1
|
Drobiazko A, Adams MC, Skutel M, Potekhina K, Kotovskaya O, Trofimova A, Matlashov M, Yatselenko D, Maxwell KL, Blower TR, Severinov K, Ghilarov D, Isaev A. Molecular basis of foreign DNA recognition by BREX anti-phage immunity system. Nat Commun 2025; 16:1825. [PMID: 39979294 PMCID: PMC11842806 DOI: 10.1038/s41467-025-57006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Anti-phage systems of the BREX (BacteRiophage EXclusion) superfamily rely on site-specific epigenetic DNA methylation to discriminate between the host and invading DNA. We demonstrate that in Type I BREX systems, defense and methylation require BREX site DNA binding by the BrxX (PglX) methyltransferase employing S-adenosyl methionine as a cofactor. We determined 2.2-Å cryoEM structure of Escherichia coli BrxX bound to target dsDNA revealing molecular details of BREX DNA recognition. Structure-guided engineering of BrxX expands its DNA specificity and dramatically enhances phage defense. We show that BrxX alone does not methylate DNA, and BREX activity requires an assembly of a supramolecular BrxBCXZ immune complex. Finally, we present a cryoEM structure of BrxX bound to a phage-encoded inhibitor Ocr that sequesters BrxX in an inactive dimeric form. We propose that BrxX-mediated foreign DNA sensing is a necessary first step in activation of BREX defense.
Collapse
Affiliation(s)
- Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Myfanwy C Adams
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Mikhail Skutel
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | - Anna Trofimova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tim R Blower
- Department of Biosciences, Durham University, Durham, UK
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Waksman Institute of Microbiology, Piscataway, NJ, USA.
| | - Dmitry Ghilarov
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
2
|
Ferraz RAC, Lopes ALG, da Silva JAF, Moreira DFV, Ferreira MJN, de Almeida Coimbra SV. DNA-protein interaction studies: a historical and comparative analysis. PLANT METHODS 2021; 17:82. [PMID: 34301293 PMCID: PMC8299673 DOI: 10.1186/s13007-021-00780-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/11/2021] [Indexed: 05/05/2023]
Abstract
DNA-protein interactions are essential for several molecular and cellular mechanisms, such as transcription, transcriptional regulation, DNA modifications, among others. For many decades scientists tried to unravel how DNA links to proteins, forming complex and vital interactions. However, the high number of techniques developed for the study of these interactions made the choice of the appropriate technique a difficult task. This review intends to provide a historical context and compile the methods that describe DNA-protein interactions according to the purpose of each approach, summarise the respective advantages and disadvantages and give some examples of recent uses for each technique. The final aim of this work is to help in deciding which technique to perform according to the objectives and capacities of each research team. Considering the DNA-binding proteins characterisation, filter binding assay and EMSA are easy in vitro methods that rapidly identify nucleic acid-protein binding interactions. To find DNA-binding sites, DNA-footprinting is indeed an easier, faster and reliable approach, however, techniques involving base analogues and base-site selection are more precise. Concerning binding kinetics and affinities, filter binding assay and EMSA are useful and easy methods, although SPR and spectroscopy techniques are more sensitive. Finally, relatively to genome-wide studies, ChIP-seq is the desired method, given the coverage and resolution of the technique. In conclusion, although some experiments are easier and faster than others, when designing a DNA-protein interaction study several concerns should be taken and different techniques may need to be considered, since different methods confer different precisions and accuracies.
Collapse
Affiliation(s)
- Ricardo André Campos Ferraz
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Ana Lúcia Gonçalves Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Jessy Ariana Faria da Silva
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
- Universidade do Minho, Braga, Portugal
| | - Diana Filipa Viana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Maria João Nogueira Ferreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Sílvia Vieira de Almeida Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Youell J, Sikora AE, Vejsadová Š, Weiserova M, Smith JR, Firman K. Cofactor induced dissociation of the multifunctional multisubunit EcoR124I investigated using electromobility shift assays, AFM and SPR. RSC Adv 2017. [DOI: 10.1039/c7ra07505g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have applied three techniques to the study of subunit assembly of the Type IC Restriction–Modification enzyme EcoR124I.
Collapse
Affiliation(s)
- James Youell
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Aneta E. Sikora
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Štěpánka Vejsadová
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Marie Weiserova
- Institute of Microbiology
- ASCR, v.v.i
- 142 20 Prague 4
- Czech Republic
| | - James R. Smith
- School of Pharmacy and Biomedical Sciences
- University of Portsmouth
- Portsmouth PO1 2DT
- UK
| | - Keith Firman
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| |
Collapse
|
4
|
Taylor JE, Swiderska A, Geoff Kneale G. A rapid purification procedure for the HsdM protein of EcoR124I and biophysical characterization of the purified protein. Protein Expr Purif 2013; 87:136-40. [DOI: 10.1016/j.pep.2012.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
5
|
Taylor JE, Swiderska A, Artero JB, Callow P, Kneale G. Structural and functional analysis of the symmetrical Type I restriction endonuclease R.EcoR124I NT. PLoS One 2012; 7:e35263. [PMID: 22493743 PMCID: PMC3320862 DOI: 10.1371/journal.pone.0035263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/14/2012] [Indexed: 11/25/2022] Open
Abstract
Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (∼160 kDa), responsible for methylation of DNA, and the restriction endonuclease (∼400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124INT, based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN7TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R.EcoR124INT in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.
Collapse
Affiliation(s)
- James E. Taylor
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anna Swiderska
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jean-Baptiste Artero
- Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, France
- Macromolecular Structure Research Group, Keele University, Keele, Staffordshire, United Kingdom
| | - Philip Callow
- Partnership for Structural Biology, Institut Laue-Langevin, Grenoble, France
| | - Geoff Kneale
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
6
|
Madhusoodanan UK, Rao DN. Diversity of DNA methyltransferases that recognize asymmetric target sequences. Crit Rev Biochem Mol Biol 2010; 45:125-45. [PMID: 20184512 DOI: 10.3109/10409231003628007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.
Collapse
|
7
|
Taylor JEN, Callow P, Swiderska A, Kneale GG. Structural and functional analysis of the engineered type I DNA methyltransferase EcoR124I NT. J Mol Biol 2010; 398:391-9. [PMID: 20302878 PMCID: PMC2877798 DOI: 10.1016/j.jmb.2010.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/02/2010] [Accepted: 03/04/2010] [Indexed: 11/17/2022]
Abstract
The Type I R-M system EcoR124I is encoded by three genes. HsdM is responsible for modification (DNA methylation), HsdS for DNA sequence specificity and HsdR for restriction endonuclease activity. The trimeric methyltransferase (M2S) recognises the asymmetric sequence (GAAN6RTCG). An engineered R-M system, denoted EcoR124INT, has two copies of the N-terminal domain of the HsdS subunit of EcoR124I, instead of a single S subunit with two domains, and recognises the symmetrical sequence GAAN7TTC. We investigate the methyltransferase activity of EcoR124INT, characterise the enzyme and its subunits by analytical ultracentrifugation and obtain low-resolution structural models from small-angle neutron scattering experiments using contrast variation and selective deuteration of subunits.
Collapse
Affiliation(s)
- James E N Taylor
- Biophysics Laboratories, Institute of Biomedical and Biomolecular
Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Phil Callow
- Partnership for Structural Biology, Institut Laue Langevin, 38042
Grenoble Cedex 9, Grenoble, France
| | - Anna Swiderska
- Biophysics Laboratories, Institute of Biomedical and Biomolecular
Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - G. Geoff Kneale
- Biophysics Laboratories, Institute of Biomedical and Biomolecular
Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
8
|
Ishikawa K, Handa N, Kobayashi I. Cleavage of a model DNA replication fork by a Type I restriction endonuclease. Nucleic Acids Res 2009; 37:3531-44. [PMID: 19357093 PMCID: PMC2699502 DOI: 10.1093/nar/gkp214] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cleavage of a DNA replication fork leads to fork restoration by recombination repair. In prokaryote cells carrying restriction-modification systems, fork passage reduces genome methylation by the modification enzyme and exposes the chromosome to attack by the restriction enzyme. Various observations have suggested a relationship between the fork and Type I restriction enzymes, which cleave DNA at a distance from a recognition sequence. Here, we demonstrate that a Type I restriction enzyme preparation cleaves a model replication fork at its branch. The enzyme probably tracks along the DNA from an unmethylated recognition site on the daughter DNA and cuts the fork upon encountering the branch point. Our finding suggests that these restriction-modification systems contribute to genome maintenance through cell death and indicates that DNA replication fork cleavage represents a critical point in genome maintenance to choose between the restoration pathway and the destruction pathway.
Collapse
Affiliation(s)
- Ken Ishikawa
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
9
|
Makovets S, Powell LM, Titheradge AJB, Blakely GW, Murray NE. Is modification sufficient to protect a bacterial chromosome from a resident restriction endonuclease? Mol Microbiol 2003; 51:135-47. [PMID: 14651617 DOI: 10.1046/j.1365-2958.2003.03801.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been generally accepted that DNA modification protects the chromosome of a bacterium encoding a restriction and modification system. But, when target sequences within the chromosome of one such bacterium (Escherichia coli K-12) are unmodified, the cell does not destroy its own DNA; instead, ClpXP inactivates the nuclease, and restriction is said to be alleviated. Thus, the resident chromosome is recognized as 'self' rather than 'foreign' even in the absence of modification. We now provide evidence that restriction alleviation may be a characteristic of Type I restriction-modification systems, and that it can be achieved by different mechanisms. Our experiments support disassembly of active endonuclease complexes as a potential mechanism. We identify amino acid substitutions in a restriction endonuclease, which impair restriction alleviation in response to treatment with a mutagen, and demonstrate that restriction alleviation serves to protect the chromosome even in the absence of mutagenic treatment. In the absence of efficient restriction alleviation, a Type I restriction enzyme cleaves host DNA and, under these conditions, homologous recombination maintains the integrity of the bacterial chromosome.
Collapse
Affiliation(s)
- Svetlana Makovets
- Institute of Cell and Molecular Biology, Darwin Building, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | | | | | | | | |
Collapse
|
10
|
Abadjieva A, Scarlett G, Janscák P, Dutta CF, Firman K. Characterization of an EcoR124I restriction-modification enzyme produced from a deleted form of the DNA-binding subunit, which results in a novel DNA specificity. Folia Microbiol (Praha) 2003; 48:319-28. [PMID: 12879741 DOI: 10.1007/bf02931361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We purified and characterized both the methyltransferase and the endonuclease containing the HsdS delta 50 subunit (type I restriction endonucleases are composed of three subunits--HsdR required for restriction, HsdM required for methylation and HsdS responsible for DNA recognition) produced from the deletion mutation hsdS delta 50 of the type IC R-M system EcoR 124I; this mutant subunit lacks the C-terminal 163 residues of HsdS and produces a novel DNA specificity. Analysis of the purified HsDs delta 50 subunit indicated that during purification it is subject to partial proteolysis resulting in removal of approximately 1 kDa of the polypeptide at the C-terminus. This proteolysis prevented the purification of further deletion mutants, which were determined as having a novel DNA specificity in vivo. After biochemical characterization of the mutant DNA methyltransferase (MTase) and restriction endonuclease we found only one difference comparing with the wild-type enzyme--a significantly higher binding affinity of the MTase for the two substrates of hemimethylated and fully methylated DNA. This indicates that MTase delta 50 is less able to discriminate the methylation status of the DNA during its binding. However, the mutant MTase still preferred hemimethylated DNA as the substrate for methylation. We fused the hsdM and hsdS delta 50 genes and showed that the HsdM-HsdS delta 50 fusion protein is capable of dimerization confirming the model for assembly of this deletion mutant.
Collapse
Affiliation(s)
- A Abadjieva
- Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | | | | | | | | |
Collapse
|
11
|
Abstract
Survival is assuredly the prime directive for all living organisms either as individuals or as a species. One of the main challenges encountered by bacterial populations is the danger of bacteriophage attacks, since infection of a single bacterium may rapidly propagate, decimating the entire population. In order to protect themselves against this acute threat, bacteria have developed an array of defence mechanisms, which range from preventing the infection itself via interference with bacteriophage adsorption to the cell surface and prevention of phage DNA injection, to degradation of the injected phage DNA. This last defence mechanism is catalysed by the bacterial restriction-modification (R-M) systems, and in particular, by nucleoside 5'-triphosphate (NTP)-dependent restriction enzymes, e.g. type I and type III R-M systems or the modification-dependent endonucleases. Type I and type III restriction systems have dual properties. They may either act as methylases and protect the host's own DNA against restriction by methylating specific residues, or they catalyse ATP-dependent endonuclease activity so that invading foreign DNA lacking the host-specific methylation is degraded. These defence mechanism systems are further complemented by the presence of methylation-dependent, GTP-dependent endonucleases, that restricts specifically methylated DNA. Although all three types of endonucleases are structurally very different, they share a common functional mechanism. They recognise and bind to specific DNA sequences but do not cleave DNA within those target sites. They belong to the general class of DNA motor proteins, which use the free energy associated with nucleoside 5'-triphosphate hydrolysis to translocate DNA so that the subsequent DNA cleavage event occurs at a distance from the endonuclease recognition site. Moreover, DNA cleavage appears to be a random process triggered upon stalling of the DNA translocation process and requiring dimerisation of the bound endonucleases for a concerted break of both DNA strands. In this review, we present a detailed description and analysis of the functional mechanism of the three known NTP-dependent restriction systems: type I and type III restriction-modification enzymes, as well as the methylation-dependent McrBC endonuclease.
Collapse
Affiliation(s)
- Aude A Bourniquel
- Department of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, Switzerland.
| | | |
Collapse
|
12
|
Murray NE. 2001 Fred Griffith review lecture. Immigration control of DNA in bacteria: self versus non-self. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3-20. [PMID: 11782494 DOI: 10.1099/00221287-148-1-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Noreen E Murray
- Institute of Cell and Molecular Biology, Darwin Building, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK1
| |
Collapse
|
13
|
Smith MA, Read CM, Kneale GG. Domain structure and subunit interactions in the type I DNA methyltransferase M.EcoR124I. J Mol Biol 2001; 314:41-50. [PMID: 11724530 DOI: 10.1006/jmbi.2001.5123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type IC DNA methyltransferase M.EcoR124I is a trimeric enzyme of 162 kDa consisting of two modification subunits, HsdM, and a single specificity subunit, HsdS. Studies have been largely restricted to the HsdM subunit or to the intact methyltransferase since the HsdS subunit is insoluble when over-expressed independently of HsdM. Two soluble fragments of the HsdS subunit have been cloned, expressed and purified; a 25 kDa N-terminal fragment (S3) comprising the N-terminal target recognition domain together with the central conserved domain, and a 8.6 kDa fragment (S11) comprising the central conserved domain alone. Analytical ultracentrifugation shows that the S3 subunit exists principally as a dimer of 50 kDa. Gel retardation and competition assays show that both S3 and S11 are able to bind to HsdM, each with a subunit stoichiometry of 1:1. The tetrameric complex (S3/HsdM)2 is required for effective DNA binding. Cooperative binding is observed and at low enzyme concentration, the multisubunit complex dissociates, leading to a loss of DNA binding activity. The (S3/HsdM)2 complex is able to bind to both the EcoR124I DNA recognition sequence GAAN6RTCG and a symmetrical DNA sequence GAAN7TTC, but has a 30-fold higher affinity binding for the latter DNA sequence. Exonuclease III footprinting of the (S3/HsdM)2 -DNA complex indicates that 29 nucleotides are protected on each strand, corresponding to a region 8 bp on both the 3' and 5' sides of the recognition sequence bound by the (S3/HsdM)2 complex.
Collapse
Affiliation(s)
- M A Smith
- Biomolecular Structure Group, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | | | | |
Collapse
|
14
|
Titheradge AJ, King J, Ryu J, Murray NE. Families of restriction enzymes: an analysis prompted by molecular and genetic data for type ID restriction and modification systems. Nucleic Acids Res 2001; 29:4195-205. [PMID: 11600708 PMCID: PMC60208 DOI: 10.1093/nar/29.20.4195] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current genetic and molecular evidence places all the known type I restriction and modification systems of Escherichia coli and Salmonella enterica into one of four discrete families: type IA, IB, IC or ID. StySBLI is the founder member of the ID family. Similarities of coding sequences have identified restriction systems in E.coli and Klebsiella pneumoniae as probable members of the type ID family. We present complementation tests that confirm the allocation of EcoR9I and KpnAI to the ID family. An alignment of the amino acid sequences of the HsdS subunits of StySBLI and EcoR9I identify two variable regions, each predicted to be a target recognition domain (TRD). Consistent with two TRDs, StySBLI was shown to recognise a bipartite target sequence, but one in which the adenine residues that are the substrates for methylation are separated by only 6 bp. Implications of family relationships are discussed and evidence is presented that extends the family affiliations identified in enteric bacteria to a wide range of other genera.
Collapse
Affiliation(s)
- A J Titheradge
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
15
|
Abstract
The known nucleoside triphosphate-dependent restriction enzymes are hetero-oligomeric proteins that behave as molecular machines in response to their target sequences. They translocate DNA in a process dependent on the hydrolysis of a nucleoside triphosphate. For the ATP-dependent type I and type III restriction and modification systems, the collision of translocating complexes triggers hydrolysis of phosphodiester bonds in unmodified DNA to generate double-strand breaks. Type I endonucleases break the DNA at unspecified sequences remote from the target sequence, type III endonucleases at a fixed position close to the target sequence. Type I and type III restriction and modification (R-M) systems are notable for effective post-translational control of their endonuclease activity. For some type I enzymes, this control is mediated by proteolytic degradation of that subunit of the complex which is essential for DNA translocation and breakage. This control, lacking in the well-studied type II R-M systems, provides extraordinarily effective protection of resident DNA should it acquire unmodified target sequences. The only well-documented GTP-dependent restriction enzyme, McrBC, requires methylated target sequences for the initiation of phosphodiester bond cleavage.
Collapse
Affiliation(s)
- D T Dryden
- Department of Chemistry, University of Edinburgh, Joseph Black Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JJ, UK.
| | | | | |
Collapse
|
16
|
Atanasiu C, Byron O, McMiken H, Sturrock SS, Dryden DT. Characterisation of the structure of ocr, the gene 0.3 protein of bacteriophage T7. Nucleic Acids Res 2001; 29:3059-68. [PMID: 11452031 PMCID: PMC55801 DOI: 10.1093/nar/29.14.3059] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2001] [Revised: 05/30/2001] [Accepted: 05/30/2001] [Indexed: 11/14/2022] Open
Abstract
The product of gene 0.3 of bacteriophage T7, ocr, is a potent inhibitor of type I DNA restriction and modification enzymes. We have used biophysical methods to examine the mass, stability, shape and surface charge distribution of ocr. Ocr is a dimeric protein with hydrodynamic behaviour equivalent to a prolate ellipsoid of axial ratio 4.3 +/- 0.7:1 and mass of 27 kDa. The protein is resistant to denaturation but removal of the C-terminal region reduces stability substantially. Six amino acids, N4, D25, N43, D62, S68 and W94, are all located on the surface of the protein and N4 and S68 are also located at the interface between the two 116 amino acid monomers. Negatively charged amino acid side chains surround W94 but these side chains are not part of the highly acidic C-terminus after W94. Ocr is able to displace a short DNA duplex from the binding site of a type I enzyme with a dissociation constant of the order of 100 pM or better. These results suggest that ocr is of a suitable size and shape to effectively block the DNA binding site of a type I enzyme and has a large negatively charged patch on its surface. This charge distribution may be complementary to the charge distribution within the DNA binding site of type I DNA restriction and modification enzymes.
Collapse
Affiliation(s)
- C Atanasiu
- Institute of Cell and Molecular Biology, The King's Buildings, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | |
Collapse
|
17
|
Weiserova M, Dutta CF, Firman K. A novel mutant of the type I restriction-modification enzyme EcoR124I is altered at a key stage of the subunit assembly pathway. J Mol Biol 2000; 304:301-10. [PMID: 11090275 DOI: 10.1006/jmbi.2000.4219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The HsdS subunit of a type I restriction-modification (R-M) system plays an essential role in the activity of both the modification methylase and the restriction endonuclease. This subunit is responsible for DNA binding, but also contains conserved amino acid sequences responsible for protein-protein interactions. The most important protein-protein interactions are those between the HsdS subunit and the HsdM (methylation) subunit that result in assembly of an independent methylase (MTase) of stoichiometry M(2)S(1). Here, we analysed the impact on the restriction and modification activities of the change Trp(212)-->Arg in the distal border of the central conserved region of the EcoR124I HsdS subunit. We demonstrate that this point mutation significantly influences the ability of the mutant HsdS subunit to assemble with the HsdM subunit to produce a functional MTase. As a consequence of this, the mutant MTase has drastically reduced DNA binding, which is restored only when the HsdR (restriction) subunit binds with the MTase. Therefore, HsdR acts as a chaperon allowing not only binding of the enzyme to DNA, but also restoring the methylation activity and, at sufficiently high concentrations in vitro of HsdR, restoring restriction activity.
Collapse
Affiliation(s)
- M Weiserova
- School of Biological Sciences, Biophysics Laboratories University of Portsmouth, St. Michael's Building, Portsmouth, PO1 2DT, United Kingdom
| | | | | |
Collapse
|
18
|
Murray NE. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 2000; 64:412-34. [PMID: 10839821 PMCID: PMC98998 DOI: 10.1128/mmbr.64.2.412-434.2000] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction enzymes are well known as reagents widely used by molecular biologists for genetic manipulation and analysis, but these reagents represent only one class (type II) of a wider range of enzymes that recognize specific nucleotide sequences in DNA molecules and detect the provenance of the DNA on the basis of specific modifications to their target sequence. Type I restriction and modification (R-M) systems are complex; a single multifunctional enzyme can respond to the modification state of its target sequence with the alternative activities of modification or restriction. In the absence of DNA modification, a type I R-M enzyme behaves like a molecular motor, translocating vast stretches of DNA towards itself before eventually breaking the DNA molecule. These sophisticated enzymes are the focus of this review, which will emphasize those aspects that give insights into more general problems of molecular and microbial biology. Current molecular experiments explore target recognition, intramolecular communication, and enzyme activities, including DNA translocation. Type I R-M systems are notable for their ability to evolve new specificities, even in laboratory cultures. This observation raises the important question of how bacteria protect their chromosomes from destruction by newly acquired restriction specifities. Recent experiments demonstrate proteolytic mechanisms by which cells avoid DNA breakage by a type I R-M system whenever their chromosomal DNA acquires unmodified target sequences. Finally, the review will reflect the present impact of genomic sequences on a field that has previously derived information almost exclusively from the analysis of bacteria commonly studied in the laboratory.
Collapse
Affiliation(s)
- N E Murray
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom.
| |
Collapse
|
19
|
Rao DN, Saha S, Krishnamurthy V. ATP-dependent restriction enzymes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:1-63. [PMID: 10697406 DOI: 10.1016/s0079-6603(00)64001-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The phenomenon of restriction and modification (R-M) was first observed in the course of studies on bacteriophages in the early 1950s. It was only in the 1960s that work of Arber and colleagues provided a molecular explanation for the host specificity. DNA restriction and modification enzymes are responsible for the host-specific barriers to interstrain and interspecies transfer of genetic information that have been observed in a variety of bacterial cell types. R-M systems comprise an endonuclease and a methyltransferase activity. They serve to protect bacterial cells against bacteriophage infection, because incoming foreign DNA is specifically cleaved by the restriction enzyme if it contains the recognition sequence of the endonuclease. The DNA is protected from cleavage by a specific methylation within the recognition sequence, which is introduced by the methyltransferase. Classic R-M systems are now divided into three types on the basis of enzyme complexity, cofactor requirements, and position of DNA cleavage, although new systems are being discovered that do not fit readily into this classification. This review concentrates on multisubunit, multifunctional ATP-dependent restriction enzymes. A growing number of these enzymes are being subjected to biochemical and genetic studies that, when combined with ongoing structural analyses, promise to provide detailed models for mechanisms of DNA recognition and catalysis. It is now clear that DNA cleavage by these enzymes involves highly unusual modes of interaction between the enzymes and their substrates. These unique features of mechanism pose exciting questions and in addition have led to the suggestion that these enzymes may have biological functions beyond that of restriction and modification. The purpose of this review is to describe the exciting developments in our understanding of how the ATP-dependent restriction enzymes recognize specific DNA sequences and cleave or modify DNA.
Collapse
Affiliation(s)
- D N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
20
|
Davies GP, Martin I, Sturrock SS, Cronshaw A, Murray NE, Dryden DT. On the structure and operation of type I DNA restriction enzymes. J Mol Biol 1999; 290:565-79. [PMID: 10390354 DOI: 10.1006/jmbi.1999.2908] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type I DNA restriction enzymes are large, molecular machines possessing DNA methyltransferase, ATPase, DNA translocase and endonuclease activities. The ATPase, DNA translocase and endonuclease activities are specified by the restriction (R) subunit of the enzyme. We demonstrate that the R subunit of the Eco KI type I restriction enzyme comprises several different functional domains. An N-terminal domain contains an amino acid motif identical with that forming the catalytic site in simple restriction endonucleases, and changes within this motif lead to a loss of nuclease activity and abolish the restriction reaction. The central part of the R subunit contains amino acid sequences characteristic of DNA helicases. We demonstrate, using limited proteolysis of this subunit, that the helicase motifs are contained in two domains. Secondary structure prediction of these domains suggests a structure that is the same as the catalytic domains of DNA helicases of known structure. The C-terminal region of the R subunit can be removed by elastase treatment leaving a large fragment, stable in the presence of ATP, which can no longer bind to the other subunits of Eco KI suggesting that this domain is required for protein assembly. Considering these results and previous models of the methyltransferase part of these enzymes, a structural and operational model of a type I DNA restriction enzyme is presented.
Collapse
Affiliation(s)
- G P Davies
- Institute of Cell and Molecular Biology, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JR, UK
| | | | | | | | | | | |
Collapse
|
21
|
Mernagh DR, Taylor IA, Kneale GG. Interaction of the type I methyltransferase M.EcoR124I with modified DNA substrates: sequence discrimination and base flipping. Biochem J 1998; 336 ( Pt 3):719-25. [PMID: 9841886 PMCID: PMC1219925 DOI: 10.1042/bj3360719] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have analysed the DNA-protein contacts made between the type I DNA methyltransferase M.EcoR124I and its recognition sequence. The effects of base modifications have been probed by measuring the affinity of M.EcoR124I for the modified sequences relative to that for the wild-type sequence by using gel-retardation competition assays. These results, along with those from methylation interference footprinting and photo-affinity cross-linking have identified the location of potential DNA contacts within the DNA recognition site. Substitution of 6-thioguanosine for each of the three specific guanines in the recognition sequence leads to a large (10-20-fold) decrease in the strength of DNA binding, indicating the importance of hydrogen-bonding interactions in the major groove of DNA. In contrast, replacement of either (or both) of the adenines at the target site for methylation by the enzyme, to produce either a base pair mismatch or loss of the base, leads to a marked increase in DNA-binding affinity. The results strongly support the proposal that type I methyltransferases employ a base-flipping mechanism to methylate their target base.
Collapse
Affiliation(s)
- D R Mernagh
- Division of Molecular and Cell Biology, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DT, U.K
| | | | | |
Collapse
|
22
|
Janscak P, Bickle TA. The DNA recognition subunit of the type IB restriction-modification enzyme EcoAI tolerates circular permutions of its polypeptide chain. J Mol Biol 1998; 284:937-48. [PMID: 9837717 DOI: 10.1006/jmbi.1998.2250] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA specificity subunit (HsdS) of type I restriction-modification enzymes is composed of two independent target recognition domains and several regions whose amino acid sequence is conserved within an enzyme family. The conserved regions participate in intersubunit interactions with two modification subunits (HsdM) and two restriction subunits (HsdR) to form the complete endonuclease. It has been proposed that the domains of the HsdS subunit have a circular organisation providing the required symmetry for their interaction with the other subunits and with the bipartite DNA target. To test this model, we circularly permuted the HsdS subunit of the type IB R-M enzyme EcoAI at the DNA level by direct linkage of codons for original termini and introduction of new termini elsewhere along the N-terminal and central conserved regions. By analysing the activity of mutant enzymes, two circularly permuted variants of HsdS that had termini located at equivalent positions in the N-terminal and central repeats, respectively, were found to fold into a functional DNA recognition subunit with wild-type specificity, suggesting a close proximity of the N and C termini in the native protein. The wild-type HsdS subunit was purified to homogeneity and shown to form a stable trimeric complex with HsdM, M2S1, which was fully active as a DNA methyltransferase. Gel electrophoretic mobility shift assays revealed that the HsdS protein alone was not able to form a specific complex with a 30-mer oligoduplex containing a single EcoAI recognition site. However, addition of stoichiometric amounts of HsdM to HsdS led to efficient specific DNA binding. Our data provide evidence for the circular organisation of domains of the HsdS subunit. In addition, they suggest a possible role of HsdM subunits in the formation of this structure.
Collapse
Affiliation(s)
- P Janscak
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Switzerland
| | | |
Collapse
|
23
|
Powell LM, Dryden DT, Murray NE. Sequence-specific DNA binding by EcoKI, a type IA DNA restriction enzyme. J Mol Biol 1998; 283:963-76. [PMID: 9799636 DOI: 10.1006/jmbi.1998.2143] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type I DNA restriction and modification enzymes of prokaryotes are multimeric enzymes that cleave unmethylated, foreign DNA in a complex process involving recognition of the methylation status of a DNA target sequence, extensive translocation of DNA in both directions towards the enzyme bound at the target sequence, ATP hydrolysis, which is believed to drive the translocation possibly via a helicase mechanism, and eventual endonucleolytic cleavage of the DNA. We have examined the DNA binding affinity and exonuclease III footprint of the EcoKI type IA restriction enzyme on oligonucleotide duplexes that either contain or lack the target sequence. The influence of the cofactors, S-adenosyl methionine and ATP, on binding to DNA of different methylation states has been assessed. EcoKI in the absence of ATP, with or without S-adenosyl methionine, binds tightly even to DNA lacking the target site and the exonuclease footprint is large, approximately 45 base-pairs. The protection is weaker on DNA lacking the target site. Partially assembled EcoKI lacking one or both of the subunits essential for DNA cleavage, is unable to bind tightly to DNA lacking the target site but can bind tightly to the recognition site. The addition of ATP to EcoKI, in the presence of AdoMet, allows tight binding only to the target site and the footprint shrinks to 30 base-pairs, almost identical to that of the modification enzyme which makes up the core of EcoKI. The same effect occurs when S-adenosyl homocysteine or sinefungin are substituted for S-adenosyl methionine, and ADP or ATPgammaS are substituted for ATP. It is proposed that the DNA binding surface of EcoKI comprises three regions: a "core" region which recognises the target sequence and which is present on the modification enzyme, and a region on each DNA cleavage subunit. The cleavage subunits make tight contacts to any DNA molecule in the absence of cofactors, but this contact is weakened in the presence of cofactors to allow the protein conformational changes required for DNA translocation when a target site is recognised by the core modification enzyme. This weakening of the interaction between the DNA cleavage subunits and the DNA could allow more access of exonuclease III to the DNA and account for the shorter footprint.
Collapse
Affiliation(s)
- L M Powell
- Institute of Cell & Molecular Biology, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
24
|
Powell LM, Connolly BA, Dryden DT. The DNA binding characteristics of the trimeric EcoKI methyltransferase and its partially assembled dimeric form determined by fluorescence polarisation and DNA footprinting. J Mol Biol 1998; 283:947-61. [PMID: 9799635 DOI: 10.1006/jmbi.1998.2142] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type I DNA restriction and modification systems of enteric bacteria display several enzymatic activities due to their oligomeric structure. Partially assembled forms of the EcoKI enzyme from E. coli K12 can display specific DNA binding properties and modification methyltransferase activity. The heterodimer of one specificity (S) subunit and one modification (M) subunit can only bind DNA whereas the addition of a second modification subunit to form M2S1 also confers methyltransferase activity. We have examined the DNA binding specificity of M1S1 and M2S1 using the change in fluorescence anisotropy which occurs on binding of a DNA probe labelled with a hexachlorofluorescein fluorophore. The dimer has much weaker affinity for the EcoKI target sequence than the trimer and slightly less ability to discriminate against other DNA sequences. Binding of both proteins is strongly dependent on salt concentration. The fluorescence results compare favourably with those obtained with the gel retardation method. DNA footprinting using exonucleaseIII and DNaseI, and methylation interference show no asymmetry, with both DNA strands being protected by the dimer and the trimer. This indicates that the dimer is a mixture of the two possible forms, M1S1 and S1M1. The dimer has a footprint on the DNA substrate of the same length as the trimer implying that the modification subunits are located on either side of the DNA helical axis rather than lying along the helical axis.
Collapse
Affiliation(s)
- L M Powell
- Institute of Cell & Molecular Biology, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3JR, UK
| | | | | |
Collapse
|
25
|
Mernagh DR, Janscak P, Firman K, Kneale GG. Protein-protein and protein-DNA interactions in the type I restriction endonuclease R.EcoR124I. Biol Chem 1998; 379:497-503. [PMID: 9628343 DOI: 10.1515/bchm.1998.379.4-5.497] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The type I restriction-modification system EcoR124I recognizes and binds to the split DNA recognition sequence 5'-GAAN(6)RTCG-3'. The methyltransferase, consisting of HsdM and HsdS subunits with the composition M2S, can interact with one or more subunits of the HsdR subunit to form the endonuclease. The interaction of the methyltransferase with HsdR has been investigated by surface plasmon resonance, showing that there are two non-equivalent binding sites for HsdR which differ in binding affinity by at least two orders of magnitude. DNA footprinting experiments using Exonuclease III suggest that the addition of HsdR to the methyltransferase (at a stoichiometry of either 1:1 or 2:1) increases the stability of the resulting DNA-protein complex but does not increase the size of the footprint. More extensive in situ footprinting experiments using copper-phenanthroline on the DNA-protein complexes formed by M2S, R1M2S and R2M2S also show no difference in the detailed cleavage pattern, with approximately 18 nucleotides protected on both strands in each complex. Thus the HsdR subunit(s) of the endonuclease stabilise the interaction of the M2S complex with DNA, but do not directly contribute to DNA binding. In addition, the thymidine nucleotide in the tetranucleotide recognition sequence GTCG is hyper-reactive to cleavage in each case, suggesting that the DNA structure in this region is altered in these complexes.
Collapse
Affiliation(s)
- D R Mernagh
- Division of Molecular and Cell Biology, School of Biological Sciences, University of Portsmouth, UK
| | | | | | | |
Collapse
|
26
|
Smith MA, Mernagh DR, Kneale GG. Expression and characterisation of the N-terminal fragment of the HsdS subunit of M.EcoR124I. Biol Chem 1998; 379:505-9. [PMID: 9628344 DOI: 10.1515/bchm.1998.379.4-5.505] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The type IC modification methyltransferase M.EcoR124I is a trimeric enzyme of 162 kDa consisting of two copies of the modification subunit, HsdM, and a single DNA specificity subunit, HsdS. Studies to date have been largely restricted to the HsdM subunit or the intact methyltransferase, since the HsdS subunit is insoluble when expressed independently of HsdM. Using PCR, we have cloned and expressed 13 fragments of the gene for the HsdS subunit, including the sequences encoding each of the variable and conserved domains and various combinations of these. Only two of these fragments were found to be soluble, a 8.6 kDa fragment (S11) comprising the central conserved domain and a 25 kDa N-terminal fragment (S3) containing the N-terminal variable domain and the central conserved domain. Analysis of the larger of these fragments by gel retardation shows that the protein binds DNA in the presence of HsdM at a subunit stoichiometry of 1:1. Gel filtration and CD spectroscopy indicate that the protein is monomeric and predominantly alpha-helical.
Collapse
Affiliation(s)
- M A Smith
- Division of Molecular and Cell Biology, School of Biological Sciences, University of Portsmouth, UK
| | | | | |
Collapse
|
27
|
Abstract
The interaction of proteins with DNA is a central theme of molecular biology. In this article, we review some of the principal techniques currently used for the identification and characterization of DNA binding proteins, and for investigation of the molecular interactions that are responsible for the recognition of specific DNA sequences.
Collapse
Affiliation(s)
- M J Guille
- Division of Molecular and Cell Biology, School of Biological Science, University of Portsmouth, UK
| | | |
Collapse
|
28
|
Thielking V, Dubois S, Eritja R, Guschlbauer W. Dam methyltransferase from Escherichia coli: kinetic studies using modified DNA oligomers: nonmethylated substrates. Biol Chem 1997; 378:407-15. [PMID: 9191027 DOI: 10.1515/bchm.1997.378.5.407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Steady-state kinetics of the N6-adenine Dam methyltransferase have been measured using as substrates non-self-complementary tetradecanucleotide duplexes that contain the GATC target sequence. Modifications in the GATC target sequence of one or both of the strands included substitution of guanine by hypoxanthine, thymine by uracil or 5-ethyl-uracil and adenine by diamino-purine (2-amino-adenine). Thermodynamic parameters for the 14-mer duplexes were also determined. DNA methylation of duplexes containing single dl for dG substitution of the Dam recognition site was little perturbed compared with the canonical substrate. Replacement of dG residues by dl in both strands resulted in a decrease of the specificity constant. Substitution in both strands appears to be cumulative. Substitution of the methyl-accepting adenine residues by 2-amino-adenine resulted in surprisingly little perturbation. Dam methyltransferase is rather tolerant to different substitutions. The results show much less spread than those for the analogous hemimethylated substrates studied previously (Marzabal et al., 1995). The absence of the methylation marker appears to be deleterious to the specificity of the transition state of the active complex, while the binding of the DNA substrate to the enzyme appears to be mostly determined by the thermodynamic stability of the DNA duplex.
Collapse
Affiliation(s)
- V Thielking
- CEA/Saclay, Service de Biochimie et Génétique Moléculaire, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
29
|
Mernagh DR, Kneale GG. High resolution footprinting of a type I methyltransferase reveals a large structural distortion within the DNA recognition site. Nucleic Acids Res 1996; 24:4853-8. [PMID: 9016653 PMCID: PMC146333 DOI: 10.1093/nar/24.24.4853] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The type I DNA methyltransferase M.EcoR124I is a multi-subunit enzyme that binds to the sequence GAAN6RTCG, transferring a methyl group from S-adenosyl methionine to a specific adenine on each DNA strand. We have investigated the protein-DNA interactions in the complex by DNase I and hydroxyl radical footprinting. The DNase I footprint is unusually large: the protein protects the DNA on both strands for at least two complete turns of the helix, indicating that the enzyme completely encloses the DNA in the complex. The higher resolution hydroxyl radical probe shows a smaller, but still extensive, 18 bp footprint encompassing the recognition site. Within this region, however, there is a remarkably hyper-reactive site on each strand. The two sites of enhanced cleavage are co-incident with the two adenines that are the target bases for methylation, showing that the DNA is both accessible and highly distorted at these sites. The hydroxyl radical footprint is unaffected by the presence of the cofactor S-adenosyl methionine, showing that the distorted DNA structure induced by M.EcoR124I is formed during the initial DNA binding reaction and not as a transient intermediate in the reaction pathway.
Collapse
Affiliation(s)
- D R Mernagh
- Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, Hants, UK
| | | |
Collapse
|
30
|
Marzabal S, DuBois S, Thielking V, Cano A, Eritja R, Guschlbauer W. Dam methylase from Escherichia coli: kinetic studies using modified DNA oligomers: hemimethylated substrates. Nucleic Acids Res 1995; 23:3648-55. [PMID: 7478992 PMCID: PMC307261 DOI: 10.1093/nar/23.18.3648] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have measured steady-state kinetics of the N6-adenine methyltransferase Dam Mtase using as substrates non-selfcomplementary tetradecamer duplexs (d[GCCGGATCTAGACG]-d[CGTCTAGATCC-GGC]) containing the hemimethylated GATC target sequence in one or the other strand and modifications in the GATC target sequence of the complementary strands. Modifications included substitution of guanine by hypoxanthine (I), thymine by uracil (U) or 5-ethyl-uracil (E) and adenine by 2,6-diamino-purine (D). Thermodynamic parameters were obtained from the concentration dependence of the melting temperature (Tm) of the duplexes. Large differences in DNA methylation of duplexes containing single dI for dG substitution of the Dam recognition site were observed compared with the canonical substrate, if the substitution involved the top strand (on the G.C rich side). Substitution in either strand by uracil (dU) or 5-ethyluracil (dE) resulted in small perturbation of the methylation patterns. When 2,6-diamino-purine (dD) replaced the adenine to be methylated, small, but significant methylation was observed. The kinetic parameters of the methylation reaction were compared with the thermodynamic free energies and significant correlation was observed.
Collapse
Affiliation(s)
- S Marzabal
- CEA, Centre d'Etudes de Saclay, Service de Biochimie et Génétique Moléculaire, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
31
|
Chen A, Powell LM, Dryden DT, Murray NE, Brown T. Tyrosine 27 of the specificity polypeptide of EcoKI can be UV crosslinked to a bromodeoxyuridine-substituted DNA target sequence. Nucleic Acids Res 1995; 23:1177-83. [PMID: 7739896 PMCID: PMC306828 DOI: 10.1093/nar/23.7.1177] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The specificity (S) subunit of the restriction enzyme EcoKI imparts specificity for the sequence AAC(N6)GTGC. Substitution of thymine with bromodeoxyuridine in a 25 bp DNA duplex containing this sequence stimulated UV light-induced covalent crosslinking to the S subunit. Crosslinking occurred only at the residue complementary to the first adenine in the AAC sequence, demonstrating a close contact between the major groove at this sequence and the S subunit. Peptide sequencing of a proteolytically-digested, crosslinked complex identified tyrosine 27 in the S subunit as the site of crosslinking. This is consistent with the role of the N-terminal domain of the S subunit in recognizing the AAC sequence. Tyrosine 27 is conserved in the S subunits of the three type I enzymes that share the sequence AA in the trinucleotide component of their target sequence. This suggests that tyrosine 27 may make a similar DNA contact in these other enzymes.
Collapse
Affiliation(s)
- A Chen
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | | | |
Collapse
|
32
|
Cooper LP, Dryden DT. The domains of a type I DNA methyltransferase. Interactions and role in recognition of DNA methylation. J Mol Biol 1994; 236:1011-21. [PMID: 8120883 DOI: 10.1016/0022-2836(94)90008-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The DNA methyltransferases of type I restriction-modification systems are trimeric enzymes composed of one DNA specificity (S) subunit and two modification (M) subunits. The S subunit contains two large regions, each of which recognizes one part of the split, asymmetrical DNA target sequence. Each M subunit contains an amino acid motif for binding the methyl group donor and cofactor, S-adenosyl methionine. The EcoKI methyltransferase has a strong preference for methylating a hemimethylated DNA target rather than an unmodified target. We have used partial proteolytic digestion of EcoKI methyltransferase to generate polypeptide domains that we have identified by amino acid sequencing. The S subunit was cut into two large, folded domains each containing one DNA binding region. Binding of DNA partially protected the S subunit from digestion. The M subunit was also cut into two large domains joined together by a short flexible loop, and a C-terminal tail region. The short loop contained part of the S-adenosyl methionine binding motif, and cofactor binding protected the loop and the two large domains from proteolysis. The C-terminal domain of M remained associated with the N-terminal domain of the S subunit even after the rest of the protein had been digested. The conformation of the tail region of the M subunit was sensitive to the methylation state of DNA in ternary complexes also containing S-adenosyl methionine, and could differentiate between unmethylated and hemimethylated DNA substrates.
Collapse
Affiliation(s)
- L P Cooper
- Institute of Cell and Molecular Biology, University of Edinburgh, U.K
| | | |
Collapse
|