1
|
Examining the Effects of Netropsin on the Curvature of DNA A-Tracts Using Electrophoresis. Molecules 2021; 26:molecules26195871. [PMID: 34641414 PMCID: PMC8510488 DOI: 10.3390/molecules26195871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
A-tracts are sequences of repeated adenine bases that, under the proper conditions, are capable of mediating DNA curvature. A-tracts occur naturally in the regulatory regions of many organisms, yet their biological functions are not fully understood. Orienting multiple A-tracts together constructively or destructively in a phase has the potential to create different shapes in the DNA helix axis. One means of detecting these molecular shape differences is from altered DNA mobilities measured using electrophoresis. The small molecule netropsin binds the minor groove of DNA, particularly at AT-rich sequences including A-tracts. Here, we systematically test the hypothesis that netropsin binding eliminates the curvature of A-tracts by measuring the electrophoretic mobilities of seven 98-base pair DNA samples containing different numbers and arrangements of centrally located A-tracts under varying conditions with netropsin. We find that netropsin binding eliminates the mobility difference between the DNA fragments with different A-tract arrangements in a concentration-dependent manner. This work provides evidence for the straightening of A-tracts upon netropsin binding and illustrates an artificial approach to re-sculpt DNA shape.
Collapse
|
2
|
Simpson L, Douglass SM, Lake JA, Pellegrini M, Li F. Comparison of the Mitochondrial Genomes and Steady State Transcriptomes of Two Strains of the Trypanosomatid Parasite, Leishmania tarentolae. PLoS Negl Trop Dis 2015. [PMID: 26204118 PMCID: PMC4512693 DOI: 10.1371/journal.pntd.0003841] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
U-insertion/deletion RNA editing is a post-transcriptional mitochondrial RNA modification phenomenon required for viability of trypanosomatid parasites. Small guide RNAs encoded mainly by the thousands of catenated minicircles contain the information for this editing. We analyzed by NGS technology the mitochondrial genomes and transcriptomes of two strains, the old lab UC strain and the recently isolated LEM125 strain. PacBio sequencing provided complete minicircle sequences which avoided the assembly problem of short reads caused by the conserved regions. Minicircles were identified by a characteristic size, the presence of three short conserved sequences, a region of inherently bent DNA and the presence of single gRNA genes at a fairly defined location. The LEM125 strain contained over 114 minicircles encoding different gRNAs and the UC strain only ~24 minicircles. Some LEM125 minicircles contained no identifiable gRNAs. Approximate copy numbers of the different minicircle classes in the network were determined by the number of PacBio CCS reads that assembled to each class. Mitochondrial RNA libraries from both strains were mapped against the minicircle and maxicircle sequences. Small RNA reads mapped to the putative gRNA genes but also to multiple regions outside the genes on both strands and large RNA reads mapped in many cases over almost the entire minicircle on both strands. These data suggest that minicircle transcription is complete and bidirectional, with 3’ processing yielding the mature gRNAs. Steady state RNAs in varying abundances are derived from all maxicircle genes, including portions of the repetitive divergent region. The relative extents of editing in both strains correlated with the presence of a cascade of cognate gRNAs. These data should provide the foundation for a deeper understanding of this dynamic genetic system as well as the evolutionary variation of editing in different strains. U-insertion/deletion RNA editing is a unique post-transcriptional mRNA modification process that occurs in trypanosomatid parasites and is required for viability. The participation of guide RNAs which are transcribed from the thousands of catenated minicircles in determining the precise sites and number of U’s inserted and deleted to create translatable mRNAs is novel and significant in terms of the recently realized importance of small RNAs in biology. This study contributes the necessary bioinformatics foundation for a deeper understanding of this important genetic system in molecular detail using a model trypanosomatid, Leishmania tarentolae. We used Next Generation Sequencing methods to determine the complete maxicircle and minicircle genomes and to map maxicircle pre-edited and edited transcripts and minicircle transcripts. The transcription of minicircle-encoded guide RNAs was confirmed and novel information about minicircle gene expression was obtained. The biological context involved a comparison of two strains of the parasites, one recently isolated and having an intact mitochondrial genetic system and the other an old lab strain that has developed a partially defective mitochondrial genome. The data are important for an understanding of the mitochondrial genomic complexity and expression of this dynamic genetic system.
Collapse
Affiliation(s)
- Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Stephen M. Douglass
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James A. Lake
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Feng Li
- Dental Research Institute, School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
3
|
Rokita SE. Chemical reagents for investigating the major groove of DNA. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2001; Chapter 6:Unit 6.6. [PMID: 18428867 DOI: 10.1002/0471142700.nc0606s05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemical modification provides an inexpensive and rapid method for characterizing the structure of DNA and its association with drugs and proteins. Numerous conformation-specific probes are available, but most investigations rely on only the most common and readily available of these. The major groove of DNA is typically characterized by reaction with dimethyl sulfate, diethyl pyrocarbonate, potassium permanganate, osmium tetroxide, and, quite recently, bromide with monoperoxysulfate. This commentary discusses the specificity of these reagents and their applications in protection, interference, and missing contact experiments.
Collapse
Affiliation(s)
- S E Rokita
- University of Maryland, College Park, Maryland, USA
| |
Collapse
|
4
|
Abstract
In a previous report we constructed a synthetic DNA sequence that directed the deposition of histone octamers to a single site, and it was proposed that DNA distortion was involved in the positioning effect. In the present study we utilized the chemical probe potassium permanganate to identify sites of DNA distortion in the synthetic positioning sequence. A permanganate hypersite was identified 15 bp from the nucleosome pseudo-dyad at a site known to display DNA distortion in the mature nucleosome. The sequence of the site contained a TA step flanked by an oligo-pyrimidine tract. A series of substitutions were made in the region of the permanganate hypersite and the resulting constructs tested for affinity for histone octamers and translational positioning in in vitro studies. The results revealed that either a single base substitution at the TA step or in the adjacent homopolymeric tract dramatically affected affinity and positioning activity. The rotational orientation of the permanganate-sensitive sequence was shown to be important for functions, since altering the orientation of the site in a positioning fragment reduced positioning activity and octamer affinity, while altering the rotational orientation of the sequence in a non-positioning fragment had the opposite effects. A reconstituted 5 S rDNA positioning sequence from Lytechinus variegatus was also shown to display a permanganate hypersite 16 bp from its pseudo-dyad.
Collapse
Affiliation(s)
- D J Fitzgerald
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907-1392, USA
| | | |
Collapse
|
5
|
Sprous D, Young MA, Beveridge DL. Molecular dynamics studies of axis bending in d(G5-(GA4T4C)2-C5) and d(G5-(GT4A4C)2-C5): effects of sequence polarity on DNA curvature. J Mol Biol 1999; 285:1623-32. [PMID: 9917401 DOI: 10.1006/jmbi.1998.2241] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gel retardation studies and other experiments indicate that DNA sequences containing the d(GA4T4C)n motif are curved, whereas those of identical composition but with a reverse sequence polarity, the d(GT4A4C)n motif, are straight. Hydroxyl radical cleavage experiments show that d(GA4T4C)n shows a unique signature, whereas d(GT4A4C)n behaves normally. To explain these results at a molecular level, molecular dynamics (MD) simulations were performed on the DNA duplexes d(G5-(GA4T4C)2-C5) and d(G5-(GT4A4C)2-C5) to 3.0 and 2.5 ns, respectively. The MD simulations are based on the Cornell force field implemented in the AMBER 4.1 modeling package and performed in a neutral solution of anionic DNA with K+, Cl- and Mg2+ at concentrations roughly comparable to a ligase buffer. Long range interactions were treated by the particle mesh Ewald method. Analysis of the results shows that the calculated dynamical structure of d(G5-(GA4T4C)2-C5) exhibits strong gross curvature, consistent with the observed behavior. The most significant locus of curvature in the MD structure is found at the central C15-G16 step, with an average roll angle of 12.8(+/-6.40)deg. The d(G5-(GT4A4C)2-C5) MD structure exhibited significantly less gross curvature. Analysis of results indicates that the reduction in gross curvature in the d(G5-(GT4A4C)2-C5) trajectory originates from the effect of the T10-A11 and T20-A21 steps, which showed average roll angles of 12.5(+/-5)deg. These three steps, T10-A11, C15-G16 and T20-A21, are half-helix turns away from one another, and their contributions to concerted bending cancel out. The A-tracts in the MD structure are essentially straight. The dynamical structure of d(G5-(GA4T4C)2-C5) exhibited minor groove deformation comprised of expansion at the 5' end of A-tracts and progressive narrowing towards the 3' end, consistent with and elaborating the interpretation of hydroxyl radical chemical probing results.
Collapse
Affiliation(s)
- D Sprous
- Department of Chemistry and Molecular Biophysics Program, Wesleyan University, Middletown, CT, 06459-0180, USA
| | | | | |
Collapse
|
6
|
Nejedlý K, Sýkorová E, Diekmann S, Palecek E. Analysis of a curved DNA constructed from alternating dAn:dTn-tracts in linear and supercoiled form by high resolution chemical probing. Biophys Chem 1998; 73:205-16. [PMID: 9700923 DOI: 10.1016/s0301-4622(98)00145-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Complex of osmium tetroxide and bipyridine (Os,bipy), KMnO4, and diethyl pyrocarbonate (DEPC) were used to probe curved DNA at single nucleotide resolution. The DNA was constructed from repeated dAn:dTn-blocks with dATATA and dAGAGA interblock sequences. The DNA was probed in the linear and supercoiled form at various salt concentrations. While all purines were available for DEPC attack, the thymines within the blocks were resistant to chemical probing by KMnO4 and Os,bipy. Only the 3'-flanking dTs were available for modification. The thymines within dTC and dTA sequences showed modification indicating that these thymines display an unstacked structure allowing both probes to attack. Under destabilizing conditions, at low ionic strength and superhelical stress, considerable unstacking was observed. We found experimental indications that under these destabilizing conditions unpaired regions might appear, probably within the dATATA sequence.
Collapse
Affiliation(s)
- K Nejedlý
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | |
Collapse
|
7
|
|
8
|
Wyatt MD, Lee M, Hartley JA. The sequence specificity of alkylation for a series of benzoic acid mustard and imidazole-containing distamycin analogues: the importance of local sequence conformation. Nucleic Acids Res 1997; 25:2359-64. [PMID: 9171086 PMCID: PMC146760 DOI: 10.1093/nar/25.12.2359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The covalent sequence specificity of a series of nitrogen mustard and imidazole-containing analogues of distamycin was determined using modified sequencing techniques. The analogues tether benzoic acid mustard (BAM) and possess either one, two or three imidazole units. Examination of the alkylation specificity revealed that BAM produced guanine-N7 lesions in a pattern similar to conventional nitrogen mustards. The monoimidazole-BAM conjugate also produced guanine-N7 alkylation in a similar pattern to BAM, but at a 100-fold lower dose. The diimidazole and triimidazole conjugates did not produce detectable guanine-N7 alkylation but only alkylated at selected sites in the minor groove. Unexpectedly, the alkylation specificity at equivalent doses was nearly identical to that found for the previously reported pyrrole-BAM conjugates. The consensus sequence, 5'-TTTTGPuwas strongly alkylated by the triimidazole conjugate in preference to other similar sites including three occurrences of 5'-TTTTAA. Footprinting studies were carried out to examine the non-covalent DNA binding interactions. These studies revealed that the tripyrrole- BAM conjugate bound non-covalently to the same AT-rich sites as distamycin. In contrast, whereas the Im3lexitropsin bound non-covalently to GC-rich sequences, the triimidazole-BAM conjugate did not detectably footprint to either GC- or AT-rich regions at equivalent doses. The results indicate that the alkylation event is not solely dictated by the non-covalent binding and might be influenced by a unique sequence dependent conformational feature of the consensus sequence 5'-TTTTGPu.
Collapse
Affiliation(s)
- M D Wyatt
- CRC Drug-DNA Interactions Research Group, Department of Oncology, University College London Medical School, London W1P 8BT, UK
| | | | | |
Collapse
|
9
|
Abstract
In the years that have passed since the publication of Wolfram Saenger's classic book on nucleic acid structure (Saenger, 1984), a considerable amount of new data has been accumulated on the range of conformations which can be adopted by DNA. Many unusual species have joined the DNA zoo, including new varieties of two, three and four stranded helices. Much has been learnt about intrinsic DNA curvature, dynamics and conformational transitions and many types of damaged or deformed DNA have been investigated. In this article, we will try to summarise this progress, pointing out the scope of the various experimental techniques used to study DNA structure, and, where possible, trying to discern the rules which govern the behaviour of this subtle macromolecule. The article is divided into six major sections which begin with a general discussion of DNA structure and then present successively, B-DNA, DNA deformations, A-DNA, Z-DNA and DNARNA hybrids. An extensive set of references is included and should serve the reader who wishes to delve into greater detai.
Collapse
Affiliation(s)
- B Hartmann
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
10
|
Matyásek R, Fulnecek J, Fajkus J, Bezdĕk M. Evidence for a sequence-directed conformation periodicity in the genomic highly repetitive DNA detectable with single-strand-specific chemical probe potassium permanganate. Chromosome Res 1996; 4:340-9. [PMID: 8871822 DOI: 10.1007/bf02257269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A single-strand-specific chemical probe, potassium permanganate (KMnO4), was used to study the sequence-dependent conformation periodicity of tandem multicopy repetitive DNA sequences HRS60 and GRS (Nicotiana Species) at the level of single base pair and dinucleotide step. Local DNA structures, sensitive to KMnO4, revealed periodicity of 182 +/- 2 bp, equal to the length of repeat units. Permanganate-sensitive local structures were mapped to both DNA strands of genomic HRS60 sequences and were found to be linked to d(A)n tracts. These adenine tracts are located in the proximity of the intrinsically curved domains. Distamycin A increased reactivity of the DNA but decreased the specificity of DNA cleavage. Similar conformation periodicity has been detected also in the 'canrep' family of repeats (Brassica species). All studied repetitive sequences are predominantly located in the constitutive heterochromatin. We discuss the role of conformation periodicities in relation to a structural code for nucleosome phasing at tandem arrays of DNA repeats.
Collapse
Affiliation(s)
- R Matyásek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | |
Collapse
|
11
|
Carrera P, Azorín F. Structural characterization of intrinsically curved AT-rich DNA sequences. Nucleic Acids Res 1994; 22:3671-80. [PMID: 7937076 PMCID: PMC308344 DOI: 10.1093/nar/22.18.3671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AT-rich DNA sequences other than AnTm tracts (n + m > or = 4) are known to be intrinsically curved. The AATAT-element constitutes one known example of these sequences. In this paper, the elucidation of the structural basis of the curvature induced by this sequence element was addressed. As judged by the patterns of cleavage by the hydroxyl radical and DNase I, the AATAT sequence shows a narrow minor groove. Furthermore, the 5' adenine residue of the AA dinucleotide contained within the sequence is hyperreactive to diethylpyrocarbonate. Similar structural properties are shown by several sequences inducing intrinsic DNA curvature, such as an A5-tract or the closely related ATAAT, AATATA and TAATAT sequences, which are also shown here to induce curvature. On the other hand, other related sequences, such as TATAA and ATATA, that do not induce curvature, show different structural characteristics.
Collapse
Affiliation(s)
- P Carrera
- Departament de Biologia Molecular i Cellular, Centre d'Investigació i Desenvolupament-CSIC, Barcelona, Spain
| | | |
Collapse
|