1
|
Zardoni L, Nardini E, Liberi G. 2D Gel Electrophoresis to Detect DNA Replication and Recombination Intermediates in Budding Yeast. Methods Mol Biol 2020; 2119:43-59. [PMID: 31989513 DOI: 10.1007/978-1-0716-0323-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The two-dimensional agarose gel electrophoresis (2D gel) is a powerful method used to detect and analyze rare DNA replication and recombination intermediates within a genomic DNA preparation. The 2D gel method has been extensively applied to the budding yeast Saccharomyces cerevisiae due to its small and well-characterized genome to analyze replication fork dynamics at single DNA loci under both physiological and pathological conditions. Here we describe procedures to extract genomic DNA from in vivo UV-psoralen cross-linked yeast cells, to separate branched DNA replication and recombination intermediates by neutral-neutral 2D gel method and to visualize 2D gel structures by Southern Blot.
Collapse
Affiliation(s)
- Luca Zardoni
- Istituto di Genetica Molecolare, CNR, Pavia, Italy
- Scuola Universitaria Superiore, IUSS, Pavia, Italy
| | | | - Giordano Liberi
- Istituto di Genetica Molecolare, CNR, Pavia, Italy.
- IFOM Foundation, Milan, Italy.
| |
Collapse
|
2
|
RNase-dependent discontinuities associated with the crossovers of spontaneously formed joint DNA molecules in Physarum polycephalum. Chromosoma 2010; 119:601-11. [DOI: 10.1007/s00412-010-0281-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 11/27/2022]
|
3
|
Mesner LD, Dijkwel PA, Hamlin JL. Purification of restriction fragments containing replication intermediates from complex genomes for 2-D gel analysis. Methods Mol Biol 2009; 521:121-137. [PMID: 19563104 PMCID: PMC2902164 DOI: 10.1007/978-1-60327-815-7_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In order to perform 2-D gel analyses on restriction fragments from higher eukaryotic genomes, it is necessary to remove most of the linear, nonreplicating, fragments from the starting DNA preparation. This is so because the replication intermediates in a single-copy locus constitute such a minute fraction of all of the restriction fragments in a standard DNA preparation - whether isolated from synchronized or asynchronous cultures. Furthermore, the very long DNA strands that characterize higher eukaryotic genomes are inordinately subject to branch migration and shear. We have developed a method that results in significant enrichment of replicating fragments that largely maintain their branched intermediates. The method depends upon two important factors: (1) replicating fragments in higher eukaryotic nuclei appear to be attached to the nuclear matrix in a supercoiled fashion, and (2) partially single-stranded fragments (e.g., those containing replication forks) are selectively adsorbed to benzoylated napthoylated DEAE (BND)-cellulose in high salt conCentrations. By combining matrix-enrichment and BND-cellulose chromatography, it is possible to obtain preparations that are enriched as much as 200-fold over the starting genomic DNA and are thus suitable for analysis on 2-D gels.
Collapse
Affiliation(s)
| | | | - Joyce L. Hamlin
- Corresponding author , Phone: 434-924-5858, FAX: 434-924-1789
| |
Collapse
|
4
|
Bénard M, Maric C, Pierron G. Low rate of replication fork progression lengthens the replication timing of a locus containing an early firing origin. Nucleic Acids Res 2007; 35:5763-74. [PMID: 17717000 PMCID: PMC2034475 DOI: 10.1093/nar/gkm586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Invariance of temporal order of genome replication in eukaryotic cells and its correlation with gene activity has been well-documented. However, recent data suggest a relax control of replication timing. To evaluate replication schedule accuracy, we detailed the replicational organization of the developmentally regulated php locus that we previously found to be lately replicated, even though php gene is highly transcribed in naturally synchronous plasmodia of Physarum. Unexpectedly, bi-dimensional agarose gel electrophoreses of DNA samples prepared at specific time points of S phase showed that replication of the locus actually begins at the onset of S phase but it proceeds through the first half of S phase, so that complete replication of php-containing DNA fragments occurs in late S phase. Origin mapping located replication initiation upstream php coding region. This proximity and rapid fork progression through the coding region result in an early replication of php gene. We demonstrated that afterwards an unusually low fork rate and unidirectional fork pausing prolong complete replication of php locus, and we excluded random replication timing. Importantly, we evidenced that the origin linked to php gene in plasmodium is not fired in amoebae when php expression dramatically reduced, further illustrating replication-transcription coupling in Physarum.
Collapse
Affiliation(s)
- Marianne Bénard
- CNRS-FRE 2937, Institut André Lwoff, BP8, 94800 Villejuif, France.
| | | | | |
Collapse
|
5
|
DePamphili ML. How transcription factors regulate origins of DNA replication in eukaryotic cells. Trends Cell Biol 2004; 3:161-7. [PMID: 14731611 DOI: 10.1016/0962-8924(93)90137-p] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic chromosomes contain a few thousand origins of DNA replication, which are activated in a temporal and spatial order during S phase. One parameter that is strongly implicated in determining the order of replication is transcription. This review focuses on the role of transcription factors in activating origins of replication in eukaryotic cells. Studies of viral and mitochondrial replication origins have revealed several mechanisms by which transcription factors activate origins, but it remains to be seen whether any of these are used to regulate cellular chromosome replication.
Collapse
Affiliation(s)
- M L DePamphili
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110, USA
| |
Collapse
|
6
|
Abstract
To determine the extent to which eukaryotic replication origins are developmentally regulated in transcriptionally competent cells, we compared origin use in untreated growing amoebae and plasmodia of Physarum polycephalum. At loci that contain genes transcribed in both developmental stages, such as the ribosomal RNA genes and two unlinked actin genes, we show that there is a similar replicational organization, with the same origins used with comparable efficiencies, as shown by two-dimensional agarose-gel electrophoresis. By contrast, we found cell-type-specific replication patterns for the homologous, unlinked profilin A (proA) and profilin P (proP) genes. proA is replicated from a promoter-proximal origin in amoebae, in which it is highly expressed, and is replicated passively in the plasmodium, in which it is not expressed. Conversely, proP is replicated passively and is not expressed in amoebae, but coincides with an efficient origin when highly expressed in the plasmodium. Our results show a reprogramming of S phase that is linked to the reprogramming of transcription during Physarum cell differentiation. This is achieved by the use of two classes of promoter-associated replication origins: those that are constitutively active and those that are developmentally regulated. This suggests that replication origins, like genes, are under epigenetic control associated with cellular differentiation.
Collapse
Affiliation(s)
- Chrystelle Maric
- Institut André Lwoff, UPR-1983, Laboratoire Réplication de l'ADN et Ultrastructure du Noyau, 7 rue Guy Moquet, 94801 Villejuif, France
| | - Marianne Bénard
- Institut André Lwoff, UPR-1983, Laboratoire Réplication de l'ADN et Ultrastructure du Noyau, 7 rue Guy Moquet, 94801 Villejuif, France
| | - Gérard Pierron
- Institut André Lwoff, UPR-1983, Laboratoire Réplication de l'ADN et Ultrastructure du Noyau, 7 rue Guy Moquet, 94801 Villejuif, France
- Tel: +33 1 49 58 33 73; Fax +33 149 58 33 81;
| |
Collapse
|
7
|
Maric C, Swanston E, Bailey J, Pierron G. Replicational organization of three weakly expressed loci in Physarum polycephalum. Nucleic Acids Res 2002; 30:2261-9. [PMID: 12034812 PMCID: PMC117180 DOI: 10.1093/nar/30.11.2261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously mapped early-activated replication origins in the promoter regions of five abundantly transcribed genes in the slime mold Physarum polycephalum. This physical linkage between origins and genes is congruent with the preferential early replication of the active genes in mammalian cells. To determine how general this replicational organization is in the synchronous plasmodium of Physarum, we analyzed the replication of three weakly expressed genes. Bromodeoxyuridine (BrdUrd) density-shift and gene dosage experiments indicated that the redB (regulated in development) and redE genes replicate early, whereas redA replicates in mid-S phase. Bi-dimensional gel electrophoresis revealed that redA coincides with an origin that appears to be activated within a large temporal window in S phase so that the replication of the gene is not well defined temporally. The early replication of the redB and redE genes is due to the simultaneous activation of flanking origins at the onset of S phase. As a result, these two genes correspond to termination sites of DNA replication. Our data demonstrate that not all the Physarum promoters are preferred sites of initiation but, so far, all the expressed genes analyzed in detail either coincide with a replication origin or are embedded into a cluster of early firing replicons.
Collapse
Affiliation(s)
- Chrystelle Maric
- Institut André Lwoff, UPR-1983, Laboratoire Réplication et Ultrastructure du Noyau, 7 rue Guy Moquet, F-94801-Villejuif, France
| | | | | | | |
Collapse
|
8
|
Bénard M, Maric C, Pierron G. DNA replication-dependent formation of joint DNA molecules in Physarum polycephalum. Mol Cell 2001; 7:971-80. [PMID: 11389844 DOI: 10.1016/s1097-2765(01)00237-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two-dimensional neutral/neutral agarose gel electrophoresis is used extensively to localize replication origins. This method resolves DNA structures containing replication forks. It also detects X-shaped recombination intermediates in meiotic cells, in the form of a typical vertical spike. Intriguingly, such a spike of joint DNA molecules is often detectable in replicating DNA from mitotic cells. Here, we used naturally synchronous DNA samples from Physarum polycephalum to demonstrate that postreplicative, DNA replication-dependent X-shaped DNA molecules are formed between sister chromatids. These molecules have physical properties reminiscent of Holliday junctions. Our results demonstrate frequent interactions between sister chromatids during a normal cell cycle and suggest a novel phase during DNA replication consisting of transient, joint DNA molecules formed on newly replicated DNA.
Collapse
Affiliation(s)
- M Bénard
- Institut André Lwoff, UPR-1983, Laboratoire Organisation Fonctionnelle du Noyau, 94801 Villejuif, France
| | | | | |
Collapse
|
9
|
Abstract
The neutral/neutral and neutral/alkaline two-dimensional gel electrophoretic techniques are sensitive physical mapping methods that have been used successfully to identify replication initiation sites in genomes of widely varying complexity. We present detailed methodology for the preparation of replication intermediates from mammalian cells and their analysis by both neutral/neutral and neutral/alkaline two-dimensional gel approaches. The methods described allow characterization of the replication pattern of single-copy loci, even in mammalian cells. When applied to metazoans, initiation is found to occur at multiple sites scattered throughout zones that can be as long as 50 kb, with some subregions being preferred. Although these observations do not rule out the possibility of genetically defined replicators, they offer the alternative or additional possibility that chromosomal context may play an important role in defining replication initiation sites in complex genomes. We discuss novel recombination strategies that can be used to test for the presence of sequence elements critical for origin function if the origin lies in the vicinity of a selectable gene. Application of this strategy to the DHFR locus shows that loss of sequences more than 25 kb from the local initiation zone can markedly affect origin activity in the zone.
Collapse
Affiliation(s)
- P A Dijkwel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
10
|
Bénard M, Pierron G. Early activated replication origins within the cell cycle-regulated histone H4 genes in Physarum. Nucleic Acids Res 1999; 27:2091-8. [PMID: 10219081 PMCID: PMC148428 DOI: 10.1093/nar/27.10.2091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It was previously shown that the two members of the cell cycle-regulated histone H4 gene family, H4-1 and H4-2, are replicated at the onset of S phase in the naturally synchronous plasmodium of Physarum polycephalum, suggesting that they are flanked by replication origins. It was further shown that a DNA fragment upstream of the H4-1 gene is able to confer autonomous replication of a plasmid in the budding yeast. In this paper, we re-investigated replication of the unlinked Physarum histone H4 genes by mapping the replication origin of these two loci using alkaline agarose gel and neutral/neutral 2-dimensional agarose gel electrophoreses. We showed that the two replicons containing the H4 genes are simultaneously activated at the onset of S phase and we mapped an efficient, bidirectional replication origin in the vicinity of each gene. Our data demonstrated that the Physarum sequence that functions as an ARS in yeast is not the site of replication initiation at the H4-1 locus. We also observed a stalling of the rightward moving replication fork downstream of the H4-1 gene, in a region where transient topoisomerase II sites were previously mapped. Our results further extend the concept of replication/transcription coupling in Physarum to cell cycle-regulated genes.
Collapse
Affiliation(s)
- M Bénard
- Laboratoire Organisation Fonctionnelle du Noyau, CNRS UPR-1983, IFR-1221, F-94801 Villejuif, France.
| | | |
Collapse
|
11
|
Pierron G, Pallotta D, Bénard M. The one-kilobase DNA fragment upstream of the ardC actin gene of Physarum polycephalum is both a replicator and a promoter. Mol Cell Biol 1999; 19:3506-14. [PMID: 10207074 PMCID: PMC84143 DOI: 10.1128/mcb.19.5.3506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 1-kb DNA fragment upstream of the ardC actin gene of Physarum polycephalum promotes the transcription of a reporter gene either in a transient-plasmid assay or as an integrated copy in an ectopic position, defining this region as the transcriptional promoter of the ardC gene (PardC). Since we mapped an origin of replication activated at the onset of S phase within this same fragment, we examined the pattern of replication of a cassette containing the PardC promoter and the hygromycin phosphotransferase gene, hph, integrated into two different chromosomal sites. In both cases, we show by two-dimensional agarose gel electrophoresis that an efficient, early activated origin coincides with the ectopic PardC fragment. One of the integration sites was a normally late-replicating region. The presence of the ectopic origin converted this late-replicating domain into an early-replicating domain in which replication forks propagate with kinetics indistinguishable from those of the native PardC replicon. This is the first demonstration that initiation sites for DNA replication in Physarum correspond to cis-acting replicator sequences. This work also confirms the close proximity of a replication origin and a promoter, with both functions being located within the 1-kb proximal region of the ardC actin gene. A more precise location of the replication origin with respect to the transcriptional promoter must await the development of a functional autonomously replicating sequence assay in Physarum.
Collapse
Affiliation(s)
- G Pierron
- Laboratoire Organisation Fonctionnelle du Noyau, UPR-9044, CNRS, Institut de Recherches sur le Cancer, 94801 Villejuif, France.
| | | | | |
Collapse
|
12
|
Reichheld JP, Gigot C, Chaubet-Gigot N. Multilevel regulation of histone gene expression during the cell cycle in tobacco cells. Nucleic Acids Res 1998; 26:3255-62. [PMID: 9628927 PMCID: PMC147694 DOI: 10.1093/nar/26.13.3255] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The respective involvement of transcriptional and post-transcriptional mechanisms in coupling H3 and H4 histone gene expression to the S phase of the cell cycle has been studied in synchronized tobacco cells. Induction of histone gene expression at the G1/S transition is shown to be essentially directed by an increase in the transcription rate in response to cellular signals occurring at the initiation step of DNA replication. Histone gene induction thus precedes the burst of DNA synthesis. However, when the elongation step of DNA replication is ineffective or artificially arrested, feedback mechanisms apparently act at the translation level to avoid overproduction of histone proteins from their mRNAs. At the end of S phase, post-transcriptional mechanisms ensure a rapid degradation of histone mRNAs. Transcription factors are bound to the cis -elements of histone promoters throughout the cell cycle, thus suggesting a post-translational modification of some of them to trigger promoter activation at the G1/S transition. Based on these results, a model is proposed for histone gene transcriptional induction in connection with the components of the cell cycle machinery.
Collapse
Affiliation(s)
- J P Reichheld
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France
| | | | | |
Collapse
|
13
|
Moriya S, Ogasawara N. Mapping of the replication origin of the Bacillus subtilis chromosome by the two-dimensional gel method. Gene 1996; 176:81-4. [PMID: 8918236 DOI: 10.1016/0378-1119(96)00223-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Analysis of replication intermediates produced by in vitro replication of the Bacillus subtilis oriC plasmid revealed that replication initiated at an untranslatable DnaA box region downstream of the dnaA gene. In order to show that replication of the B. subtilis chromosome also starts at the same region in vivo, we have analyzed replication intermediates generated in vivo by the two-dimensional gel method. A bubble arc was detected when the downstream region was used as a probe. In contrast, only a simple Y arc was found when the upstream DnaA box region required for autonomous replication of the oriC plasmid was used as a probe. Furthermore, the bubble arc ranged from unit to almost double the size of a fragment in which the downstream region was located near the middle. These results indicate that replication of the B. subtilis chromosome initiates at the downstream DnaA box region of the dnaA gene and proceeds bidirectionally.
Collapse
Affiliation(s)
- S Moriya
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Japan
| | | |
Collapse
|
14
|
Ohba R, Matsumoto K, Ishimi Y. Induction of DNA replication by transcription in the region upstream of the human c-myc gene in a model replication system. Mol Cell Biol 1996; 16:5754-63. [PMID: 8816489 PMCID: PMC231576 DOI: 10.1128/mcb.16.10.5754] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An important relationship between transcription and initiation of DNA replication in both eukaryotes and prokaryotes has been suggested. In an attempt to understand the molecular mechanism of this interaction, we examined whether transcription can induce DNA replication in vitro by constructing a system in which both replication and transcription were combined. Relaxed circular DNA possessing a replication initiation zone located upstream of the human c-myc gene and a T7 promoter near the P1 promoter of the gene was replicated in the presence of T7 RNA polymerase. In our model system, replication was carried out with the proteins required for simian virus 40 DNA replication. DNA synthesis, which was dependent on both T7 RNA polymerase and the replication proteins, was detected mainly in the promoter and upstream regions of the c-myc gene. Blocking RNA synthesis at the initial stage of the reaction severely reduced DNA synthesis, suggesting that RNA chain elongation is required to induce DNA synthesis. The results indicated that transcription can induce DNA replication in the upstream region of the transcribed gene, most likely by introducing negative supercoiling into the region, which results in unwinding of the DNA duplex.
Collapse
Affiliation(s)
- R Ohba
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | |
Collapse
|
15
|
Kalejta RF, Lin HB, Dijkwel PA, Hamlin JL. Characterizing replication intermediates in the amplified CHO dihydrofolate reductase domain by two novel gel electrophoretic techniques. Mol Cell Biol 1996; 16:4923-31. [PMID: 8756651 PMCID: PMC231494 DOI: 10.1128/mcb.16.9.4923] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using neutral/neutral and neutral/alkaline two-dimensional (2-D) gel techniques, we previously obtained evidence that initiation can occur at any of a large number of sites distributed throughout a broad initiation zone in the dihydrofolate reductase (DHFR) domain of Chinese hamster ovary (CHO) cells. However, other techniques have suggested a much more circumscribed mode of initiation in this locus. This dichotomy has raised the issue whether the patterns of replicating DNA on 2-D gels have been misinterpreted and, in some cases, may represent such noncanonical replication intermediates as broken bubbles or microbubbles. In an accompanying study (R. F. Kalejta and J. L. Hamlin, Mol. Cell. Biol. 16:4915-4922, 1996), we have shown that broken bubbles migrate to unique positions in three different gel systems and therefore are not likely to be confused with classic replication intermediates. Here, we have applied a broken bubble assay developed from that study to an analysis of the amplified DHFR locus in CHO cells. This assay gives information about the number and positions of initiation sites within a fragment. In addition, we have analyzed the DHFR locus by a novel stop-and-go-alkaline gel technique that measures the size of nascent strands at all positions along each arc in a neutral/neutral 2-D gel. Results of these analyses support the view that the 2-D gel patterns previously assigned to classic, intact replication bubbles and single-forked structures indeed correspond to these entities. Furthermore, potential nascent-strand start sites appear to be distributed at very frequent intervals along the template in the intergenic region in the DHFR domain.
Collapse
Affiliation(s)
- R F Kalejta
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
16
|
Bénard M, Lagnel C, Pallotta D, Pierron G. Mapping of a replication origin within the promoter region of two unlinked, abundantly transcribed actin genes of Physarum polycephalum. Mol Cell Biol 1996; 16:968-76. [PMID: 8622700 PMCID: PMC231079 DOI: 10.1128/mcb.16.3.968] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We analyzed the replication of two unlinked actin genes, ardB and ardC , which are abundantly transcribed in the naturally synchronous plasmodium of the slime mold Physarum polycephalum. Detection and size measurements of single-stranded nascent replication intermediates (RIs) demonstrate that these two genes are concomitantly replicated at the onset of the 3-h S phase and tightly linked to replication origins. Appearance of RIs on neutral-neutral two-dimensional gels at specific time points in early S phase and analysis of their structure confirmed these results and further established that, in both cases, an efficient, site-specific, bidirectional origin of replication is localized within the promoter region of the gene. We also determined similar elongation rates for the divergent replication forks of the ardC gene replicon. Finally, taking advantage of a restriction fragment length polymorphism, we studied allelic replicons and demonstrate similar localizations and a simultaneous firing of allelic replication origins. Computer search revealed a low level of homology between the promoters of ardB and ardC and, most notably, the absence of DNA sequences similar to the yeast autonomously replicating sequence consensus sequence in these Physarum origin regions. Our results with the ardB and ardC actin genes support the model of early replicating origins located within the promoter regions of abundantly transcribed genes in P. polycephalum.
Collapse
Affiliation(s)
- M Bénard
- Laboratoire Organisation Fonctionnelle du Noyau, Villejuif, France
| | | | | | | |
Collapse
|
17
|
Bénard M, Lagnel C, Pierron G. Site-specific initiation of DNA replication within the non-transcribed spacer of Physarum rDNA. Nucleic Acids Res 1995; 23:1447-53. [PMID: 7784195 PMCID: PMC306881 DOI: 10.1093/nar/23.9.1447] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Physarum polycephalum rRNA genes are found on extrachromosomal 60 kb linear palindromic DNA molecules. Previous work using electron microscope visualization suggested that these molecules are duplicated from one of four potential replication origins located in the 24 kb central non-transcribed spacer [Vogt and Braun (1977) Eur. J. Biochem., 80, 557-566]. Considering the controversy on the nature of the replication origins in eukaryotic cells, where both site-specific or delocalized initiations have been described, we study here Physarum rDNA replication by two dimensional agarose gel electrophoresis and compare the results to those obtained by electron microscopy. Without the need of cell treatment or enrichment in replication intermediates, we detect hybridization signals corresponding to replicating rDNA fragments throughout the cell cycle, confirming that the synthesis of rDNA molecules is not under the control of S-phase. The patterns of replication intermediates along rDNA minichromosomes are consistent with the existence of four site-specific replication origins, whose localization in the central non-transcribed spacer is in agreement with the electron microscope mapping. It is also shown that, on a few molecules, at least two origins are active simultaneously.
Collapse
Affiliation(s)
- M Bénard
- Organisation Fonctionnelle du Noyau, UPR 9044 CNRS, Villejuif, France
| | | | | |
Collapse
|
18
|
|
19
|
Dijkwel PA, Vaughn JP, Hamlin JL. Replication initiation sites are distributed widely in the amplified CHO dihydrofolate reductase domain. Nucleic Acids Res 1994; 22:4989-96. [PMID: 7800491 PMCID: PMC523768 DOI: 10.1093/nar/22.23.4989] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In previous studies, we utilized a neutral/neutral two-dimensional (2-D) gel replicon mapping method to analyze the pattern of DNA synthesis in the amplified dihydrofolate reductase (DHFR) domain of CHOC 400 cells. Replication forks appeared to initiate at any of a large number of sites scattered throughout the 55 kb region lysing between the DHFR and 2BE2121 genes, and subsequently to move outward through the two genes. In the present study, we have analyzed this locus in detail by a complementary, neutral/alkaline 2-D gel technique that determines the direction in which replication forks move through a region of interest. In the early S period, forks are observed to travel in both directions through the intergenic region, but only outward through the DHFR gene. Surprisingly, however, replication forks also move in both directions through the 2BE2121 gene. Furthermore, in early S phase, small numbers of replication bubbles can be detected in the 2BE2121 gene on neutral/neutral 2-D gels. In contrast, replication bubbles have never been detected in the DHFR gene. Thus, replication initiates not only in the intergenic region, but also at a lower frequency in the 2BE2121 gene. We further show that only a small fraction of DHFR amplicons sustains an active initiation event, with the rest being replicated passively by forks from distant amplicons. These findings are discussed in light of other experimental approaches that suggest the presence of a much more narrowly circumscribed initiation zone within the intergenic region.
Collapse
Affiliation(s)
- P A Dijkwel
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville 22908
| | | | | |
Collapse
|
20
|
Patnaik PK, Fang X, Cross GA. The region encompassing the procyclic acidic repetitive protein (PARP) gene promoter plays a role in plasmid DNA replication in Trypanosoma brucei. Nucleic Acids Res 1994; 22:4111-8. [PMID: 7937135 PMCID: PMC331897 DOI: 10.1093/nar/22.20.4111] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously reported the construction and characterization of an autonomously replicating plasmid in Trypanosoma brucei. In this plasmid the procyclic acidic repetitive protein (PARP) gene promoter drives the transcription of a selectable marker. Deletion of this promoter incapacitates the plasmid, suggesting its utilization as a promoter-trap. Three independent libraries were created by inserting variously digested T.brucei genomic DNA into this promoterless construct. Transfection of these libraries into procyclic T.brucei and the subsequent isolation of episomes led only to the reisolation of the PARP promoter. Additionally, a ribosomal RNA promoter failed to keep the construct as an episome, although it can sustain mRNA transcription in T.brucei and was shown to be an efficient promoter in this construct. Finally, by using a transient replication assay involving the methylation-sensitive restriction endonuclease DpnI to distinguish between input and replicated DNA, we showed that the PARP promoter-bearing construct could replicate autonomously in procyclic T.brucei, but the corresponding construct with the rRNA promoter could not. The close association between elements that sustain transcription and DNA replication in T.brucei mirrors results observed in several higher eukaryotes and their viruses and suggests an ancient origin of this feature.
Collapse
Affiliation(s)
- P K Patnaik
- Laboratory of Molecular Parasitology, Rockefeller University, New York, NY 10021-6399
| | | | | |
Collapse
|
21
|
Analysis of an origin of DNA amplification in Sciara coprophila by a novel three-dimensional gel method. Mol Cell Biol 1994. [PMID: 8289825 DOI: 10.1128/mcb.14.2.1520] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication origin region for DNA amplification in Sciara coprophila DNA puff II/9A was analyzed with a novel three-dimensional (3D) gel method. Our 3D gel method involves running a neutral/neutral 2D gel and then cutting out vertical gel slices from the area containing replication intermediates, rotating these slices 90 degrees to form the third dimension, and running an alkaline gel for each of the slices. Therefore, replication intermediates are separated into forks and bubbles and then are resolved into parental and nascent strands. We used this technique to determine the size of forks and bubbles and to confirm the location of the major initiation region previously mapped by 2D gels to a 1-kb region. Furthermore, our 3D gel analyses suggest that only one initiation event in the origin region occurs on a single DNA molecule and that the fork arc in the composite fork-plus-bubble pattern in neutral/neutral 2D gels does not result from broken bubbles.
Collapse
|
22
|
Liang C, Gerbi SA. Analysis of an origin of DNA amplification in Sciara coprophila by a novel three-dimensional gel method. Mol Cell Biol 1994; 14:1520-9. [PMID: 8289825 PMCID: PMC358507 DOI: 10.1128/mcb.14.2.1520-1529.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The replication origin region for DNA amplification in Sciara coprophila DNA puff II/9A was analyzed with a novel three-dimensional (3D) gel method. Our 3D gel method involves running a neutral/neutral 2D gel and then cutting out vertical gel slices from the area containing replication intermediates, rotating these slices 90 degrees to form the third dimension, and running an alkaline gel for each of the slices. Therefore, replication intermediates are separated into forks and bubbles and then are resolved into parental and nascent strands. We used this technique to determine the size of forks and bubbles and to confirm the location of the major initiation region previously mapped by 2D gels to a 1-kb region. Furthermore, our 3D gel analyses suggest that only one initiation event in the origin region occurs on a single DNA molecule and that the fork arc in the composite fork-plus-bubble pattern in neutral/neutral 2D gels does not result from broken bubbles.
Collapse
Affiliation(s)
- C Liang
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | | |
Collapse
|
23
|
Chromatin structure and transcriptional activity around the replication forks arrested at the 3' end of the yeast rRNA genes. Mol Cell Biol 1994. [PMID: 8264598 DOI: 10.1128/mcb.14.1.318] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication intermediates containing forks arrested at the replication fork barrier near the 3' end of the yeast rRNA genes were analyzed at the chromatin level by using in vivo psoralen cross-linking as a probe for chromatin structure. These specific intermediates were purified from preparative two-dimensional agarose gels, and the extent of cross-linking in the different portions of the branched molecules was examined by electron microscopy and by using a psoralen gel retardation assay. The unreplicated section corresponding to the rRNA coding region upstream of the arrested forks appeared mostly heavily cross-linked, characteristic of transcriptionally active rRNA genes devoid of nucleosomes, whereas the replicated daughter strands representing newly synthesized spacer sequences showed a nucleosomal organization typical for bulk chromatin. The failure to detect replication forks arrested at the 3' end of inactive rRNA gene copies and the fact that most DNA encoding rRNA (rDNA) is replicated in the same direction as transcription suggest that replication forks seldom originate from origins of replication located immediately downstream of inactive genes.
Collapse
|
24
|
Lucchini R, Sogo JM. Chromatin structure and transcriptional activity around the replication forks arrested at the 3' end of the yeast rRNA genes. Mol Cell Biol 1994; 14:318-26. [PMID: 8264598 PMCID: PMC358381 DOI: 10.1128/mcb.14.1.318-326.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Replication intermediates containing forks arrested at the replication fork barrier near the 3' end of the yeast rRNA genes were analyzed at the chromatin level by using in vivo psoralen cross-linking as a probe for chromatin structure. These specific intermediates were purified from preparative two-dimensional agarose gels, and the extent of cross-linking in the different portions of the branched molecules was examined by electron microscopy and by using a psoralen gel retardation assay. The unreplicated section corresponding to the rRNA coding region upstream of the arrested forks appeared mostly heavily cross-linked, characteristic of transcriptionally active rRNA genes devoid of nucleosomes, whereas the replicated daughter strands representing newly synthesized spacer sequences showed a nucleosomal organization typical for bulk chromatin. The failure to detect replication forks arrested at the 3' end of inactive rRNA gene copies and the fact that most DNA encoding rRNA (rDNA) is replicated in the same direction as transcription suggest that replication forks seldom originate from origins of replication located immediately downstream of inactive genes.
Collapse
Affiliation(s)
- R Lucchini
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zürich
| | | |
Collapse
|
25
|
Kruse L, Meyer G, Hildebrandt A. A highly conserved repetitive sequence from Physarum polycephalum contains nucleotide arrangements similar to replicator sequences. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:129-33. [PMID: 8218403 DOI: 10.1016/0167-4781(93)90049-j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An interspersed repetitive sequence from Physarum polycephalum has been cloned and analysed. The 394 bp sequence is highly conserved and contains several homopolymeric (dA)-(dT) tracts capable of forming bent DNA structures and a 10/11 match to the yeast-ARS-consensus sequence. The repetition frequency of the described sequence is about 3000 to 7000, a number that would fit with the distribution of replicator segments in Physarum.
Collapse
Affiliation(s)
- L Kruse
- Institut für Zellbiologie, Biochemie und Biotechnologie, University of Bremen, Germany
| | | | | |
Collapse
|
26
|
Diller JD, Sauer HW. Two early replicated, developmentally controlled genes of Physarum display different patterns of DNA replication by two-dimensional agarose gel electrophoresis. Chromosoma 1993; 102:563-74. [PMID: 7902230 DOI: 10.1007/bf00368349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nature of replication origins in eukaryotic chromosomes has been examined in some detail only in yeast, Drosophila, and mammalian cells. We have used highly synchronous cultures of plasmodia of the myxomycete Physarum and two-dimensional agarose gel electrophoresis to examine replication of two developmentally controlled, early replicated genes over time in S-phase. A single, discrete origin of replication was found within 4.8 kb of the LAV1-5 gene, which encodes a homolog of profilin. In contrast, the LAV1-2 gene appears to be surrounded by several origins. Two origins were identified within a 15 kb chromosomal domain and appear to be inefficiently used. Replication forks collide at preferred sites within this domain. These terminating structures are long lived, persisting for at least 2 h of the 3 h S-phase. Analysis of restriction fragment length polymorphisms (RFLPs) within the LAV1-2 domain indicates that replication of alleles on different parental chromosomes is a highly coordinated process. Our studies of the these two early replicated, plasmodium-specific genes indicate that both a fixed, narrow origin region and a broader zone containing two closely spaced origins of DNA replication occur in Physarum.
Collapse
Affiliation(s)
- J D Diller
- Department of Biology, Texas A&M University, College Station 77843
| | | |
Collapse
|
27
|
DNA replication of histone gene repeats in Drosophila melanogaster tissue culture cells: multiple initiation sites and replication pause sites. Mol Cell Biol 1993. [PMID: 8321216 DOI: 10.1128/mcb.13.7.4098] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We showed previously that DNA replication initiates at multiple sites in the 5-kb histone gene repeating unit in early embryos of Drosophila melanogaster. The present report shows evidence that replication in the same chromosomal region initiates at multiple sites in tissue culture cells as well. First, we analyzed replication intermediates by the two-dimensional gel electrophoretic replicon mapping method and detected bubble-form replication intermediates for all fragments restricted at different sites in the repeating unit. Second, we analyzed bromodeoxyuridine-labeled nascent strands amplified by the polymerase chain reaction method and detected little differences in the size distribution of nascent strands specific to six short segments located at different sites in the repeating unit. These results strongly suggest that DNA replication initiates at multiple sites located within the repeating unit. We also found several replication pause sites located at 5' upstream regions of some histone genes.
Collapse
|
28
|
Shinomiya T, Ina S. DNA replication of histone gene repeats in Drosophila melanogaster tissue culture cells: multiple initiation sites and replication pause sites. Mol Cell Biol 1993; 13:4098-106. [PMID: 8321216 PMCID: PMC359959 DOI: 10.1128/mcb.13.7.4098-4106.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We showed previously that DNA replication initiates at multiple sites in the 5-kb histone gene repeating unit in early embryos of Drosophila melanogaster. The present report shows evidence that replication in the same chromosomal region initiates at multiple sites in tissue culture cells as well. First, we analyzed replication intermediates by the two-dimensional gel electrophoretic replicon mapping method and detected bubble-form replication intermediates for all fragments restricted at different sites in the repeating unit. Second, we analyzed bromodeoxyuridine-labeled nascent strands amplified by the polymerase chain reaction method and detected little differences in the size distribution of nascent strands specific to six short segments located at different sites in the repeating unit. These results strongly suggest that DNA replication initiates at multiple sites located within the repeating unit. We also found several replication pause sites located at 5' upstream regions of some histone genes.
Collapse
Affiliation(s)
- T Shinomiya
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | |
Collapse
|
29
|
Abstract
This past year has seen a significant increase in our understanding of eukaryotic origins of replication, of the proteins that identify these origins, of DNA sequences that promote their unwinding, and of transcription factors that stimulate origin activity. DNA replication begins at specific sites in both simple and complex genomes, but origins in complex genomes may include nuclear structure as well as DNA sequence.
Collapse
Affiliation(s)
- M L DePamphilis
- Roche Institute of Molecular Biology, Nutley, New Jersey 07110-1199
| |
Collapse
|
30
|
Liang C, Spitzer JD, Smith HS, Gerbi SA. Replication initiates at a confined region during DNA amplification in Sciara DNA puff II/9A. Genes Dev 1993; 7:1072-84. [PMID: 8504930 DOI: 10.1101/gad.7.6.1072] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two independent two-dimensional (2D) gel methods were used to map an origin of replication that is developmentally regulated by the steroid hormone ecdysone, namely an origin for DNA puff amplification in the fungus fly Sciara coprophila. Initiation of replication was found to occur within a small region of no larger than 6 kb by use of the neutral/neutral 2D gel method. Neutral/alkaline 2D gel analyses support the results of the neutral/neutral 2D gels and further define within the origin region an approximately 1-kb area where the majority of replication initiates. This is the first example of an origin of replication in multicellular eukaryotes that has been mapped by 2D gels to such a small defined region. Moreover, replication can be seen by the neutral/alkaline 2D gel method to proceed bidirectionally outward from this replication origin region. These data are consistent with an onion-skin mechanism whereby multiple rounds of DNA replication initiate at a specific origin of replication for Sciara DNA puff amplification.
Collapse
Affiliation(s)
- C Liang
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | | | | | | |
Collapse
|
31
|
Zhu J, Brun C, Kurooka H, Yanagida M, Huberman JA. Identification and characterization of a complex chromosomal replication origin in Schizosaccharomyces pombe. Chromosoma 1992; 102:S7-16. [PMID: 1291242 DOI: 10.1007/bf02451780] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the budding yeast, S. cerevisiae, two-dimensional (2D) gel electrophoresis techniques permit mapping of DNA replication origins to short stretches of DNA (+/- 300 bp). In contrast, in mammalian cells and Drosophila, 2D gel techniques do not permit precise origin localization; the results have been interpreted to suggest that replication initiates in broad zones (several kbp or more). However, alternative techniques (replication timing, nascent strand polarity analysis, nascent strand size analysis) suggest that mammalian origins can be mapped to short DNA stretches, just like S. cerevisiae origins. Because the fission yeast, Schizosaccharomyces pombe, resembles higher organisms in several ways to a greater extent than does S. cerevisiae, we thought that S. pombe replication origins might prove to resemble--and thus be helpful models for--animal cell origins. An attempt to test this possibility using 2D gel techniques resulted in identification of a replication origin near the ura4 gene on chromosome III of S. pombe. The 2D gel patterns produced by this S. pombe origin indeed resemble the patterns produced by animal cell origins and show that the S. pombe origin cannot be precisely located. The data suggest an initiation zone of 3-5 kbp. Some aspects of the 2D gel patterns detected at the S. pombe origin cannot be explained by the rationale of initiation in broad zones, suggesting that future biochemical and genetic studies of this complex origin are likely to provide information useful in helping to understand the apparent conflict between the 2D gel mapping techniques and other mapping techniques at animal cell origins.
Collapse
Affiliation(s)
- J Zhu
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute Buffalo, NY 14263
| | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- W L Fangman
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|