despite these efforts, the 4-bromopyridone nucleotide was not detected in cellular DNA. Although these molecules are improvements over previously reported nucleotide analogues designed to be hypoxic radiosensitizing agents, additional advances are needed to create molecules that function in cells.
Collapse
Affiliation(s)
- Arnab Rudra
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Dianjie Hou
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Yonggang Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland 21231, United States
| | - Jonathan Coulter
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States
| | - Haoming Zhou
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 401 N. Broadway, Baltimore, Maryland 21231, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland 21231, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Sloane JL, Greenberg MM. Interstrand cross-link and bioconjugate formation in RNA from a modified nucleotide. J Org Chem 2014; 79:9792-8. [PMID: 25295850 PMCID: PMC4201359 DOI: 10.1021/jo501982r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
RNA
oligonucleotides containing a phenyl selenide derivative of
5-methyluridine were chemically synthesized by solid-phase synthesis.
The phenyl selenide is rapidly converted to an electrophilic, allylic
phenyl seleneate under mild oxidative conditions. The phenyl seleneate
yields interstrand cross-links when part of a duplex and is useful
for synthesizing oligonucleotide conjugates. Formation of the latter
is illustrated by reaction of an oligonucleotide containing the phenyl
selenide with amino acids in the presence of mild oxidant. The products
formed are analogous to those observed in tRNA that are believed to
be formed posttranslationally via a biosynthetic intermediate that
is chemically homologous to the phenyl seleneate.
Collapse
Affiliation(s)
- Jack L Sloane
- Department of Chemistry, Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
7
|
Hou D, Greenberg MM. DNA interstrand cross-linking upon irradiation of aryl halide C-nucleotides. J Org Chem 2014; 79:1877-84. [PMID: 24559326 DOI: 10.1021/jo4028227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
γ-Radiolysis kills cells by damaging DNA via radical processes. Many of the radical pathways are O2 dependent, which results in a reduction in the cytotoxicity of ionizing radiation in hypoxic tumor cells. Consequently, there is a need for chemical agents that increase DNA damage by ionizing radiation under O2-deficient conditions. Modified nucleotides that are incorporated in DNA and produce highly reactive σ-radicals are useful as radiosensitizing agents. Aryl halide C-nucleotides (4-6) were incorporated into oligonucleotides by solid-phase synthesis. Duplex DNA containing 4-6 forms interstrand cross-links upon γ-radiolysis under anaerobic conditions or UV irradiation. Deep Vent (exo(-)) DNA polymerase accepted the nucleotide triphosphate of C-nucleotide 6 as a substrate and preferentially incorporated it opposite pyrimidines, but no further extension was detected. Incorporation of 6 in extended products by Deep Vent (exo(-)) during PCR or by Sequenase during copying of single stranded DNA plasmid was undetectable. Aryl halide nucleotide analogues that produce DNA interstrand cross-links under anaerobic conditions upon irradiation are potentially useful as radiosensitizing agents, but further research is needed to identify molecules that are incorporated by DNA polymerases and do not block further polymerization for this approach to be useful in cells.
Collapse
Affiliation(s)
- Dianjie Hou
- Department of Chemistry Johns Hopkins University 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
8
|
Morales-Ramírez P, Vallarino-Kelly T, Cruz-Vallejo V. Kinetics of micronucleus induction and cytotoxicity caused by distinct antineoplastics and alkylating agents in vivo. Toxicol Lett 2014; 224:319-25. [DOI: 10.1016/j.toxlet.2013.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
|
9
|
Varvarigou N, Megariotis G, Leonis G, Vrontaki E, Maniati AM, Vlachou M, Eikosipentaki A, Kompogennitaki R, Papadopoulos MG, Grdadolnik SG, Komiotis D, Mavromoustakos T, Tsotinis A. Conformational analysis of two novel cytotoxic C2-substituted pyrrolo[2,3-f]quinolines in aqueous media, organic solvents, membrane bilayers and at the putative active site. Bioorg Med Chem 2012; 20:6276-84. [PMID: 23040892 DOI: 10.1016/j.bmc.2012.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/01/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
We have performed: (i) conformational analysis of two novel cytotoxic C2-substituted pyrrolo[2,3-f]quinolines 5e and 5g in deuterated dimethylsulfoxide (DMSO-d(6)) utilizing NOE results from NMR spectroscopy; (ii) molecular dynamics (MD) calculations in water, DMSO and dimyristoyl phosphatidylcholine bilayers and (iii) molecular docking and MD calculations on DNA nucleotide sequences. The obtained results for the two similar in structure molecules showed differences in: (i) their conformational properties in silico and in media that reasonably simulate the biological environment; (ii) the way they are incorporated into the lipid bilayers and therefore their diffusion ability and (iii) molecular docking capacity as it is depicted from their different binding scores.
Collapse
Affiliation(s)
- Nicole Varvarigou
- National and Kapodistrian University of Athens, Chemistry Department, Laboratory of Organic Chemistry, Panepistimioupoli-Zografou, 15771 Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kuang Y, Sun H, Blain JC, Peng X. Hypoxia-selective DNA interstrand cross-link formation by two modified nucleosides. Chemistry 2012; 18:12609-13. [PMID: 22936396 DOI: 10.1002/chem.201201960] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Indexed: 11/07/2022]
Abstract
The clean crossed code: Two nitroimidazole-modified thymidines 1 a and 1 b were synthesized and incorporated into DNA oligomers. The 350 nm photolysis of 1 a and 1 b generated a 5-(2'-deoxyuridinyl)methyl radical that induced DNA interstrand cross-links (ICL; see scheme). A higher ICL yield was observed under hypoxic conditions than under aerobic conditions.
Collapse
Affiliation(s)
- Yunyan Kuang
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 53211, USA
| | | | | | | |
Collapse
|
11
|
DNA damage by C1027 involves hydrogen atom abstraction and addition to nucleobases. Bioorg Med Chem 2012; 20:4744-50. [PMID: 22748380 DOI: 10.1016/j.bmc.2012.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/30/2012] [Accepted: 06/01/2012] [Indexed: 12/13/2022]
Abstract
C1027 is a potent antitumor agent that damages DNA. It has the unusual ability to produce double strand breaks and interstrand cross-links (ICLs) intracellularly, which enable it to initiate concurrent ataxia-telangiestasia mutated (ATM) and Rad-3 related (ATR) independent damage responses. The latter form of damage is not well characterized. We have examined the effect of DNA sequence on C1027 reactivity and found it to be more diverse than previously thought. In addition, analysis of the chemical stability of ICLs suggests that they result from reaction with the deoxyribose ring on one strand but direct addition to a nucleobase on the opposite strand.
Collapse
|
12
|
Paz MM, Pritsos CA. The Molecular Toxicology of Mitomycin C. ADVANCES IN MOLECULAR TOXICOLOGY VOLUME 6 2012. [DOI: 10.1016/b978-0-444-59389-4.00007-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Wadugu BA, Ng C, Bartley BL, Rowe RJ, Millard JT. DNA interstrand cross-linking activity of (1-Chloroethenyl)oxirane, a metabolite of beta-chloroprene. Chem Res Toxicol 2010; 23:235-9. [PMID: 20030381 DOI: 10.1021/tx9003769] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With the goal of elucidating the molecular and cellular mechanisms of chloroprene toxicity, we examined the potential DNA cross-linking of the bifunctional chloroprene metabolite, (1-chloroethenyl)oxirane (CEO). We used denaturing polyacrylamide gel electrophoresis to monitor the possible formation of interstrand cross-links by CEO within synthetic DNA duplexes. Our data suggest interstrand cross-linking at deoxyguanosine residues within 5'-GC and 5'-GGC sites, with the rate of cross-linking depending on pH (pH 5.0 > pH 6.0 > pH 7.0). A comparison of the cross-linking efficiencies of CEO and the structurally similar cross-linkers diepoxybutane (DEB) and epichlorohydrin (ECH) revealed that DEB > CEO > or = ECH. Furthermore, we found that cytotoxicity correlates with cross-linking efficiency, supporting a role for interstrand cross-links in the genotoxicology of chloroprene.
Collapse
Affiliation(s)
- Brian A Wadugu
- Department of Chemistry, Colby College, Waterville, Maine 04901, USA
| | | | | | | | | |
Collapse
|
14
|
Guan L, Greenberg MM. DNA interstrand cross-link formation by the 1,4-dioxobutane abasic lesion. J Am Chem Soc 2010; 131:15225-31. [PMID: 19807122 DOI: 10.1021/ja9061695] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The oxidized abasic lesion 5'-(2-phosphoryl-1,4-dioxobutane) (DOB) is produced concomitantly with a single-strand break by a variety of DNA-damaging agents that abstract a hydrogen atom from the C5'-position. Independent generation of the DOB lesion in DNA reveals that it reversibly forms interstrand cross-links (ICLs) selectively with a dA opposite the 3'-adjacent nucleotide. Product studies and the use of monoaldehyde models suggest that ICL formation involves condensation of the dialdehyde with the exocyclic amine. Mechanistic studies and inspection of molecular models indicate that the local DNA environment and proximity of the exocyclic amine determine the selectivity for reaction with dA. Proximity control of the electrophile's reactivity is distinct from that of structurally similar freely diffusing molecules. ICL formation by a DOB lesion that is adjacent to a single-strand break is potentially significant because the product constitutes a "clustered" or "complex" lesion. Clustered lesions can lead to highly deleterious double-strand breaks upon nucleotide excision repair.
Collapse
Affiliation(s)
- Lirui Guan
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
15
|
Ding H, Greenberg MM. DNA damage and interstrand cross-link formation upon irradiation of aryl iodide C-nucleotide analogues. J Org Chem 2010; 75:535-44. [PMID: 20067226 PMCID: PMC2813935 DOI: 10.1021/jo902071y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 5-halopyrimidine nucleotides damage DNA upon UV-irradiation or exposure to gamma-radiolysis via the formation of the 2'-deoxyuridin-5-yl sigma-radical. The bromo and iodo derivatives of these molecules are useful tools for probing DNA structure and as therapeutically useful radiosensitizing agents. A series of aryl iodide C-nucleotides were incorporated into synthetic oligonucleotides and exposed to UV-irradiation and gamma-radiolysis. The strand damage produced upon irradiation of DNA containing these molecules is consistent with the generation of highly reactive sigma-radicals. Direct stand breaks and alkali-labile lesions are formed at the nucleotide analogue and flanking nucleotides. The distribution of lesion type and location varies depending upon the position of the aryl ring that is iodinated. Unlike 5-halopyrimidine nucleotides, the aryl iodides produce interstrand cross-links in duplex regions of DNA when exposed to gamma-radiolysis or UV-irradiation. Quenching studies suggest that cross-links are produced by gamma-radiolysis via capture of a solvated electron, and subsequent fragmentation to the sigma-radical. These observations suggest that aryl iodide C-nucleotide analogues may be useful as probes for excess electron transfer and radiosensitizing agents.
Collapse
Affiliation(s)
- Hui Ding
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
16
|
Pino MA, Billack B. Reduction of vesicant toxicity by butylated hydroxyanisole in A-431 skin cells. Cutan Ocul Toxicol 2008; 27:161-72. [DOI: 10.1080/15569520802092070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Peng X, Hong IS, Li H, Seidman MM, Greenberg MM. Interstrand cross-link formation in duplex and triplex DNA by modified pyrimidines. J Am Chem Soc 2008; 130:10299-306. [PMID: 18620398 DOI: 10.1021/ja802177u] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA interstrand cross-links have important biological consequences and are useful biotechnology tools. Phenylselenyl substituted derivatives of thymidine (1) and 5-methyl-2'-deoxycytidine (5) produce interstrand cross-links in duplex DNA when oxidized by NaIO4. The mechanism involves a [2,3]-sigmatropic rearrangement of the respective selenoxides to the corresponding methide type intermediates, which ultimately produce the interstrand cross-links. Determination of the rate constants for the selenoxide rearrangements indicates that the rate-determining step for cross-linking is after methide formation. Cross-linking by the thymidine derivative in duplex DNA shows a modest kinetic preference when flanked by pyrimidines as opposed to purines. In contrast, the rate constant for cross-link formation from 5 opposite dG in duplex DNA is strongly dependent upon the flanking sequence and, in general, is at least an order of magnitude slower than that for 1 in an otherwise identical sequence. Introduction of mispairs at the base pairs flanking 5 or substitution of the opposing dG by dI significantly increases the rate constant and yield for cross-linking, indicating that stronger hydrogen bonding between the methide derived from it and dG compared to dA and the respective electrophile derived from 1 limits reaction by increasing the barrier to rotation into the required syn-conformation. Incorporation of 1 or 5 in triplex forming oligonucleotides (TFOs) that utilize Hoogsteen base pairing also yields interstrand cross-links. The dC derivative produces ICLs approximately 10x faster than the thymidine derivative when incorporated at the 5'-termini of the TFOs and higher yields when incorporated at internal sites. The slower, less efficient ICL formation emanating from 1 is attributed to reaction at N1-dA, which requires local melting of the duplex. In contrast, 5 produces cross-links by reacting with N7-dG. The cross-linking reactions of 1 and 5 illustrate the versatility and utility of these molecules as mechanistic probes and tools for biotechnology.
Collapse
Affiliation(s)
- Xiaohua Peng
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
This protocol presents a simple and general means of modifying nucleic acids with disulfide cross-links. These cross-links serve as powerful tools to probe the structure, dynamics, thermodynamics, folding, and function of DNA and RNA, much in the way that cystine cross-links have been used to study proteins. The chemistry described has been used to synthesize disulfide-cross-linked hairpins and duplexes, higher-order structures such as triplexes, non-ground-state conformations, and tRNAs. since the cross-links form quantitatively by mild air oxidation and do not purturb either secondary or tertiary structure, this modification should prove quite useful for the study of nucleic acids.
Collapse
Affiliation(s)
- Gary D Glick
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
|
20
|
Montero EI, Pérez JM, Schwartz A, Fuertes MA, Malinge JM, Alonso C, Leng M, Navarro-Ranninger C. Apoptosis induction and DNA interstrand cross-link formation by cytotoxic trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2) : cross-linking between d(G) and complementary d(C) within oligonucleotide duplexes. Chembiochem 2007; 3:61-7. [PMID: 17590955 DOI: 10.1002/1439-7633(20020104)3:1<61::aid-cbic61>3.0.co;2-i] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have investigated the cytotoxic activity, the induction of apoptosis, and the interstrand cross-linking efficiency in the A2780cisR ovarian tumor cell line, after replacement of the two NH3 nonleaving groups in trans-[PtCl2(NH3)2] (trans-DDP) by dimethylamine and isopropylamine. The data show that trans-[PtCl2(NH(CH)2)(NHCH(CH3)2)] is able to circumvent resistance to cis-[PtCl2(NH3)2] (cis-DDP, cisplatin) in A2780cisR cells. In fact, trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] shows a cytotoxic potency higher than that of cis-DDP and trans-DDP, with the mean IC50 values being 11, 58, and 300 microM, respectively. In addition, at equitoxic doses (concentrations of the platinum drugs equal to their IC50 values) and after 24 hours of drug treatment, the level of induction of apoptosis by trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] is twice that produced by cis-DDP. Under the same experimental conditions, trans-DDP does not induce significant levels of apoptosis in A2780cisR cells. After 24 hours of incubation of A2780cisR cells at concentrations equal to the IC0o value of the platinum drugs, the level of DNA interstrand cross-links (ICLs) induced by trans-[PtCI2(NH(CH)2)(NHCH(CH3)] is two and three times higher, respectively, than those induced by cis-DDP and trans-DDP. We also found that trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] formed DNA ICLs between guanine and complementary cytosine. We propose that, in A2780cisR cells, the induction of apoptosis by trans-[PtCl2(NH(CH3)2)(NHCH(CH3)2)] is related to its greater ability (relative to cis-DDP and trans-DDP) to form DNA ICLs.
Collapse
Affiliation(s)
- Eva I Montero
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rahman MM, Yasuda H, Katsura S, Mizuno A. Covalent Binding and Conformational Change of pUC19 DNA by Rhodium (II) Metal Complex. J Biomol Struct Dyn 2007; 24:553-60. [PMID: 17508777 DOI: 10.1080/07391102.2007.10507144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Binding of Rhodium (II) acetate [Rh(2)(O(2)CCH(3))(4)] (Rh1) compound with plasmid pUC19 DNA has been studied using different molar ratio of Rh1. After incubation for 24hr at 37 degrees C, binding of the Rh1 to pUC19 DNA was confirmed by agarose gel electrophoresis. The electrophoretic results indicated the slower migration speed for the linearized pUC19 DNA. Conformation change of the DNA after Rh1 binding was also indicated at higher molar ratio of Rh1. The atomic force microscopy images showed that the Rh1 induced the conformation change to unwind pUC19 DNA. The Rh1-DNA complexes are observed very stable due to covalent bond. This study clearly demonstrates that [Rh(2)(O(2)CCH(3))(4)] reacts with pUC19 DNA and covalently binds to be stable Rh1-pUC19 DNA as interstrand adducts.
Collapse
Affiliation(s)
- Md Masudur Rahman
- Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | | | | | | |
Collapse
|
22
|
Greenberg MM. Elucidating DNA damage and repair processes by independently generating reactive and metastable intermediates. Org Biomol Chem 2006; 5:18-30. [PMID: 17164902 DOI: 10.1039/b612729k] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA damage is a double-edged sword. The modifications produced in the biopolymer are associated with aging, and give rise to a variety of diseases, including cancer. DNA is also the target of anti-tumor agents and the most generally used nonsurgical treatment of cancer, ionizing radiation. Agents that damage DNA produce a variety of radicals. Elucidating the chemistry of individual DNA radicals is challenging due to the availability of multiple reactive pathways and complexities inherent with carrying out mechanistic studies on a heterogeneous polymer. The ability to independently generate radicals and their metastable products at defined sites in DNA has greatly facilitated understanding this biologically important chemistry.
Collapse
Affiliation(s)
- Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
23
|
Millard JT, Hanly TC, Murphy K, Tretyakova N. The 5'-GNC site for DNA interstrand cross-linking is conserved for diepoxybutane stereoisomers. Chem Res Toxicol 2006; 19:16-9. [PMID: 16411651 PMCID: PMC1599837 DOI: 10.1021/tx050250z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The bifunctional alkylating agent 1,2,3,4-diepoxybutane forms interstrand DNA-DNA cross-links between the N7 positions of deoxyguanosine residues on opposite strands of the duplex. For racemic diepoxybutane, these cross-links predominate within 5'-GNC/3'CNG sequences, where N is any nucleotide. We used denaturing polyacrylamide gel electrophoresis (dPAGE) to examine the role of stereochemistry in the cross-linking reaction, subjecting a restriction fragment to cross-linking with S,S-DEB, R,R-DEB, or meso-DEB. DNA cross-links generated by each isomer were isolated by dPAGE, and the sites of cross-linking were identified by sequencing gel analysis of DNA fragments generated by hot piperidine cleavage. We found that the 5'-GNC consensus sequence of racemic DEB is conserved, but the efficiencies of cross-linking vary, with S,S- > R,R- > meso-DEB. These results help explain the observed differences between the biological activities of DEB stereoisomers.
Collapse
Affiliation(s)
- Julie T Millard
- Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Waterville, Maine 04901, USA.
| | | | | | | |
Collapse
|
24
|
Hong IS, Ding H, Greenberg MM. Oxygen independent DNA interstrand cross-link formation by a nucleotide radical. J Am Chem Soc 2006; 128:485-91. [PMID: 16402835 PMCID: PMC1752237 DOI: 10.1021/ja0563657] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 5-(2'-Deoxyuridinyl)methyl radical (1) was independently generated from three photochemical precursors and is the first example of a DNA radical that forms interstrand cross-links. Oxygen labeling experiments support generation of 1 by all precursors. Interstrand cross-links are produced upon irradiation of DNA containing any of the precursors. Cross-linking occurs via reaction with the opposing 2'-deoxyadenosine and is independent of O(2). The independence of cross-link formation on O(2) is explained by kinetic analysis, which shows that the radical reacts reversibly with O(2). Examination of the effects of glutathione on cross-link formation under anaerobic conditions suggests that adoption of the syn-conformation by 1 is the rate-limiting step in the process. Interstrand cross-link formation is reversible in the presence of a good nucleophile. The stability of the interstrand cross-link suggests that the isolated molecule is a rearrangement product of that formed in solution. The rearrangement is a consequence of the isolation procedure but also occurs slowly in solution. Oxygen independent cross-link formation may be useful for the purposeful damage of DNA in hypoxic tumor cells, where O(2) is deficient.
Collapse
Affiliation(s)
- In Seok Hong
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
25
|
Park S, Anderson C, Loeber R, Seetharaman M, Jones R, Tretyakova N. Interstrand and Intrastrand DNA−DNA Cross-Linking by 1,2,3,4-Diepoxybutane: Role of Stereochemistry. J Am Chem Soc 2005; 127:14355-65. [PMID: 16218630 DOI: 10.1021/ja051979x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1,2,3,4-Diepoxybutane (DEB) is a bifunctional electrophile capable of forming DNA-DNA and DNA-protein cross-links. DNA alkylation by DEB produces N7-(2'-hydroxy-3',4'-epoxybut-1'-yl)-guanine monoadducts, which can then form 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) lesions. All three optical isomers of DEB are produced metabolically from 1,3-butadiene, but S,S-DEB is the most cytotoxic and genotoxic. In the present work, interstrand and intrastrand DNA-DNA cross-linking by individual DEB stereoisomers was investigated by PAGE, mass spectrometry, and stable isotope labeling. S,S-, R,R-, and meso-diepoxides were synthesized from l-dimethyl-2,3-O-isopropylidene-tartrate, d-dimethyl-2,3-O-isopropylidene-tartrate, and meso-erythritol, respectively. Total numbers of bis-N7G-BD lesions (intrastrand and interstrand) in calf thymus DNA treated separately with S,S-, R,R-, or meso-DEB (0.01-0.5 mM) were similar as determined by capillary HPLC-ESI(+)-MS/MS of DNA hydrolysates. However, denaturing PAGE has revealed that S,S-DEB produced the highest number of interchain cross-links in 5'-GGC-3'/3'-CCG-5' sequences. Intrastrand adduct formation by DEB was investigated by a novel methodology based on stable isotope labeling HPLC-ESI(+)-MS/MS. Meso DEB treatment of DNA duplexes containing 5'-[1,7, NH(2)-(15)N(3),2-(13)C-G]GC-3'/3'-CCG-5' and 5'-GGC-3'/3'-CC[(15)N(3),2-(13)C-G]-5' trinucleotides gave rise to comparable numbers of 1,2-intrastrand and 1,3-interstrand bis-N7G-BD cross-links, while S,S DEB produced few intrastrand lesions. R,R-DEB treated DNA contained mostly 1,3-interstrand bis-N7G-BD, along with smaller amounts of 1,2-interstrand and 1,2-intrastrand adducts. The effects of DEB stereochemistry on its ability to form DNA-DNA cross-links may be rationalized by the spatial relationships between the epoxy alcohol side chains in stereoisomeric N7-(2'-hydroxy-3',4'-epoxybut-1'-yl)-guanine adducts and their DNA environment. Different cross-linking specificities of DEB stereoisomers provide a likely structural basis for their distinct biological activities.
Collapse
Affiliation(s)
- Soobong Park
- Cancer Center and the Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wang Y, Wang Y. Structure elucidation of DNA interstrand cross-link by a combination of nuclease P1 digestion with mass spectrometry. Anal Chem 2004; 75:6306-13. [PMID: 14616015 DOI: 10.1021/ac034683n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA interstrand cross-link reagents are among the most powerful agents for cancer treatment. Here we report a combined nuclease P1 digestion/mass spectrometry method for the structure elucidation of duplex oligodeoxynucleotides (ODNs) containing an interstrand cross-link. Our results demonstrate that nuclease P1 digestion of a double-stranded ODN containing an interstrand cross-link (ICL) of 4,5',8-trimethylpsoralen or mitomycin C gives a tetranucleotide bearing the cross-linked nucleobase moiety. Product ion spectra of the deprotonated ions of the tetranucleotides provide information about the structure of the cross-link. Furthermore, product-ion spectra of tetranucleotides containing two orientation isomers of mitomycin C interstrand cross-link are distinctive. We believe that the method described in this paper can be generally applicable for investigating the structures of other DNA ICLs.
Collapse
Affiliation(s)
- Yuesong Wang
- Department of Chemistry-027, University of California at Riverside, Riverside, California 92521-0403, USA
| | | |
Collapse
|
27
|
Millard JT, Katz JL, Goda J, Frederick ED, Pierce SE, Speed TJ, Thamattoor DM. DNA interstrand cross-linking by a mycotoxic diepoxide. Biochimie 2004; 86:419-23. [PMID: 15358058 DOI: 10.1016/j.biochi.2004.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 03/25/2004] [Indexed: 11/19/2022]
Abstract
The diepoxide mycotoxin (2R, 3R, 8R, 9R)-4,6-decadiyne-2,3:8,9-diepoxy-1,10-diol (repandiol) was both isolated from the mushroom Hydnum repandum and synthesized de novo. Repandiol was found to form interstrand cross-links within a restriction fragment of DNA, linking deoxyguanosines on opposite strands primarily within the 5'-GNC and 5'-GNNC sequences preferred by diepoxyoctane. However, repandiol was a significantly less efficient cross-linker than either of the diepoxyalkanes (diepoxyoctane and diepoxybutane) to which it was compared.
Collapse
Affiliation(s)
- J T Millard
- Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Maine Waterville, ME 04901, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem 2003; 278:31426-33. [PMID: 12775726 DOI: 10.1074/jbc.m212549200] [Citation(s) in RCA: 551] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malondialdehyde (MDA) is an endogenous genotoxic product of enzymatic and oxygen radical-induced lipid peroxidation whose adducts are known to exist in DNA isolated from healthy human beings. To evaluate the mutagenic potential of MDA in human cells, we reacted MDA with pSP189 shuttle vector DNA and then transfected them into human fibroblasts for replication. MDA induced up to a 15-fold increase in mutation frequency in the supF reporter gene compared with untreated DNA. Sequence analysis revealed that the majority of MDA-induced mutations occurred at GC base pairs. The most frequent mutations were large insertions and deletions, but base pair substitutions were also detected. MDA-induced mutations were completely abolished when the adducted shuttle vector was replicated in cells lacking nucleotide excision repair. MDA induction of large deletions and the apparent requirement for nucleotide excision repair suggested the possible involvement of a DNA interstrand cross-link as a premutagenic lesion. Indeed, MDA formed interstrand cross-links in duplex plasmids and oligonucleotides. Substrates containing the sequence 5'-d(CG) were preferentially cross-linked, consistent with the observation of base pair substitutions in 5'-d(CG) sites in the MDA-induced mutation spectrum. These experiments provide biological and biochemical evidence for the existence of MDA-induced DNA interstrand cross-links that could result from endogenous oxidative stress and likely have potent biological effects.
Collapse
Affiliation(s)
- Laura J Niedernhofer
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
29
|
Dooley PA, Zhang M, Korbel GA, Nechev LV, Harris CM, Stone MP, Harris TM. NMR determination of the conformation of a trimethylene interstrand cross-link in an oligodeoxynucleotide duplex containing a 5'-d(GpC) motif. J Am Chem Soc 2003; 125:62-72. [PMID: 12515507 DOI: 10.1021/ja0207798] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malondialdehyde interstrand cross-links in DNA show strong preference for 5'-d(CpG) sequences. The cross-links are unstable and a trimethylene cross-link has been used as a surrogate for structural studies. A previous structural study of the 5'-d(CpG) cross-link in the sequence 5'-d(AGGCGCCT), where G is the modified nucleotide, by NMR spectroscopy and molecular dynamics using a simulated annealing protocol showed the guanine residues and the tether lay approximately in a plane such that the trimethylene tether and probably the malondialdehyde tether, as well, could be accommodated without major disruptions of duplex structure [Dooley et al. J. Am Chem. Soc. 2001, 123, 1730-1739]. The trimethylene cross-link has now been studied in a GpC motif using the reverse sequence. The structure lacks the planarity seen with the 5'-d(CpG) sequence and is skewed about the trimethylene cross-link. Melting studies indicate that the trimethylene cross-link is thermodynamically less stable in the GpC motif than in the 5-d(CpG). Furthermore, lack of planarity of the GpC cross-link precludes making an isosteric replacement of the trimethylene tether by malondialdehyde. A similar argument can be used to explain the 5'-d(CpG) preference for interchain cross-linking by acrolein.
Collapse
Affiliation(s)
- Patricia A Dooley
- Department of Chemistry and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Millard JT, Wilkes EE. Diepoxybutane and diepoxyoctane interstrand cross-linking of the 5S DNA nucleosomal core particle. Biochemistry 2001; 40:10677-85. [PMID: 11524013 DOI: 10.1021/bi0109663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diepoxyalkanes form interstrand cross-links in DNA oligomers preferentially at 5'-GNC sites. We have examined cross-linking by 1,2,3,4-diepoxybutane (DEB) and 1,2,7,8-diepoxyoctane (DEO) within a fragment of the 5S RNA gene of Xenopus borealis in both the free and nucleosomal states. Sites and efficiencies of interstrand cross-linking were probed through denaturing polyacrylamide gel electrophoresis and quantitative phosphorimagery. Both agents targeted 5'-GNC sites for cross-linking in the restriction fragment in its free state, and DEO also targeted 5'-GNNC sites. Monoalkylation occurred at all deoxyguanosines. The sites for both monoalkylation and interstrand cross-linking were similar in nucleosomal and free DNA, and cross-linked DNA was cleanly incorporated into the core particle structure. These findings suggest that the 5S core particle is able to tolerate any structural abnormalities induced by diepoxide cross-linking.
Collapse
Affiliation(s)
- J T Millard
- Department of Chemistry, Colby College, Waterville, Maine 04901, USA.
| | | |
Collapse
|
31
|
Millard JT, Wilkes EE. cis- and trans-diamminedichloroplatinum(II) interstrand cross-linking of a defined sequence nucleosomal core particle. Biochemistry 2000; 39:16046-55. [PMID: 11123932 DOI: 10.1021/bi0022285] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interstrand cross-linking studies with the antitumor drug cis-diamminedichloroplatinum(II) and its clinically inactive isomer, trans-diamminedichloroplatinum(II), were performed on a fragment of the 5S rRNA gene of Xenopus borealis in the free and nucleosomal state. 5S nucleosomes were formed via histone octamer exchange from chicken erythrocyte core particles. Native polyacrylamide gel electrophoresis was used to probe the ability of platinated DNA to reconstitute into core particles. Both isomers negatively impacted reconstitution when histones were present during incubation with the drug. When histones were not present during the drug treatment, platinated DNA was successfully reconstituted into core particles. These results suggest that platination of histones impedes reconstitution of free DNA. However, already-formed core particles were not disrupted upon platination. Sites of interstrand cross-linking were probed through denaturing polyacrylamide gel electrophoresis and quantitative phosphorimagery. We found both site-specific enhancement and depression of cis-diamminedichloroplatinum(II) cross-linking in the nucleosomal samples relative to free DNA at both drug concentrations that were tested (0.01 and 0.0025 mM). trans-Diamminedichloroplatinum(II) exhibited no detectable differences in the interstrand cross-linking of free and nucleosomal samples.
Collapse
Affiliation(s)
- J T Millard
- Department of Chemistry, Colby College, Waterville, Maine 04901, USA.
| | | |
Collapse
|
32
|
Abstract
In this review I discuss straightforward and general methods to modify nucleic acid structure with disulfide cross-links. A motivating factor in developing this chemistry was the notion that disulfide bonds would be excellent tools to probe the structure, dynamics, thermodynamics, folding, and function of DNA and RNA, much in the way that cystine cross-links have been used to study proteins. The chemistry described has been used to synthesize disulfide cross-linked hairpins and duplexes, higher order structures like triplexes, nonground-state conformations, and tRNAs. Since the cross-links form quantitatively by mild air oxidation and do not perturb either secondary or tertiary structure, this modification should prove quite useful for the study of nucleic acids.
Collapse
Affiliation(s)
- G D Glick
- Department of Chemistry, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
33
|
Murray V. A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on antitumor agents. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:367-415. [PMID: 10506836 DOI: 10.1016/s0079-6603(08)60727-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.
Collapse
Affiliation(s)
- V Murray
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia
| |
Collapse
|
34
|
Tomasz M, Das A, Tang KS, Ford MGJ, Minnock A, Musser SM, Waring MJ. The Purine 2-Amino Group as the Critical Recognition Element for Sequence-Specific Alkylation and Cross-Linking of DNA by Mitomycin C. J Am Chem Soc 1998. [DOI: 10.1021/ja9824019] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maria Tomasz
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Arunangshu Das
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Kit S. Tang
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Marjin G. J. Ford
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Andrew Minnock
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Steven M. Musser
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Michael J. Waring
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| |
Collapse
|
35
|
Millard JT, Spencer RJ, Hopkins PB. Effect of nucleosome structure on DNA interstrand cross-linking reactions. Biochemistry 1998; 37:5211-9. [PMID: 9548752 DOI: 10.1021/bi972862r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antitumor agents of the nitrogen mustard family and mitomycin C form interstrand cross-links in duplex DNA. To provide information about the cellular mechanism by which these compounds exert their cytotoxic effects, we examined cross-linking of a nucleosomal core particle formed on a fragment of the 5S RNA gene of Xenopus borealis. For the mustards mechlorethamine, chlorambucil, and melphalan, both sites of monoalkylation and interstrand cross-linking were similar in nucleosomal and free DNA. Some small (two- to three- fold) differences in intensity of cross-linking at some sites were apparent. However, these differences did not appear to correlate with rotational or translational positioning. For mitomycin C, cross-linking was inhibited five- to ten-fold at the nucleosomal dyad and showed attenuation of inhibition toward the ends. Furthermore, rotational positioning also appeared to be a factor, with sites facing inward in the nucleosome less accessible for mitomycin cross-linking. None of these agents demonstrated the 10-base pair periodicity exhibited by hydroxyl radical cleavage of nucleosomal DNA.
Collapse
Affiliation(s)
- J T Millard
- Department of Chemistry, Colby College, Waterville, Maine 04901, USA.
| | | | | |
Collapse
|
36
|
Osborne SE, Völker J, Stevens SY, Breslauer KJ, Glick GD. Design, Synthesis, and Analysis of Disulfide Cross-Linked DNA Duplexes. J Am Chem Soc 1996. [DOI: 10.1021/ja962386c] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Scott E. Osborne
- Contribution from the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Jens Völker
- Contribution from the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Shawn Y. Stevens
- Contribution from the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Kenneth J. Breslauer
- Contribution from the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Gary D. Glick
- Contribution from the Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, and Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
37
|
Farrell N. DNA binding of dinuclear platinum complexes. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1067-568x(96)80010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
38
|
Cutts SM, Phillips DR. Use of oligonucleotides to define the site of interstrand cross-links induced by Adriamycin. Nucleic Acids Res 1995; 23:2450-6. [PMID: 7630722 PMCID: PMC307050 DOI: 10.1093/nar/23.13.2450] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has been known for several years that Adriamycin forms adducts and interstrand cross-links when reacted for long periods of time with bacterial and mammalian DNA in vitro, with the cross-link being restricted to 2 bp elements containing GpC sequences. The self-complementary 20mer deoxyoligonucleotide TA4T4GCA4T4A has been used in this study as a model of the apparent G-G cross-linking site at GpC sequences. The rate of formation of cross-links, as well as the dependence on both Adriamycin and Fe(III) concentration, were similar with this oligonucleotide as compared with calf thymus DNA. The cross-linking was demonstrated on both denaturing and non-denaturing sequencing gels. The half-life of the G-G cross-link was 40 h, consistent with that implied with high molecular weight, heterogeneous sequence DNA. Exonuclease III digests of adducts formed with 20mer deoxyoligonucleotides containing single, central G-G, G-I and I-I potential cross-links revealed that a guanine residue is required at both ends of the cross-link. No cross-linking was observed with a similar oligonucleotide containing only a single central (G.C) bp.
Collapse
Affiliation(s)
- S M Cutts
- School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|
39
|
Cain RJ, Zuiderweg ER, Glick GD. Solution structure of a DNA hairpin and its disulfide cross-linked analog. Nucleic Acids Res 1995; 23:2153-60. [PMID: 7610043 PMCID: PMC307002 DOI: 10.1093/nar/23.12.2153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The solution structures of a 21 base long DNA hairpin derived from the ColE1 cruciform, and an analog possessing a disulfide cross-link bridging the terminal bases, have been determined by NMR spectroscopy. The 8 bp long stem of these sequences adopts a B-form helix whereas the five base long single-stranded loop appears to be flexible and cannot be represented by a unique static conformation. NOESY cross-peak volumes, proton and phosphorus chemical shifts, and both homo- and heteronuclear coupling constants for the cross-linked hairpin are virtually identical to those measured for the unmodified sequence, even for the residues that are proximal to the cross-link. These results indicate that both hairpins are structurally isomorphous. Because this cross-link can be incorporated site specifically in a sequence independent manner, and does not appear to alter native conformation, it should prove broadly applicable in studies of DNA structure and function.
Collapse
Affiliation(s)
- R J Cain
- Department of Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|
40
|
Zou Y, Van Houten B, Farrell N. Sequence specificity of DNA-DNA interstrand cross-link formation by cisplatin and dinuclear platinum complexes. Biochemistry 1994; 33:5404-10. [PMID: 8180163 DOI: 10.1021/bi00184a007] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sequence specificity of interstrand cross-links induced in DNA by mononuclear and dinuclear platinum complexes in a 49-base-pair DNA duplex has been determined directly. This new assay takes advantage of the fact that 3'-->5' exonuclease digestion of randomly platinated DNA produces a pool of fragments of different lengths. This treatment allows identification of the spectrum of adducts impeding the exonuclease scission. Interstrand cross-linked adducts produce fragments that may remain complementary in the proximity of the binding site. As a result, these fragments may act as primer templates for extension upon subsequent treatment with a DNA polymerase. This extension increases the size of the oligonucleotide fragments, which may be evidenced by a more slowly migrating band on a sequencing gel. Concomitantly, the original band corresponding to the digested cross-link decreases in intensity. Therefore, comparison of a sequencing gel after digestion only and after the "digestion-extension" treatment should show the disappearance, or diminished band intensity, of only those fragments with interstrand cross-links. This approach was applied to the analysis of DNA interstrand cross-links formed by cis-[PtCl2(NH3)2] (cis-DDP) and [(trans-PtCl(NH3)2)2H2N(CH2)4NH2]Cl2. Cis-DDP was confirmed to form interstrand cross-links at d(GC) sequences but, interestingly, interstrand cross-links predominated in a sequence GCGG, with possible 1,3-intrastrand but no 1,2-intrastrand cross-links forming. The dinuclear compound formed 1,2, 1,3, and 1,4 DNA interstrand cross-links between guanines on opposite strands. In 1,3 and 1,4 cross-links, the guanines are separated by one and two base pairs, respectively, whereas a 1,2 cross-link is formed from guanines on neighboring base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Zou
- Department of Chemistry, Virginia Commonwealth University, Richmond 23284-2006
| | | | | |
Collapse
|
41
|
Hartley JA, Souhami RL, Berardini MD. Electrophoretic and chromatographic separation methods used to reveal interstrand crosslinking of nucleic acids. JOURNAL OF CHROMATOGRAPHY 1993; 618:277-88. [PMID: 8227260 DOI: 10.1016/0378-4347(93)80038-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several electrophoretic and chromatographic techniques, many of which have only been developed recently, provide sensitive methods for the detection and separation of DNA containing interstrand crosslinks such as those produced by many cancer chemotherapeutic drugs and photoactive psoralen derivatives. Most of the methods rely on the fact that the presence of such crosslinks prevent the complete denaturation of the two complimentary DNA strands by heat or alkali. A simple and highly sensitive neutral agarose gel electrophoresis method is particularly applicable to detailed time-course experiments of both total crosslink formation, and the "second-arm" of the crosslink reaction. This method separates denatured single-stranded from double-stranded DNA which has reannealed as a result of an interstrand crosslink. Polyacrylamide gel-based assays using denaturing gels are more suited to the separation of smaller crosslinked DNA fragments and, in particular, small oligonucleotides on high-percentage gels. In addition, they provide methods for the determination of the exact base position and sequence selectivity of crosslink formation. Sephadex chromatography and high-performance liquid chromatography can separate small crosslinked oligonucleotides from non-crosslinked duplexes, and the hydroxyapatite column chromatographic separation of single- and double-stranded cellular DNA can be used to quantitate the level of interstrand crosslinking present in the bulk of the genome. Finally, the analysis of damage by crosslinking agents, and its repair, at the level of specific genes can be achieved by hybridization with specific probes following membrane transfer from neutral agarose gels used to fractionate restricted and fully denatured genomic DNA from drug-treated cells.
Collapse
Affiliation(s)
- J A Hartley
- Department of Oncology, University College London Medical School, UK
| | | | | |
Collapse
|
42
|
Berardini MD, Souhami RL, Lee CS, Gibson NW, Butler J, Hartley JA. Two structurally related diaziridinylbenzoquinones preferentially cross-link DNA at different sites upon reduction with DT-diaphorase. Biochemistry 1993; 32:3306-12. [PMID: 8461296 DOI: 10.1021/bi00064a013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleotide sequence preferences for the formation of interstrand cross-links induced in DNA by 2,5-diaziridinyl-1,4-benzoquinone (DZQ) and 3,6-dimethyl-2,5-diaziridinyl-1,4-benzoquinone (MeDZQ) were studied using synthetic duplex oligonucleotides and denaturing polyacrylamide gel electrophoresis (PAGE). Reaction of these bifunctional alkylating agents with a DNA duplex containing several potential cross-linking sites resulted in the formation of cross-linked DNAs with different electrophoretic mobilities. Analysis of the principal cross-linked products by piperidine fragmentation revealed that the preferential site of cross-linking was altered from a 5'-GNC to a 5'-GC sequence upon reduction of DZQ to the hydroquinone form by the enzyme DT-diaphorase. In contrast, the reduced form of MeDZQ was found to preferentially cross-link at 5'-GNC sites within the same sequence. These preferences were confirmed in duplex oligonucleotides containing single potential cross-linking sites. Additional minor cross-linked products were characterized and revealed that DZQ and MeDZQ are both capable of cross-linking across four base pairs in a 5'-GNNC sequence.
Collapse
Affiliation(s)
- M D Berardini
- Department of Oncology, University College & Middlesex School of Medicine, London, U.K
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Epoxides are cancer-causing agents chemically analogous to the nitrogen mustards, a family of powerful antitumor drugs. We found that the DNA interstrand cross-linking sequence preference of diepoxybutane is the same as that of the mustard mechlorethamine: 5'-GNC. Therefore, the genomic site of cross-linking alone cannot explain why some interstrand cross-linkers act as antitumor agents whereas others are deadly toxins.
Collapse
Affiliation(s)
- J T Millard
- Department of Chemistry, Colby College, Waterville, Maine 04901
| | | |
Collapse
|
44
|
Kumar S, Johnson WS, Tomasz M. Orientation isomers of the mitomycin C interstrand cross-link in non-self-complementary DNA. Differential effect of the two isomers on restriction endonuclease cleavage at a nearby site. Biochemistry 1993; 32:1364-72. [PMID: 8448145 DOI: 10.1021/bi00056a023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Reductively activated mitomycin C (MC) forms DNA interstrand cross-links between two guanines at CG.CG sequences. It is predictable that such cross-links should occur in two isomeric strand orientations in duplex DNA (except when located in the center of a self-complementary duplex). This was verified by the isolation and characterization of a pair of two isomeric oligonucleotides in each case of five non-self-complementary duplexes of 8-bp length, cross-linked by MC. Isomer separation was accomplished by reverse-phase HPLC. The isomers in a pair were formed in approximately 1:1 proportion. Their structures were rigorously characterized by a two-step cross-linking procedure: first, 1''-monoalkylation of each strand, followed by conversion to a cross-linked duplex by annealing the monoalkylated strand to its complement in the presence of a reducing agent. The resulting individual authentic orientation isomers were used as standards for identification of the two isomers formed in the original (one-step) cross-linking reactions. A 16-bp duplex oligonucleotide was synthesized featuring the AluI cognate sequence, separated from a MC cross-link site by only 1 bp. Its two MC cross-linked isomers were prepared separately, and their rate of cleavage by AluI was determined using HPLC. Cleavage of both the unmodified and cross-linked duplexes was nonsymmetrical. The isomer in which the 2''-NH3+ of MC is oriented toward the AluI site was cleaved essentially at the same rate as the control duplex, while cleavage of the isomer with the MC indoloquinone group oriented toward the AluI site was inhibited 2-fold at the faster-cleaved strand.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Kumar
- Department of Chemistry, Hunter College, City University of New York, New York 10021
| | | | | |
Collapse
|
45
|
Millard JT, Hopkins PB. Site-specific metal-induced damage of mitomycin C-crosslinked DNA fragments in the presence of sodium dithionite. Mutat Res 1993; 285:165-74. [PMID: 7678888 DOI: 10.1016/0027-5107(93)90103-m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Purified singly mitomycin C-crosslinked DNA duplex fragments were treated with Cu(II) in the presence of sodium dithionite. Cleavage products were analyzed through single-nucleotide resolving denaturing polyacrylamide gel electrophoresis. In addition to the previously described non-specific cleavage, which may be attributed to the production of hydroxyl radical, a novel site-specific cleavage in the immediate vicinity of the MC-crosslink was observed. Possible mechanisms of this reaction are discussed.
Collapse
Affiliation(s)
- J T Millard
- Department of Chemistry, Colby College, Waterville, ME 04901
| | | |
Collapse
|
46
|
Kumar S, Lipman R, Tomasz M. Recognition of specific DNA sequences by mitomycin C for alkylation. Biochemistry 1992; 31:1399-407. [PMID: 1736997 DOI: 10.1021/bi00120a016] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthetic oligodeoxyribonucleotides were reacted with mitomycin C (MC) under conditions which restricted MC to monofunctional alkylating activity. The yields of monofunctional alkylation of oligonucleotides with variable sequence were determined by enzymatic digestion of the reaction mixture to unreacted nucleosides and the product of alkylation, a MC-deoxyguanosine adduct (2), followed by quantitative analysis by HPLC. The relative yields of 2 reflected relative monoalkylation reactivities. They were compared in a series of oligonucleotides having the sequence 5'-NGN' in which the 5'-base was varied while the 3'-base was kept constant as T. Under Na2S2O4 activation conditions a striking enhancement of the yield was observed at the 5'-CG sequence: 36%, compared to 2% at 5'-AG and 4.1% at 5'-TG. The 5'-GG sequence also showed enhanced reactivity although to a lesser extent (14.7%). The enhancements were specific to the duplex state of the oligonucleotides. Using NADPH:cytochrome c reductase as the reducing agent gave similar results. MC activated by acidic pH also displayed 5'-CG alkylation specificity. 10-Decarbamoyl-MC activated by Na2S2O4 showed the same 5'-CG specificity as MC. Replacement of deoxyguanosine by deoxyinosine in the opposite strand at a 5'-CG site abolished the enhancement of alkylation. Such replacement at a 5'-GG site had a similar effect. It was found that the base 3' to the guanine had only a relatively modest modulating effect on the enhanced reactivity of the G at the 5'-CG sequence. This 3'-base effect appeared to be independent of the 5'-base of the 5'-NGN' triplet. The order of reactivity is 3'-(C greater than T greater than A).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Kumar
- Department of Chemistry, Hunter College, City University of New York 10021
| | | | | |
Collapse
|