1
|
Abstract
The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key players in an increasing number of other cellular processes, with far-reaching consequences in health and disease. The biochemical versatility of the synthetases has also proven pivotal in efforts to expand the genetic code, further emphasizing the wide-ranging roles of the aminoacyl-tRNA synthetase family in synthetic and natural biology.
Collapse
Affiliation(s)
- Miguel Angel Rubio Gomez
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Abstract
Pyrrolysine is the 22nd proteinogenic amino acid encoded into proteins in response to amber (TAG) codons in a small number of archaea and bacteria. The incorporation of pyrrolysine is facilitated by a specialized aminoacyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNAPyl). The secondary structure of tRNAPyl contains several unique features not found in canonical tRNAs. Numerous studies have demonstrated that the PylRS/tRNAPyl pair from archaea is orthogonal in E. coli and eukaryotic hosts, which has led to the widespread use of this pair for the genetic incorporation of non-canonical amino acids. In this brief review we examine the work that has been done to elucidate the structure of tRNAPyl, its interaction with PylRS, and survey recent progress on the use of tRNAPyl as a tool for genetic code expansion.
Collapse
Affiliation(s)
- Jeffery M Tharp
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| | - Andreas Ehnbom
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| | - Wenshe R Liu
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| |
Collapse
|
3
|
Pettersson BMF, Kirsebom LA. tRNA accumulation and suppression of the bldA phenotype during development in Streptomyces coelicolor. Mol Microbiol 2011; 79:1602-14. [PMID: 21244529 DOI: 10.1111/j.1365-2958.2011.07543.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Streptomyces coelicolor undergoes distinct morphological changes as it grows on solid media where spores differentiate into vegetative and aerial mycelium that is followed by the production of spores. Deletion of bldA, encoding the rare tRNA(Leu) UAA, blocks development at the stage of vegetative mycelium formation. From previous data it appears that tRNA(Leu) UAA accumulates relatively late during growth while two other tRNAs do not. Here, we studied the expression of 17 different tRNAs including bldA tRNA, and the RNA subunit of the tRNA processing endoribonuclease RNase P. Our results showed that all selected tRNAs and RNase P RNA increased with time during development. However, accumulation of bldA tRNA and another rare tRNA(Leu) isoacceptor started at an earlier stage compared with the other tRNAs. We also introduced the bldA tRNA anticodon (UAA) into other tRNAs and introduced these into a bldA deletion strain. In particular, one such mutant tRNA derived from the tRNA(Leu) CAA isoacceptor suppressed the bldA phenotype. Thus, the bldA tRNA scaffold is not critical for function as a regulator of S. coelicolor cell differentiation. Further substitution experiments, in which the 5'- and 3'-flanking regions of the suppressor tRNA were changed, indicated that these regions were important for the suppression.
Collapse
Affiliation(s)
- B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
4
|
Trepanier NK, Jensen SE, Alexander DC, Leskiw BK. The positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus is mistranslated in a bldA mutant. MICROBIOLOGY (READING, ENGLAND) 2002; 148:643-656. [PMID: 11882698 DOI: 10.1099/00221287-148-3-643] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Streptomyces coelicolor bldA encodes the principal leucyl tRNA for translation of UUA codons and controls pigmented antibiotic production by the presence of TTA codons in the genes encoding the pathway-specific activators of actinorhodin and undecylprodigiosin biosynthesis. In Streptomyces clavuligerus the gene encoding the pathway-specific activator of both cephamycin C and clavulanic acid production, ccaR, also contains a TTA codon and was expected to exhibit bldA-dependence. A cloned S. clavuligerus DNA fragment containing a sequence showing 91% identity to the S. coelicolor bldA-encoded tRNA was able to restore antibiotic production and sporulation to bldA mutants of S. coelicolor and the closely related Streptomyces lividans. A null mutation of the bldA gene in S. clavuligerus resulted in the expected sporulation defective phenotype, but unexpectedly had no effect on antibiotic production. Transcript analysis showed no difference in the levels of ccaR transcripts in the wild-type and bldA mutant strains, ruling out any effect of elevated levels of the ccaR mRNA. Furthermore, when compared to the wild-type strain, the bldA mutant showed no differences in the levels of CcaR, suggesting that the single TTA codon in ccaR is mistranslated efficiently. The role of codon context in bldA dependence is discussed.
Collapse
Affiliation(s)
- Nicole K Trepanier
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| | - Susan E Jensen
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| | - Dylan C Alexander
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| | - Brenda K Leskiw
- Department of Biological Sciences, CW405 Biological Sciences Building, University of Alberta, Edmonton, Alberta, CanadaT6G 2E91
| |
Collapse
|
5
|
Olsthoorn-Tieleman LN, Plooster LJ, Kraal B. The variant tuf3 gene of Streptomyces coelicolor A3(2) encodes a real elongation factor Tu, as shown in a novel Streptomyces in vitro translation system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3807-15. [PMID: 11432749 DOI: 10.1046/j.1432-1327.2001.02291.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Streptomyces coelicolor, the regular and abundant elongation factor (EF)-Tu1 is encoded by tuf1, while the actual function of the highly divergent tuf3 gene product is not yet known. Expression of the latter could so far only be detected on the transcriptional level under stress conditions. In this paper we demonstrate the presence of low levels of EF-Tu3 in strains of the J1501 lineage. Enhanced expression was observed for J1501 glkA and relA deletion mutants, which lack glucose kinase and ribosome-bound ppGpp synthetase, respectively. To assess the putative translational capacities of EF-Tu3, a novel Streptomyces in vitro translation assay was designed, based on the full elimination by Ni2+ affinity adsorption of chromosomally encoded (His)6-tagged EF-Tu1 from a S. coelicolor cell-free extract. Translational activity of this system is totally dependent on the addition of purified EF-Tu species or on the presence of an additional elongation factor Tu in the extract, e.g. encoded by a plasmid-borne tuf gene. Using this EF-Tu-dependent translation system, we have established that S. coelicolor EF-Tu3 has translational capacities despite its striking deviation from the common prokaryotic EF-Tu sequence at positions involved in either aminoacyl-tRNA binding or interaction with the guanine-nucleotide exchange factor EF-Ts.
Collapse
Affiliation(s)
- L N Olsthoorn-Tieleman
- Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
6
|
Trepanier NK, Nguyen GD, Leedell PJ, Leskiw BK. Use of polymerase chain reaction to identify a leucyl tRNA in Streptomyces coelicolor. Gene X 1997; 193:59-63. [PMID: 9249067 DOI: 10.1016/s0378-1119(97)00077-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polymerase chain reaction (PCR) was used to amplify a fragment of DNA encoding a tRNA that recognizes the abundant CUC leucine codon from the chromosome of Streptomyces coelicolor. Sequence analysis of the gene, designated leuU, indicated that it codes for a tRNA 88 nucleotides in length that shares 75% identity with the Escherichia coli tRNA(Leu)CUC, while it shares only 65% identity with the only other sequenced leucyl tRNA from S. coelicolor, the bldA encoded tRNA(Leu)UUA. Accumulation of the leuU tRNA was examined by Northern blot analysis and shown to be present at constant levels throughout growth in contrast to the bldA-encoded tRNA which shows a temporal pattern of accumulation [Leskiw et al., 1993. J. Bacteriol., 175, 1995-2005].
Collapse
Affiliation(s)
- N K Trepanier
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
7
|
Stange-Thomann N, Thomann HU, Lloyd AJ, Lyman H, Söll D. A point mutation in Euglena gracilis chloroplast tRNA(Glu) uncouples protein and chlorophyll biosynthesis. Proc Natl Acad Sci U S A 1994; 91:7947-51. [PMID: 8058739 PMCID: PMC44521 DOI: 10.1073/pnas.91.17.7947] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The universal precursor of tetrapyrrole pigments (e.g., chlorophylls and hemes) is 5-aminolevulinic acid (ALA), which in Euglena gracilis chloroplasts is derived via the two-step C5 pathway from glutamate charged to tRNA(Glu). The first enzyme in this pathway, Glu-tRNA reductase (GluTR) catalyzes the reduction of glutamyl-tRNA(Glu) (Glu-tRNA) to glutamate 1-semialdehyde (GSA) with the release of the uncharged tRNA(Glu). The second enzyme, GSA-2,1-aminomutase, converts GSA to ALA. tRNA(Glu) is a specific cofactor for the NADPH-dependent reduction by GluTR, an enzyme that recognizes the tRNA in a sequence-specific manner. This RNA is the normal tRNA(Glu), a dual-function molecule participating both in protein and in ALA and, hence, chlorophyll biosynthesis. A chlorophyll-deficient mutant of E. gracilis (Y9ZNalL) does not synthesize ALA from glutamate, although it contains GluTR and GSA-2,1-aminomutase activity. The tRNA(Glu) isolated from the mutant can still be acylated with glutamate in vitro and in vivo. Furthermore, it supports chloroplast protein synthesis; however, it is a poor substrate for GluTR. Sequence analysis of the tRNA and of its gene revealed a C56-->U mutation in the resulting gene product. C56 is therefore an important identity element for GluTR. Thus, a point mutation in the T loop of tRNA uncouples protein from chlorophyll biosynthesis.
Collapse
Affiliation(s)
- N Stange-Thomann
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | | | | | | | | |
Collapse
|
8
|
Ueda Y, Taguchi S, Nishiyama K, Kumagai I, Miura K. Effect of a rare leucine codon, TTA, on expression of a foreign gene in Streptomyces lividans. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1172:262-6. [PMID: 8448204 DOI: 10.1016/0167-4781(93)90212-v] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Streptomyces are bacteria with a very high chromosomal G+C composition (> 70 mol%) and extremely biased codon usage. In order to investigate the relationship between codon usage and gene expression in Streptomyces, we used ssi (Streptomyces subtilisin inhibitor) as a reporter gene and monitored its secretory expression in S. lividans. In consequence of alteration of the native codons of Leu, Lys and Ser of ssi to minor ones by site-directed mutagenesis, i.e., Leu79-Leu80: CTG-CTC to TTA-TTA, Lys89: AAG to AAA, Ser108-Ser109: TCG-AGC to TCT-TCT, respectively, the production of SSI was reduced remarkably in the case of TTA codons, while it was slightly increased in the case of AAA and almost the same in TCT codons. This conspicuous decrease found for Leu codon replacement was probably due to the low availability of intracellular tRNA(Leu) (UUA), a product of bldA which has been reported to be expressed only during the late stage of growth.
Collapse
Affiliation(s)
- Y Ueda
- Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|