1
|
Chathoth KT, Ganesan G, Rao MRS. Identification of a novel nucleolin related protein (NRP) gene expressed during rat spermatogenesis. BMC Mol Biol 2009; 10:64. [PMID: 19570216 PMCID: PMC2711064 DOI: 10.1186/1471-2199-10-64] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 07/01/2009] [Indexed: 11/17/2022] Open
Abstract
Background Nucleolin is a major nucleolar phosphoprotein involved in various steps of ribosome biogenesis in eukaryotic cells. As nucleolin plays a significant role in ribosomal RNA transcription we were interested in examining in detail the expression of nucleolin across different stages of spermatogenesis and correlate with the transcription status of ribosomal DNA in germ cells. Results By RT PCR and western blot analysis we found that nucleolin is strongly down regulated in meiotic spermatocytes and haploid germ cells. We have identified a new nucleolin related protein (NRP) gene in the rat genome, which is over expressed in the testis and is up regulated several fold in meiotic spermatocytes and haploid germ cells. The NRP protein lacks the acidic stretches in its N terminal domain, and it is encoded in rat chromosome 15 having a different genomic organization as compared to nucleolin gene present on chromosome 9. We have also found NRP genes encoded in genomes of other mammalian species. We performed run-on transcription assay where we have observed that rDNA is transcribed at much lower level in meiotic spermatocytes and haploid spermatids as compared to diploid cells. By siRNA knock down experiments we could also demonstrate that NRP can support rDNA transcription in the absence of nucleolin. Conclusion We have identified a new nucleolin variant over expressed in germ cells in rat and analyzed its domain structure. We attribute that the transcriptional activity of rDNA genes in the late spermatogenesis is due to the presence of this variant NRP. The expression of this variant in the germ cells in the absence of nucleolin, could have additional functions in the mammalian spermatogenesis which needs to be investigated further.
Collapse
Affiliation(s)
- Keerthi T Chathoth
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Banglore, India 560064, USA.
| | | | | |
Collapse
|
2
|
Cui Z, DiMario PJ. RNAi knockdown of Nopp140 induces Minute-like phenotypes in Drosophila. Mol Biol Cell 2007; 18:2179-91. [PMID: 17392509 PMCID: PMC1877096 DOI: 10.1091/mbc.e07-01-0074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/13/2007] [Accepted: 03/20/2007] [Indexed: 01/04/2023] Open
Abstract
Nopp140 associates with small nucleolar RNPs to chaperone pre-rRNA processing and ribosome assembly. Alternative splicing yields two isoforms in Drosophila: Nopp140-True is homologous to vertebrate Nopp140 particularly in its carboxy terminus, whereas Nopp140-RGG contains a glycine and arginine-rich (RGG) carboxy terminus typically found in vertebrate nucleolin. Loss of ribosome function or production at critical points in development leads to Minute phenotypes in Drosophila or the Treacher Collins syndrome (TCS) in humans. To ascertain the functional significance of Nopp140 in Drosophila development, we expressed interfering RNA using the GAL4/UAS system. Reverse transcription-PCR showed variable losses of Nopp140 mRNA in larvae from separate RNAi-expressing transgenic lines, whereas immunofluorescence microscopy with isoform-specific antibodies showed losses of Nopp140 in imaginal and polyploid tissues. Phenotypic expression correlated with the percent loss of Nopp140 transcripts: a >or=50% loss correlated with larval and pupal lethality, disrupted nuclear structures, and in some cases melanotic tumors, whereas a 30% loss correlated with adult wing, leg, and tergite deformities. We consider these adult phenotypes to be Minute-like and reminiscent of human craniofacial malformations associated with TCS. Similarly, overexpression of either isoform caused embryonic and larval lethality, thus indicating proper expression of Nopp140 is critical for normal development.
Collapse
Affiliation(s)
- Zhengfang Cui
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
3
|
Sobol MA, González-Camacho F, Kordyum EL, Medina FJ. Nucleolar proteins change in altered gravity. J Appl Biomed 2007. [DOI: 10.32725/jab.2007.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
4
|
González-Camacho F, Medina FJ. Nucleolins from different model organisms have conserved sequences reflecting the conservation of key cellular functions through evolution. J Appl Biomed 2004. [DOI: 10.32725/jab.2004.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
5
|
Alvarez M, Quezada C, Navarro C, Molina A, Bouvet P, Krauskopf M, Vera MI. An increased expression of nucleolin is associated with a physiological nucleolar segregation. Biochem Biophys Res Commun 2003; 301:152-8. [PMID: 12535655 DOI: 10.1016/s0006-291x(02)02978-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleolar segregation is the most striking cellular phenotypic feature of cold-acclimatized carp and depicts the cyclical reprogramming that the physiology of the fish undergoes between summer and winter, where a clear differential expression of some nucleolar related genes occurs. We characterized carp nucleolin, a nucleolar protein involved in multiple steps of ribosome biogenesis, and evaluated its expression upon fish acclimatization. We show that the carp cDNA deduced amino acid sequence exhibits the same tripartite structural organization found in other species. Nevertheless, we observed that nucleolin mRNA expression was strongly induced in the cold-adapted carp as was the nuclear protein content, assessed by immunocytochemistry in liver sections. The physiological up-regulation of nucleolin in the cold-acclimatized carp, where rRNA transcription and processing are depressed concomitantly with the nucleolus segregation, is consistent with the notion that nucleolin plays a fundamental role in repressing rRNA synthesis.
Collapse
Affiliation(s)
- M Alvarez
- Facultad de Ciencias de la Salud, Millenium Institute for Fundamental and Applied Biology, Universidad Andrés Bello, República 217, 4to Piso, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The Nopp140 gene of Drosophila maps within 79A5 of chromosome 3. Alternative splicing yields two variants. DmNopp140 (654 residues) is the sequence homolog of vertebrate Nopp140. Its carboxy terminus is 64% identical to that of the prototypical rat Nopp140. DmNopp140-RGG (688 residues) is identical to DmNopp140 throughout its first 551 residues, but its carboxy terminus contains a glycine/arginine-rich domain that is often found in RNA-binding proteins such as vertebrate nucleolin. Both Drosophila variants localize to nucleoli in Drosophila Schneider II cells and Xenopus oocytes, specifically within the dense fibrillar components. In HeLa cells, DmNopp140-RGG localizes to intact nucleoli, whereas DmNopp140 partitions HeLa nucleoli into phase-light and phase-dark regions. The phase-light regions contain DmNopp140 and endogenous fibrillarin, whereas the phase-dark regions contain endogenous nucleolin. When coexpressed, both Drosophila variants colocalize to HeLa cell nucleoli. Both variants fail to localize to endogenous Cajal bodies in Xenopus oocyte nuclei and in HeLa cell nuclei. Endogenous HeLa coilin, however, accumulates around the periphery of phase-light regions in cells expressing DmNopp140. The carboxy truncation (DmNopp140DeltaRGG) also fails to localize to Cajal bodies, but it forms similar phase-light regions that peripherally accumulate endogenous coilin. Conversely, we see no unusual accumulation of coilin in cells expressing DmNopp140-RGG.
Collapse
Affiliation(s)
- John M Waggener
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA
| | | |
Collapse
|
7
|
Abstract
Nucleolin is a very abundant eukaryotic protein that localizes to the nucleolus, where the rDNA undergoes transcription, replication, and recombination and where rRNA processing occurs. The top (non-template) strand of the rDNA is very guanine-rich and has considerable potential to form structures stabilized by G-G pairing. We have assayed binding of endogenous and recombinant nucleolin to synthetic oligonucleotides in which G-rich regions have formed intermolecular G-G pairs to produce either two-stranded G2 or four-stranded G4 DNA. We report that nucleolin binds G-G-paired DNA with very high affinity; the dissociation constant for interaction with G4 DNA is KD = 1 nM. Two separate domains of nucleolin can interact with G-G-paired DNA, the four RNA binding domains and the C-terminal Arg-Gly-Gly repeats. Both domains bind G4 DNA with high specificity and recognize G4 DNA structure independent of sequence context. The high affinity of the nucleolin/G4 DNA interaction identifies G-G-paired structures as natural binding targets of nucleolin in the nucleolus. The ability of two independent domains of nucleolin to bind G-G-paired structures suggests that nucleolin can function as an architectural factor in rDNA transcription, replication, or recombination.
Collapse
Affiliation(s)
- L A Hanakahi
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510-8024, USA
| | | | | |
Collapse
|
8
|
Abstract
Nucleolin is an abundant protein of the nucleolus. Nucleolar proteins structurally related to nucleolin are found in organisms ranging from yeast to plants and mammals. The association of several structural domains in nucleolin allows the interaction of nucleolin with different proteins and RNA sequences. Nucleolin has been implicated in chromatin structure, rDNA transcription, rRNA maturation, ribosome assembly and nucleo-cytoplasmic transport. Studies of nucleolin over the last 25 years have revealed a fascinating role for nucleolin in ribosome biogenesis. The involvement of nucleolin at multiple steps of this biosynthetic pathway suggests that it could play a key role in this highly integrated process.
Collapse
Affiliation(s)
- H Ginisty
- Laboratoire de Biologie Moléculaire Eucaryote, Institut de Biologie Cellulaire et de Génétique du CNRS, UPR 9006, 31062 Toulouse Cedex, France
| | | | | | | |
Collapse
|
9
|
Tong CG, Reichler S, Blumenthal S, Balk J, Hsieh HL, Roux SJ. Light regulation of the abundance of mRNA encoding a nucleolin-like protein localized in the nucleoli of pea nuclei. PLANT PHYSIOLOGY 1997; 114:643-52. [PMID: 9193096 PMCID: PMC158348 DOI: 10.1104/pp.114.2.643] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A cDNA encoding a nucleolar protein was selected from a pea (Pisum sativum) plumule library, cloned, and sequenced. The translated sequence of the cDNA has significant percent identity to Xenopus laevis nucleolin (31%), the alfalfa (Medicago sativa) nucleolin homolog (66%), and the yeast (Saccharomyces cerevisiae) nucleolin homolog (NSR1) (28%). It also has sequence patterns in its primary structure that are characteristic of all nucleolins, including an N-terminal acidic motif, RNA recognition motifs, and a C-terminal Gly- and Arg-rich domain. By immunoblot analysis, the polyclonal antibodies used to select the cDNA bind selectively to a 90-kD protein in purified pea nuclei and nucleoli and to an 88-kD protein in extracts of Escherichia coli expressing the cDNA. In immunolocalization assays of pea plumule cells, the antibodies stained primarily a region surrounding the fibrillar center of nucleoli, where animal nucleolins are typically found. Southern analysis indicated that the pea nucleolin-like protein is encoded by a single gene, and northern analysis showed that the labeled cDNA binds to a single band of RNA, approximately the same size and the cDNA. After irradiation of etiolated pea seedlings by red light, the mRNA level in plumules decreased during the 1st hour and then increased to a peak of six times the 0-h level at 12 h. Far-red light reversed this effect of red light, and the mRNA accumulation from red/far-red light irradiation was equal to that found in the dark control. This indicates that phytochrome may regulate the expression of this gene.
Collapse
Affiliation(s)
- C G Tong
- Department of Botany, University of Texas, Austin 78713, USA
| | | | | | | | | | | |
Collapse
|
10
|
Inoue A, Takahashi KP, Kimura M, Watanabe T, Morisawa S. Molecular cloning of a RNA binding protein, S1-1. Nucleic Acids Res 1996; 24:2990-7. [PMID: 8760884 PMCID: PMC146028 DOI: 10.1093/nar/24.15.2990] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
S1 proteins A-D constitute a nuclear protein family that are liberated rapidly in a set from chromatin by mild digestion with a DNA or RNA hydrolyzing enzyme. With an anti-S1-protein B antiserum that reacted with B2, C1 and D1, a cDNA clone, pS1-1, was obtained, which encoded a protein of 852 amino acids. The S1-1 protein, encoded within the cells by a mRNA of 3480 nt, was a novel protein and could be distinguished from the S1 proteins B, C and D by their amino acid sequences. The S-1-1 protein synthesized by in vitro translation bound to RNA homopolymers, with a preference for G and U polyribonucleotides and little for poly(A). The protein contained two tandem RNP motifs and several intriguing sequences, such as a novel repeat of five octamers with a consensus sequence DP-S(Q/G)YYY and a potentially perfect amphipathic alpha-helix of five turns with basic and acidic amino acids positioned in an ordered way. The two RNP motif sequences were similar, although homologies were low, to the RNP motif sequences of yeast NSR1 protein, animal nucleolins, Drosophila hnRNP Al and tobacco chloroplast RNP precursor protein, suggesting a functional uniqueness of the S1-1 protein in RNA metabolism and also the evolution of its RNP motif structure before plants and animals diverged. These results indicate that the S1-1 protein encoded by the cDNA is a new class of RNA binding protein.
Collapse
Affiliation(s)
- A Inoue
- Department of Biochemistry, Osaka City University Medical School, Japan
| | | | | | | | | |
Collapse
|
11
|
Xu X, Cooper LG, DiMario PJ, Nelson JW. Helix formation in model peptides based on nucleolin TPAKK motifs. Biopolymers 1995; 35:93-102. [PMID: 7696559 DOI: 10.1002/bip.360350110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The structures formed by peptide models of the N-terminal domain of the nucleolar protein nucleolin were studied by CD and nmr. The sequences of the peptides are based on the putative nucleic acid binding sequence motif TPAKK. The peptides TP1 and TP2 have the sequence acetyl-G(ATPAKKAA)nG-amide, with n = 1 and 2, respectively. CD measurements indicate structural changes in both peptides when the lysine side chains are uncharged by increasing the pH or acetylation of the side-chain amines. When trifluoroethanol (TFE) is added, more extensive structural changes are observed, resembling helical structure based on nmr nuclear Overhauser effect (NOE) and C alpha proton chemical shift changes, and CD spectra. The structure formed in 0.5M NaClO4 as observed by nmr is similar to that when the lysine side chains are acetylated, due presumably to interactions of perchlorate ion with side-chain charges on lysines. The helical structure observed in TPAKK motifs may be stabilized via N-capping interactions involving threonine. The structures observed in TFE suggest that the Thr-Pro sequence initiates short helical segments in TPAKK motifs, and these helical structures might interact with nucleic acids, presumably via interactions between lysines and threonines of nucleolin.
Collapse
Affiliation(s)
- X Xu
- Department of Biochemistry, Louisiana State University, Baton Rouge 70803-1806
| | | | | | | |
Collapse
|
12
|
Temeles GL, Ram PT, Rothstein JL, Schultz RM. Expression patterns of novel genes during mouse preimplantation embryogenesis. Mol Reprod Dev 1994; 37:121-9. [PMID: 7545925 DOI: 10.1002/mrd.1080370202] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Little is known about the repertoire of genes expressed following zygotic gene activation, which occurs during the two-cell stage in the mouse. As an initial attempt to isolate novel genes, we used previously prepared two-cell and two-cell subtraction cDNA libraries (Rothstein et al., Genes Dev 6:1190-1201, 1992) to isolate a panel of seven cDNA clones. Three cDNAs had no match in the current DNA sequence data banks and three others revealed sequence homology to portions of sequences in the data banks. One cDNA was 90% homologous to the ras-related gene Krev/rap 1A. The temporal patterns of expression of these genes during oocyte maturation and preimplantation development were analyzed by a reverse transcription-polymerase chain reaction (RT-PCR) assay developed to measure relative levels of mRNAs. Three distinct temporal patterns of expression, designated Classes 1-3, were found. The two Class 1 genes displayed an actin-like pattern, with a gradual decline in expression during oocyte maturation and through the two-cell stage, followed by increases at the eight-cell and/or blastocyst stages. The four genes in Class 2 were expressed at relatively high levels during oocyte maturation and through the one-cell stage and then declined abruptly between the one- and two-cell stages; an increase then occurred at the eight-cell and/or blastocyst stages. The expression of the gene in Class 3 declined during oocyte maturation, but then showed a transient increase at the one-cell stage, with only a very slight increase in synthesis at either the eight-cell or blastocyst stage.
Collapse
Affiliation(s)
- G L Temeles
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018
| | | | | | | |
Collapse
|