1
|
Gaydukova SA, Moldovan MA, Vallesi A, Heaphy SM, Atkins JF, Gelfand MS, Baranov PV. Nontriplet feature of genetic code in Euplotes ciliates is a result of neutral evolution. Proc Natl Acad Sci U S A 2023; 120:e2221683120. [PMID: 37216548 PMCID: PMC10235951 DOI: 10.1073/pnas.2221683120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.
Collapse
Affiliation(s)
- Sofya A. Gaydukova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow199911, Russia
| | - Mikhail A. Moldovan
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino62032, Italy
| | - Stephen M. Heaphy
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
- Department of Human Genetics, University of Utah, Salt Lake City, UT84112
| | - Mikhail S. Gelfand
- A. A. Kharkevich Institute for Information Transmission Problems RAS, Moscow127051, Russia
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, CorkT12 XF62, Ireland
| |
Collapse
|
2
|
Loughran G, Li X, O’Loughlin S, Atkins JF, Baranov P. Monitoring translation in all reading frames downstream of weak stop codons provides mechanistic insights into the impact of nucleotide and cellular contexts. Nucleic Acids Res 2022; 51:304-314. [PMID: 36533511 PMCID: PMC9841425 DOI: 10.1093/nar/gkac1180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/08/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
A stop codon entering the ribosome A-site is normally decoded by release factors that induce release of the polypeptide. Certain factors influence the efficiency of the termination which is in competition with elongation in either the same (readthrough) or an alternative (frameshifting) reading frame. To gain insight into the competition between these processes, we monitored translation in parallel from all three reading frames downstream of stop codons while changing the nucleotide context of termination sites or altering cellular conditions (polyamine levels). We found that P-site codon identity can have a major impact on the termination efficiency of the OPRL1 stop signal, whereas for the OAZ1 ORF1 stop signal, the P-site codon mainly influences the reading frame of non-terminating ribosomes. Changes to polyamine levels predominantly influence the termination efficiency of the OAZ1 ORF1 stop signal. In contrast, increasing polyamine levels stimulate readthrough of the OPRL1 stop signal by enhancing near-cognate decoding rather than by decreasing termination efficiency. Thus, by monitoring the four competing processes occurring at stop codons we were able to determine which is the most significantly affected upon perturbation. This approach may be useful for the interrogation of other recoding phenomena where alternative decoding processes compete with standard decoding.
Collapse
Affiliation(s)
- Gary Loughran
- Correspondence may also be addressed to Gary Loughran.
| | - Xiang Li
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sinead O’Loughlin
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
3
|
Ender A, Etzel M, Hammer S, Findeiß S, Stadler P, Mörl M. Ligand-dependent tRNA processing by a rationally designed RNase P riboswitch. Nucleic Acids Res 2021; 49:1784-1800. [PMID: 33469651 PMCID: PMC7897497 DOI: 10.1093/nar/gkaa1282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
We describe a synthetic riboswitch element that implements a regulatory principle which directly addresses an essential tRNA maturation step. Constructed using a rational in silico design approach, this riboswitch regulates RNase P-catalyzed tRNA 5′-processing by either sequestering or exposing the single-stranded 5′-leader region of the tRNA precursor in response to a ligand. A single base pair in the 5′-leader defines the regulatory potential of the riboswitch both in vitro and in vivo. Our data provide proof for prior postulates on the importance of the structure of the leader region for tRNA maturation. We demonstrate that computational predictions of ligand-dependent structural rearrangements can address individual maturation steps of stable non-coding RNAs, thus making them amenable as promising target for regulatory devices that can be used as functional building blocks in synthetic biology.
Collapse
Affiliation(s)
- Anna Ender
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Maja Etzel
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Stefan Hammer
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Peter Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany.,Max Planck Institute for Mathematics in the Science, Inselstr. 22, 04103 Leipzig, Germany.,Institute for Theoretical Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Penn WD, Harrington HR, Schlebach JP, Mukhopadhyay S. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Annu Rev Virol 2020; 7:219-238. [PMID: 32600156 DOI: 10.1146/annurev-virology-012120-101548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Programmed ribosomal frameshifting (PRF) is a conserved translational recoding mechanism found in all branches of life and viruses. In bacteria, archaea, and eukaryotes PRF is used to downregulate protein production by inducing a premature termination of translation, which triggers messenger RNA (mRNA) decay. In viruses, PRF is used to drive the production of a new protein while downregulating the production of another protein, thus maintaining a stoichiometry optimal for productive infection. Traditionally, PRF motifs have been defined by the characteristics of two cis elements: a slippery heptanucleotide sequence followed by an RNA pseudoknot or stem-loop within the mRNA. Recently, additional cis and new trans elements have been identified that regulate PRF in both host and viral translation. These additional factors suggest PRF is an evolutionarily conserved process whose function and regulation we are just beginning to understand.
Collapse
Affiliation(s)
- Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Haley R Harrington
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
5
|
Golubev AA, Validov SZ, Usachev KS, Yusupov MM. Elongation Factor P: New Mechanisms of Function and an Evolutionary Diversity of Translation Regulation. Mol Biol 2019. [DOI: 10.1134/s0026893319040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Tsai TW, Yang H, Yin H, Xu S, Wang Y. High-Efficiency "-1" and "-2" Ribosomal Frameshiftings Revealed by Force Spectroscopy. ACS Chem Biol 2017; 12:1629-1635. [PMID: 28437082 PMCID: PMC5477775 DOI: 10.1021/acschembio.7b00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Ribosomal frameshifting is a rare
but ubiquitous process that is
being studied extensively. Meanwhile, frameshifting motifs without
any secondary mRNA structures were identified but rarely studied experimentally.
We report unambiguous observation of highly efficient “–1”
and “–2” frameshiftings on a GA7G
slippery mRNA without the downstream secondary structure, using force-induced
remnant magnetization spectroscopy combined with unique probing schemes.
The result represents the first experimental evidence of multiple
frameshifting steps. It is also one of the rare reports of the “–2”
frameshifting. Our assay removed the ambiguity of transcriptional
slippage involvement in other frameshifting assays. Two significant
insights for the frameshifting mechanism were revealed. First, EF-G·GTP
is indispensable to frameshifting. Although EFG·GDPCP has been
shown to prompt translocation before, we found that it could not induce
frameshifting. This implies that the GTP hydrolysis is responsible
for the codon–anticodon re-pairing in frameshifting, which
corroborates our previous mechanical force measurement of EF-G·GTP.
Second, translation in all three reading frames of the slippery sequence
can be induced by the corresponding in-frame aminoacyl tRNAs. Although
A-site tRNA is known to affect the partition between “0”
and “–1” frameshifting, it has not been reported
that all three reading frames can be translated by their corresponding
tRNAs. The in vitro results were confirmed by toe-printing
assay and protein sequencing.
Collapse
|
7
|
Baggett NE, Zhang Y, Gross CA. Global analysis of translation termination in E. coli. PLoS Genet 2017; 13:e1006676. [PMID: 28301469 PMCID: PMC5373646 DOI: 10.1371/journal.pgen.1006676] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/30/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. Proteins are the cellular workhorses, performing essentially all of the functions required for cell and organismal survival. But, it takes a great deal of energy to make proteins, making it critical that proteins are made accurately and in the proper time frame. After a ribosome synthesizes a protein, release factors catalyze the accurate and timely release of the finished protein from the ribosome, a process called termination. Ribosomes are then recycled and start the next protein. We utilized ribosome profiling, a method that allows us to follow the position of every ribosome that is making a protein, to globally investigate and strengthen insights on termination fidelity for cells with and without mutant release factors. We find that as we decrease release factor function, the time to terminate/release a protein increases across the genome. We observe that the accuracy of terminating a protein at the correct place decreases on a global scale. Using this metric we identify genes with inherently low termination efficiency and confirm two novel events resulting in extended protein products. In addition we find that beyond disrupting accurate protein synthesis, release factor mutations can alter expression of genes involved in the production of key amino acids.
Collapse
Affiliation(s)
- Natalie E. Baggett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Yan Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Wang R, Xiong J, Wang W, Miao W, Liang A. High frequency of +1 programmed ribosomal frameshifting in Euplotes octocarinatus. Sci Rep 2016; 6:21139. [PMID: 26891713 PMCID: PMC4759687 DOI: 10.1038/srep21139] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/18/2016] [Indexed: 01/25/2023] Open
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) has been identified as a mechanism to regulate the expression of many viral genes and some cellular genes. The slippery site of -1 PRF has been well characterized, whereas the +1 PRF signal and the mechanism involved in +1 PRF remain poorly understood. Previous study confirmed that +1 PRF is required for the synthesis of protein products in several genes of ciliates from the genus Euplotes. To accurately assess the frequency of genes requiring frameshift in Euplotes, the macronuclear genome and transcriptome of Euplotes octocarinatus were analyzed in this study. A total of 3,700 +1 PRF candidate genes were identified from 32,353 transcripts, and the gene products of these putative +1 PRFs were mainly identified as protein kinases. Furthermore, we reported a putative suppressor tRNA of UAA which may provide new insights into the mechanism of +1 PRF in euplotids. For the first time, our transcriptome-wide survey of +1 PRF in E. octocarinatus provided a dataset which serves as a valuable resource for the future understanding of the mechanism underlying +1 PRF.
Collapse
Affiliation(s)
- Ruanlin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Gao F, Simon AE. Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus. Nucleic Acids Res 2015; 44:878-95. [PMID: 26578603 PMCID: PMC4737148 DOI: 10.1093/nar/gkv1241] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/02/2015] [Indexed: 11/13/2022] Open
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) is used by many positive-strand RNA viruses for translation of required products. Despite extensive studies, it remains unresolved how cis-elements just downstream of the recoding site promote a precise level of frameshifting. The Umbravirus Pea enation mosaic virus RNA2 expresses its RNA polymerase by -1 PRF of the 5'-proximal ORF (p33). Three hairpins located in the vicinity of the recoding site are phylogenetically conserved among Umbraviruses. The central Recoding Stimulatory Element (RSE), located downstream of the p33 termination codon, is a large hairpin with two asymmetric internal loops. Mutational analyses revealed that sequences throughout the RSE and the RSE lower stem (LS) structure are important for frameshifting. SHAPE probing of mutants indicated the presence of higher order structure, and sequences in the LS may also adapt an alternative conformation. Long-distance pairing between the RSE and a 3' terminal hairpin was less critical when the LS structure was stabilized. A basal level of frameshifting occurring in the absence of the RSE increases to 72% of wild-type when a hairpin upstream of the slippery site is also deleted. These results suggest that suppression of frameshifting may be needed in the absence of an active RSE conformation.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| |
Collapse
|
11
|
Zhao YB, Krishnan J. mRNA translation and protein synthesis: an analysis of different modelling methodologies and a new PBN based approach. BMC SYSTEMS BIOLOGY 2014; 8:25. [PMID: 24576337 PMCID: PMC4015640 DOI: 10.1186/1752-0509-8-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/08/2014] [Indexed: 01/12/2023]
Abstract
Background mRNA translation involves simultaneous movement of multiple ribosomes on the mRNA and is also subject to regulatory mechanisms at different stages. Translation can be described by various codon-based models, including ODE, TASEP, and Petri net models. Although such models have been extensively used, the overlap and differences between these models and the implications of the assumptions of each model has not been systematically elucidated. The selection of the most appropriate modelling framework, and the most appropriate way to develop coarse-grained/fine-grained models in different contexts is not clear. Results We systematically analyze and compare how different modelling methodologies can be used to describe translation. We define various statistically equivalent codon-based simulation algorithms and analyze the importance of the update rule in determining the steady state, an aspect often neglected. Then a novel probabilistic Boolean network (PBN) model is proposed for modelling translation, which enjoys an exact numerical solution. This solution matches those of numerical simulation from other methods and acts as a complementary tool to analytical approximations and simulations. The advantages and limitations of various codon-based models are compared, and illustrated by examples with real biological complexities such as slow codons, premature termination and feedback regulation. Our studies reveal that while different models gives broadly similiar trends in many cases, important differences also arise and can be clearly seen, in the dependence of the translation rate on different parameters. Furthermore, the update rule affects the steady state solution. Conclusions The codon-based models are based on different levels of abstraction. Our analysis suggests that a multiple model approach to understanding translation allows one to ascertain which aspects of the conclusions are robust with respect to the choice of modelling methodology, and when (and why) important differences may arise. This approach also allows for an optimal use of analysis tools, which is especially important when additional complexities or regulatory mechanisms are included. This approach can provide a robust platform for dissecting translation, and results in an improved predictive framework for applications in systems and synthetic biology.
Collapse
Affiliation(s)
| | - J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Institute for Systems and Synthetic Biology, Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
12
|
Betney R, de Silva E, Mertens C, Knox Y, Krishnan J, Stansfield I. Regulation of release factor expression using a translational negative feedback loop: a systems analysis. RNA (NEW YORK, N.Y.) 2012; 18:2320-34. [PMID: 23104998 PMCID: PMC3504682 DOI: 10.1261/rna.035113.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The essential eukaryote release factor eRF1, encoded by the yeast SUP45 gene, recognizes stop codons during ribosomal translation. SUP45 nonsense alleles are, however, viable due to the establishment of feedback-regulated readthrough of the premature termination codon; reductions in full-length eRF1 promote tRNA-mediated stop codon readthrough, which, in turn, drives partial production of full-length eRF1. A deterministic mathematical model of this eRF1 feedback loop was developed using a staged increase in model complexity. Model predictions matched the experimental observation that strains carrying the mutant SUQ5 tRNA (a weak UAA suppressor) in combination with any of the tested sup45(UAA) nonsense alleles exhibit threefold more stop codon readthrough than that of an SUQ5 yeast strain. The model also successfully predicted that eRF1 feedback control in an SUQ5 sup45(UAA) mutant would resist, but not completely prevent, imposed changes in eRF1 expression. In these experiments, the introduction of a plasmid-borne SUQ5 copy into a sup45(UAA) SUQ5 mutant directed additional readthrough and full-length eRF1 expression, despite feedback. Secondly, induction of additional sup45(UAA) mRNA expression in a sup45(UAA) SUQ5 strain also directed increased full-length eRF1 expression. The autogenous sup45 control mechanism therefore acts not to precisely control eRF1 expression, but rather as a damping mechanism that only partially resists changes in release factor expression level. The validated model predicts that the degree of feedback damping (i.e., control precision) is proportional to eRF1 affinity for the premature stop codon. The validated model represents an important tool to analyze this and other translational negative feedback loops.
Collapse
MESH Headings
- Binding, Competitive
- Codon, Terminator/genetics
- Codon, Terminator/metabolism
- Feedback, Physiological
- Genes, Fungal
- Models, Biological
- Mutation
- Peptide Termination Factors/genetics
- Peptide Termination Factors/metabolism
- Protein Biosynthesis
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Systems Analysis
Collapse
Affiliation(s)
- Russell Betney
- University of Aberdeen, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Eric de Silva
- Chemical Engineering and Chemical Technology, Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Christina Mertens
- University of Aberdeen, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Yvonne Knox
- University of Aberdeen, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - J. Krishnan
- Chemical Engineering and Chemical Technology, Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ian Stansfield
- University of Aberdeen, School of Medical Sciences, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
- Corresponding authorE-mail
| |
Collapse
|
13
|
Dinman JD. Mechanisms and implications of programmed translational frameshifting. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:661-73. [PMID: 22715123 PMCID: PMC3419312 DOI: 10.1002/wrna.1126] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While ribosomes must maintain translational reading frame in order to translate primary genetic information into polypeptides, cis‐acting signals located in mRNAs represent higher order information content that can be used to fine‐tune gene expression. Classes of signals have been identified that direct a fraction of elongating ribosomes to shift reading frame by one base in the 5′ (−1) or 3′ (+1) direction. This is called programmed ribosomal frameshifting (PRF). Although mechanisms of PRF differ, a common feature is induction of ribosome pausing, which alters kinetic partitioning rates between in‐frame and out‐of‐frame codons at specific ‘slippery’ sequences. Many viruses use PRF to ensure synthesis of the correct ratios of virus‐encoded proteins required for proper viral particle assembly and maturation, thus identifying PRF as an attractive target for antiviral therapeutics. In contrast, recent studies indicate that PRF signals may primarily function as mRNA destabilizing elements in cellular mRNAs. These studies suggest that PRF may be used to fine‐tune gene expression through mRNA decay pathways. The possible regulation of PRF by noncoding RNAs is also discussed. WIREs RNA 2012 doi: 10.1002/wrna.1126 This article is categorized under:
RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > Computational Analyses of RNA Translation > Translation Regulation
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
14
|
Sharma V, Firth AE, Antonov I, Fayet O, Atkins JF, Borodovsky M, Baranov PV. A pilot study of bacterial genes with disrupted ORFs reveals a surprising profusion of protein sequence recoding mediated by ribosomal frameshifting and transcriptional realignment. Mol Biol Evol 2011; 28:3195-211. [PMID: 21673094 DOI: 10.1093/molbev/msr155] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial genome annotations contain a number of coding sequences (CDSs) that, in spite of reading frame disruptions, encode a single continuous polypeptide. Such disruptions have different origins: sequencing errors, frameshift, or stop codon mutations, as well as instances of utilization of nontriplet decoding. We have extracted over 1,000 CDSs with annotated disruptions and found that about 75% of them can be clustered into 64 groups based on sequence similarity. Analysis of the clusters revealed deep phylogenetic conservation of open reading frame organization as well as the presence of conserved sequence patterns that indicate likely utilization of the nonstandard decoding mechanisms: programmed ribosomal frameshifting (PRF) and programmed transcriptional realignment (PTR). Further enrichment of these clusters with additional homologous nucleotide sequences revealed over 6,000 candidate genes utilizing PRF or PTR. Analysis of the patterns of conservation apparently associated with nontriplet decoding revealed the presence of both previously characterized frameshift-prone sequences and a few novel ones. Since the starting point of our analysis was a set of genes with already annotated disruptions, it is highly plausible that in this study, we have identified only a fraction of all bacterial genes that utilize PRF or PTR. In addition to the identification of a large number of recoded genes, a surprising observation is that nearly half of them are expressed via PTR-a mechanism that, in contrast to PRF, has not yet received substantial attention.
Collapse
Affiliation(s)
- Virag Sharma
- Department of Biochemistry, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
15
|
Betney R, de Silva E, Krishnan J, Stansfield I. Autoregulatory systems controlling translation factor expression: thermostat-like control of translational accuracy. RNA (NEW YORK, N.Y.) 2010; 16:655-63. [PMID: 20185543 PMCID: PMC2844614 DOI: 10.1261/rna.1796210] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In both prokaryotes and eukaryotes, the expression of a large number of genes is controlled by negative feedback, in some cases operating at the level of translation of the mRNA transcript. Of particular interest are those cases where the proteins concerned have cell-wide function in recognizing a particular codon or RNA sequence. Examples include the bacterial translation termination release factor RF2, initiation factor IF3, and eukaryote poly(A) binding protein. The regulatory loops that control their synthesis establish a negative feedback control mechanism based upon that protein's RNA sequence recognition function in translation (for example, stop codon recognition) without compromising the accurate recognition of that codon, or sequence during general, cell-wide translation. Here, the bacterial release factor RF2 and initiation factor IF3 negative feedback loops are reviewed and compared with similar negative feedback loops that regulate the levels of the eukaryote release factor, eRF1, established artificially by mutation. The control properties of such negative feedback loops are discussed as well as their evolution. The role of negative feedback to control translation factor expression is considered in the context of a growing body of evidence that both IF3 and RF2 can play a role in stimulating stalled ribosomes to abandon translation in response to amino acid starvation. Here, we make the case that negative feedback control serves primarily to limit the overexpression of these translation factors, preventing the loss of fitness resulting from an unregulated increase in the frequency of ribosome drop-off.
Collapse
Affiliation(s)
- Russell Betney
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | | | | | | |
Collapse
|
16
|
Atkins JF, Björk GR. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev 2009; 73:178-210. [PMID: 19258537 PMCID: PMC2650885 DOI: 10.1128/mmbr.00010-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of translation components which compensate for both -1 and +1 frameshift mutations showed the first evidence for framing malleability. Those compensatory mutants isolated in bacteria and yeast with altered tRNA or protein factors are reviewed here and are considered to primarily cause altered P-site realignment and not altered translocation. Though the first sequenced tRNA mutant which suppressed a +1 frameshift mutation had an extra base in its anticodon loop and led to a textbook "yardstick" model in which the number of anticodon bases determines codon size, this model has long been discounted, although not by all. Accordingly, the reviewed data suggest that reading frame maintenance and translocation are two distinct features of the ribosome. None of the -1 tRNA suppressors have anticodon loops with fewer than the standard seven nucleotides. Many of the tRNA mutants potentially affect tRNA bending and/or stability and can be used for functional assays, and one has the conserved C74 of the 3' CCA substituted. The effect of tRNA modification deficiencies on framing has been particularly informative. The properties of some mutants suggest the use of alternative tRNA anticodon loop stack conformations by individual tRNAs in one translation cycle. The mutant proteins range from defective release factors with delayed decoding of A-site stop codons facilitating P-site frameshifting to altered EF-Tu/EF1alpha to mutant ribosomal large- and small-subunit proteins L9 and S9. Their study is revealing how mRNA slippage is restrained except where it is programmed to occur and be utilized.
Collapse
Affiliation(s)
- John F Atkins
- BioSciences Institute, University College, Cork, Ireland.
| | | |
Collapse
|
17
|
Zaretsky JZ, Wreschner DH. Protein multifunctionality: principles and mechanisms. TRANSLATIONAL ONCOGENOMICS 2008; 3:99-136. [PMID: 21566747 PMCID: PMC3022353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins.
Collapse
Affiliation(s)
- Joseph Z Zaretsky
- Department Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Haim Levanon St., 69978 Tel-Aviv, Israel
| | | |
Collapse
|
18
|
Buchan JR, Stansfield I. Halting a cellular production line: responses to ribosomal pausing during translation. Biol Cell 2007; 99:475-87. [PMID: 17696878 DOI: 10.1042/bc20070037] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cellular protein synthesis is a complex polymerization process carried out by multiple ribosomes translating individual mRNAs. The process must be responsive to rapidly changing conditions in the cell that could cause ribosomal pausing and queuing. In some circumstances, pausing of a bacterial ribosome can trigger translational abandonment via the process of trans-translation, mediated by tmRNA (transfer-messenger RNA) and endonucleases. Together, these factors release the ribosome from the mRNA and target the incomplete polypeptide for destruction. In eukaryotes, ribosomal pausing can initiate an analogous process carried out by the Dom34p and Hbs1p proteins, which trigger endonucleolytic attack of the mRNA, a process termed mRNA no-go decay. However, ribosomal pausing can also be employed for regulatory purposes, and controlled translational delays are used to help co-translational folding of the nascent polypeptide on the ribosome, as well as a tactic to delay translation of a protein while its encoding mRNA is being localized within the cell. However, other responses to pausing trigger ribosomal frameshift events. Recent discoveries are thus revealing a wide variety of mechanisms used to respond to translational pausing and thus regulate the flow of ribosomal traffic on the mRNA population.
Collapse
Affiliation(s)
- J Ross Buchan
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, UK
| | | |
Collapse
|
19
|
Rengby O, Arnér ESJ. Titration and conditional knockdown of the prfB gene in Escherichia coli: effects on growth and overproduction of the recombinant mammalian selenoprotein thioredoxin reductase. Appl Environ Microbiol 2006; 73:432-41. [PMID: 17085697 PMCID: PMC1796992 DOI: 10.1128/aem.02019-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Release factor 2 (RF2), encoded by the prfB gene in Escherichia coli, catalyzes translational termination at UGA and UAA codons. Termination at UGA competes with selenocysteine (Sec) incorporation at Sec-dedicated UGA codons, and RF2 thereby counteracts expression of selenoproteins. prfB is an essential gene in E. coli and can therefore not be removed in order to increase yield of recombinant selenoproteins. We therefore constructed an E. coli strain with the endogenous chromosomal promoter of prfB replaced with the titratable P(BAD) promoter. Knockdown of prfB expression gave a bacteriostatic effect, while two- to sevenfold overexpression of RF2 resulted in a slightly lowered growth rate in late exponential phase. In a turbidostatic fermentor system the simultaneous impact of prfB knockdown on growth and recombinant selenoprotein expression was subsequently studied, using production of mammalian thioredoxin reductase as model system. This showed that lowering the levels of RF2 correlated directly with increasing Sec incorporation specificity, while also affecting total selenoprotein yield concomitant with a lower growth rate. This study thus demonstrates that expression of prfB can be titrated through targeted exchange of the native promoter with a P(BAD)-promoter and that knockdown of RF2 can result in almost full efficiency of Sec incorporation at the cost of lower total selenoprotein yield.
Collapse
Affiliation(s)
- Olle Rengby
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
20
|
Petros LM, Howard MT, Gesteland RF, Atkins JF. Polyamine sensing during antizyme mRNA programmed frameshifting. Biochem Biophys Res Commun 2005; 338:1478-89. [PMID: 16269132 DOI: 10.1016/j.bbrc.2005.10.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 10/20/2005] [Indexed: 11/24/2022]
Abstract
A key regulator of cellular polyamine levels from yeasts to mammals is the protein antizyme. The antizyme gene consists of two overlapping reading frames with ORF2 in the +1 frame relative to ORF1. A programmed +1 ribosomal frameshift occurs at the last codon of ORF1 and results in the production of full-length antizyme protein. The efficiency of frameshifting is proportional to the concentration of polyamines, thus creating an autoregulatory circuit for controlling polyamine levels. The mRNA recoding signals for frameshifting include an element 5' and a pseudoknot 3' of the shift site. The present work illustrates that the ORF1 stop codon and the 5' element are critical for polyamine sensing, whereas the 3' pseudoknot acts to stimulate frameshifting in a polyamine independent manner. We also demonstrate that polyamines are required to stimulate stop codon readthrough at the MuLV redefinition site required for normal expression of the GagPol precursor protein.
Collapse
Affiliation(s)
- Lorin M Petros
- Department of Human Genetics, University of Utah, 15 N. 2030 E, Rm 7410, Salt Lake City, UT 84112-5330, USA
| | | | | | | |
Collapse
|
21
|
Penno C, Sansonetti P, Parsot C. Frameshifting by transcriptional slippage is involved in production of MxiE, the transcription activator regulated by the activity of the type III secretion apparatus in Shigella flexneri. Mol Microbiol 2005; 56:204-14. [PMID: 15773990 DOI: 10.1111/j.1365-2958.2004.04530.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria of Shigella spp. are responsible for shigellosis in humans. They use a type III secretion (TTS) system encoded by a 200 kb virulence plasmid to enter epithelial cells and trigger apoptosis in macrophages. This TTS system comprises a secretion apparatus, translocators and effectors that transit through this apparatus, cytoplasmic chaperones and specific transcription regulators. The TTS apparatus assembled during growth of Shigella flexneri in broth is activated upon contact with epithelial cells. Transcription of approximately 15 genes encoding effectors, including IpaH proteins, is regulated by the TTS apparatus activity and controlled by MxiE, a transcription activator of the AraC family, and IpgC, the chaperone of the translocators IpaB and IpaC. We present evidence that MxiE is produced by a frameshift between a 59-codon open reading frame (ORF) (mxiEa) containing the translation start site and a 214-codon ORF (mxiEb) encoding the DNA binding domain of the protein. The mxiEa encoded N-terminal part of MxiE is required for MxiE function. Frameshifting efficiency was approximately 30% during growth in broth and was not modulated by the activity of secretion or the coactivator IpgC. Frameshifting involves slippage of RNA polymerase during transcription of mxiE, which results in the incorporation of one additional nucleotide in the mRNA and places mxiEa and mxiEb in the same reading frame. Frameshifting might represent an additional means of controlling gene expression under specific environmental conditions.
Collapse
Affiliation(s)
- Christophe Penno
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
22
|
Abstract
Reprogrammed genetic decoding signals in mRNAs productively overwrite the normal decoding rules of translation. These "recoding" signals are associated with sites of programmed ribosomal frameshifting, hopping, termination codon suppression, and the incorporation of the unusual amino acids selenocysteine and pyrrolysine. This review summarizes current knowledge of the structure and function of recoding signals in cellular genes, the biological importance of recoding in gene regulation, and ways to identify new recoded genes.
Collapse
Affiliation(s)
- Olivier Namy
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom.
| | | | | | | |
Collapse
|
23
|
Karamysheva ZN, Karamyshev AL, Ito K, Yokogawa T, Nishikawa K, Nakamura Y, Matsufuji S. Antizyme frameshifting as a functional probe of eukaryotic translational termination. Nucleic Acids Res 2004; 31:5949-56. [PMID: 14530443 PMCID: PMC219470 DOI: 10.1093/nar/gkg789] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Translation termination in eukaryotes is mediated by the release factors eRF1 and eRF3, but mechanisms of the interplay between these factors are not fully understood, due partly to the difficulty of measuring termination on eukaryotic mRNAs. Here, we describe an in vitro system for the assay of termination using competition with programmed frameshifting at the recoding signal of mammalian antizyme. The efficiency of antizyme frameshifting in rabbit reticulocyte lysates was reduced by addition of recombinant rabbit eRF1 and eRF3 in a synergistic manner. Addition of suppressor tRNA to this assay system revealed competition with a third event, stop codon readthrough. Using these assays, we demonstrated that an eRF3 mutation at the GTPase domain repressed termination in a dominant negative fashion probably by binding to eRF1. The effect of the release factors and the suppressor tRNA showed that the stop codon at the antizyme frameshift site is relatively inefficient compared to either the natural termination signals at the end of protein coding sequences or the readthrough signal from a plant virus. The system affords a convenient assay for release factor activity and has provided some novel views of the mechanism of antizyme frameshifting.
Collapse
Affiliation(s)
- Zemfira N Karamysheva
- Department of Biochemistry II, The Jikei University, School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Gurvich OL, Baranov PV, Zhou J, Hammer AW, Gesteland RF, Atkins JF. Sequences that direct significant levels of frameshifting are frequent in coding regions of Escherichia coli. EMBO J 2003; 22:5941-50. [PMID: 14592990 PMCID: PMC275418 DOI: 10.1093/emboj/cdg561] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 08/27/2003] [Accepted: 09/12/2003] [Indexed: 11/14/2022] Open
Abstract
It is generally believed that significant ribosomal frameshifting during translation does not occur without a functional purpose. The distribution of two frameshift-prone sequences, A_AAA_AAG and CCC_TGA, in coding regions of Escherichia coli has been analyzed. Although a moderate level of selection against the first sequence is evident, 68 genes contain A_AAA_AAG and 19 contain CCC_TGA. The majority of those tested in their genomic context showed >1% frameshifting. Comparative sequence analysis was employed to assess a potential biological role for frameshifting in decoding these genes. Two new candidates, in pheL and ydaY, for utilized frameshifting have been identified in addition to those previously known in dnaX and nine insertion sequence elements. For the majority of the shift-prone sequences no functional role can be attributed to them, and the frameshifting is likely erroneous. However, none of frameshift sequences is in the 306 most highly expressed genes. The unexpected conclusion is that moderate frameshifting during expression of at least some other genes is not sufficiently harmful for cells to trigger strong negative evolutionary pressure.
Collapse
Affiliation(s)
- Olga L Gurvich
- Department of Human Genetics, University of Utah, 15N 2030E Salt Lake City, UT 84112-5330, USA
| | | | | | | | | | | |
Collapse
|
25
|
Meurer J, Lezhneva L, Amann K, Gödel M, Bezhani S, Sherameti I, Oelmüller R. A peptide chain release factor 2 affects the stability of UGA-containing transcripts in Arabidopsis chloroplasts. THE PLANT CELL 2002; 14:3255-69. [PMID: 12468741 PMCID: PMC151216 DOI: 10.1105/tpc.006809] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Accepted: 09/12/2002] [Indexed: 05/18/2023]
Abstract
Positional cloning of the hcf109 (high chlorophyll fluorescence) mutation in Arabidopsis has identified a nucleus-encoded, plastid-localized release factor 2-like protein, AtprfB, indicating that the processes of translational termination in chloroplasts resemble those of eubacteria. Control of atprfB expression by light and tissues is connected to chloroplast development. A point mutation at the last nucleotide of the second intron causes a new splice site farther downstream, resulting in a deletion of seven amino acid residues in the N-terminal region of the Hcf109 protein. The mutation causes decreased stability of UGA-containing mRNAs. Our data suggest that transcripts with UGA stop codons are terminated exclusively by AtprfB in chloroplasts and that AtprfB is involved in the regulation of both mRNA stability and protein synthesis. Furthermore, sequence data reveal a +1 frameshift at an internal in-frame TGA stop codon in the progenitor prfB gene of cyanobacteria. The expression pattern and functions of atprfB could reflect evolutionary driving forces toward the conservation of TGA stop codons exclusively in plastid genomes of land plants.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Bacteria/genetics
- Bacteria/metabolism
- Base Sequence
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Chromosome Mapping
- Codon, Terminator/genetics
- Codon, Terminator/metabolism
- Cyanobacteria/genetics
- Cyanobacteria/metabolism
- Frameshift Mutation
- Gene Expression Regulation, Plant/radiation effects
- Light
- Molecular Sequence Data
- Mutation
- Peptide Chain Termination, Translational/genetics
- Peptide Termination Factors/genetics
- Peptide Termination Factors/metabolism
- Polyribosomes/metabolism
- Protein Biosynthesis
- RNA, Chloroplast/genetics
- RNA, Chloroplast/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Jörg Meurer
- Ludwig-Maximilians-Universität München, Department I, Botanik, Menzingerstrasse 67, 80638 München, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Jin H, Björnsson A, Isaksson LA. Cis control of gene expression in E.coli by ribosome queuing at an inefficient translational stop signal. EMBO J 2002; 21:4357-67. [PMID: 12169638 PMCID: PMC126163 DOI: 10.1093/emboj/cdf424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An UGA stop codon context which is inefficient because of the 3'-flanking context and the last two amino acids in the gene protein product has a negative effect on gene expression, as shown using a model protein A' gene. This is particularly true at low mRNA levels, corresponding to a high intracellular ribosome/mRNA ratio. The negative effect is smaller if this ratio is decreased, or if the distance between the initiation and termination signals is increased. The results suggest that an inefficient termination codon can cause ribosomal pausing and queuing along the upstream mRNA region, thus blocking translation initiation of short genes. This cis control effect is dependent on the stop codon context, including the C-terminal amino acids in the gene product, the translation initiation signal strength, the ribosome/mRNA ratio and the size of the mRNA coding region. A large proportion of poorly expressed natural Escherichia coli genes are small, and the weak termination codon UGA is under-represented in small, highly expressed E.coli genes as compared with the efficient stop codon UAA.
Collapse
Affiliation(s)
| | - Asgeir Björnsson
- Department of Microbiology, Stockholm University, S-10691 Stockholm, Sweden
Present address: deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland Corresponding author e-mail:
| | - Leif A. Isaksson
- Department of Microbiology, Stockholm University, S-10691 Stockholm, Sweden
Present address: deCODE Genetics, Sturlugata 8, IS-101 Reykjavik, Iceland Corresponding author e-mail:
| |
Collapse
|
27
|
Collier J, Binet E, Bouloc P. Competition between SsrA tagging and translational termination at weak stop codons in Escherichia coli. Mol Microbiol 2002; 45:745-54. [PMID: 12139620 DOI: 10.1046/j.1365-2958.2002.03045.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SsrA is a tmRNA involved in tagging polypeptides on stalled ribosomes. The resulting fusion proteins are then degraded. We purified endogenous SsrA-tagged proteins by means of a genetically engineered SsrA and identified some of them. Analysis of the proteins suggested that they are tagged at their C-terminal extremities. One of them, ribokinase, is expressed from a messenger with a poorly efficient stop codon, leading to translational recoding events. A change in the ribokinase coding sequence from a weak to a strong translational stop sequence (UGAc to UAAu) annihilated SsrA tagging. Translational termination by UGA recruits the translational release factor (RF) 2. We observed that SsrA tagging of ribokinase was inversely correlated with RF2 activity, revealing a dynamic competition between translational termination and SsrA tagging.
Collapse
Affiliation(s)
- Justine Collier
- Laboratoire des Réseaux de Régulations, Institut de Génétique et Microbiologie, Université Paris-Sud, CNRS/UMR 8621, Orsay, France.
| | | | | |
Collapse
|
28
|
Abstract
During the expression of a certain genes standard decoding is over-ridden in a site or mRNA specific manner. This recoding occurs in response to special signals in mRNA and probably occurs in all organisms. This review deals with the function and distribution of recoding with a focus on the ribosomal frameshifting used for gene expression in bacteria.
Collapse
Affiliation(s)
- Pavel V Baranov
- Department of Human Genetics, University of Utah, 15N 2030E Room 7410, Salt Lake City, UT 84112-5330, USA
| | | | | |
Collapse
|
29
|
Bidou L, Stahl G, Hatin I, Namy O, Rousset JP, Farabaugh PJ. Nonsense-mediated decay mutants do not affect programmed -1 frameshifting. RNA (NEW YORK, N.Y.) 2000; 6:952-61. [PMID: 10917592 PMCID: PMC1369972 DOI: 10.1017/s1355838200000443] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Sequences in certain mRNAs program the ribosome to undergo a noncanonical translation event, translational frameshifting, translational hopping, or termination readthrough. These sequences are termed recoding sites, because they cause the ribosome to change temporarily its coding rules. Cis and trans-acting factors sensitively modulate the efficiency of recoding events. In an attempt to quantitate the effect of these factors we have developed a dual-reporter vector using the lacZ and luc genes to directly measure recoding efficiency. We were able to confirm the effect of several factors that modulate frameshift or readthrough efficiency at a variety of sites. Surprisingly, we were not able to confirm that the complex of factors termed the surveillance complex regulates translational frameshifting. This complex regulates degradation of nonsense codon-containing mRNAs and we confirm that it also affects the efficiency of nonsense suppression. Our data suggest that the surveillance complex is not a general regulator of translational accuracy, but that its role is closely tied to the translational termination and initiation processes.
Collapse
Affiliation(s)
- L Bidou
- Institut de Génétique et Microbiologie, Université Paris-Sud, France
| | | | | | | | | | | |
Collapse
|
30
|
Farabaugh PJ. Translational frameshifting: implications for the mechanism of translational frame maintenance. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:131-70. [PMID: 10697409 DOI: 10.1016/s0079-6603(00)64004-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The ribosome rapidly translates the information in the nucleic sequence of mRNA into the amino acid sequence of proteins. As with any biological process, translation is not completely accurate; it must compromise the antagonistic demands of increased speed and greater accuracy. Yet, reading-frame errors are especially infrequent, occurring at least 10 times less frequently than other errors. How do ribosomes maintain the reading frame so faithfully? Geneticists have addressed this question by identifying suppressors that increase error frequency. Most familiar are the frameshift suppressor tRNAs, though other suppressors include mutant forms of rRNA, ribosomal proteins, or translation factors. Certain mRNA sequences can also program frameshifting by normal ribosomes. The models of suppression and programmed frameshifting describe apparently quite different mechanisms. Contemporary work has questioned the long-accepted model for frameshift suppression by mutant tRNAs, and a unified explanation has been proposed for both phenomena. The Quadruplet Translocation Model proposes that suppressor tRNAs cause frameshifting by recognizing an expanded mRNA codon. The new data are inconsistent with this model for some tRNAs, implying the model may be invalid for all. A new model for frameshift suppression involves slippage caused by a weak, near-cognate codon.anticodon interaction. This strongly resembles the mechanism of +1 programmed frameshifting. This may mean that infrequent frameshift errors by normal ribosomes may result from two successive errors: misreading by a near-cognate tRNA, which causes a subsequent shift in reading frame. Ribosomes may avoid phenotypically serious frame errors by restricting apparently innocuous errors of sense.
Collapse
Affiliation(s)
- P J Farabaugh
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland, Baltimore County 21250, USA
| |
Collapse
|
31
|
Persson BC, Atkins JF. Does disparate occurrence of autoregulatory programmed frameshifting in decoding the release factor 2 gene reflect an ancient origin with loss in independent lineages? J Bacteriol 1998; 180:3462-6. [PMID: 9642202 PMCID: PMC107304 DOI: 10.1128/jb.180.13.3462-3466.1998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Escherichia coli an autoregulatory mechanism of programmed ribosomal frameshifting governs the level of polypeptide chain release factor 2. From an analysis of 20 sequences of genes encoding release factor 2, we infer that this frameshift mechanism was present in a common ancestor of a large group of bacteria and has subsequently been lost in three independent lineages.
Collapse
Affiliation(s)
- B C Persson
- Howard Hughes Medical Institute, University of Utah, Salt Lake City 84112-5330, USA
| | | |
Collapse
|
32
|
Mottagui-Tabar S. Quantitative analysis of in vivo ribosomal events at UGA and UAG stop codons. Nucleic Acids Res 1998; 26:2789-96. [PMID: 9592169 PMCID: PMC147583 DOI: 10.1093/nar/26.11.2789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An in vivo translation assay system has been designed to measure, in one and the same assay, the three alternatives for a ribosome poised at a stop codon (termination, read-through and frameshift). A quantitative analysis of the competition has been done in the presence and absence of release factor (RF) mutants, nonsense suppressors and an upstream Shine-Dalgarno-like sequence. The ribosomal +1 frameshift product is measurable when the stop codon is decoded by wild-type or mutant RF (prf A1 or prf B2) and also in the presence of competing suppressor tRNAs. Frameshift frequency appears to be influenced by RF activity. The amount of frameshift product decreases in the presence of competing suppressor tRNAs, however, this decrease is not in proportion to the corresponding increase in the suppression product. Instead, there is an increase in the total amount of protein expressed from the gene, perhaps due to the purging of queued ribosomes. Mutated RFs reduce the total output of the reporter gene by reducing the amount of all three protein products. The nascent peptide has earlier been shown to influence the translation termination process by interacting with the RFs. At 42 degrees C in a temperature-sensitive RF mutant strain, protein measurements indicate that the nascent peptide seems to influence the binding efficiencies of the RFs.
Collapse
Affiliation(s)
- S Mottagui-Tabar
- Department of Microbiology, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
33
|
Abstract
Others have recently shown that the UUU phenylalanine codon is highly frameshift-prone in the 3'(rightward) direction at pyrimidine 3'contexts. Here, several approaches are used to analyze frameshifting at such sites. The four permutations of the UUU/C (phenylalanine) and CGG/U (arginine) codon pairs were examined because they vary greatly in their expected frameshifting tendencies. Furthermore, these synonymous sites allow direct tests of the idea that codon usage can control frameshifting. Frameshifting was measured for these dicodons embedded within each of two broader contexts: the Escherichia coli prfB (RF2 gene) programmed frameshift site and a 'normal' message site. The principal difference between these contexts is that the programmed frameshift contains a purine-rich sequence upstream of the slippery site that can base pair with the 3'end of 16 S rRNA (the anti-Shine-Dalgarno) to enhance frameshifting. In both contexts frameshift frequencies are highest if the slippery tRNAPhe is capable of stable base pairing in the shifted reading frame. This requirement is less stringent in the RF2 context, as if the Shine-Dalgarno interaction can help stabilize a quasi-stable rephased tRNA:message complex. It was previously shown that frameshifting in RF2 occurs more frequently if the codon 3'to the slippery site is read by a rare tRNA. Consistent with that earlier work, in the RF2 context frameshifting occurs substantially more frequently if the arginine codon is CGG, which is read by a rare tRNA. In contrast, in the 'normal' context frameshifting is only slightly greater at CGG than at CGU. It is suggested that the Shine-Dalgarno-like interaction elevates frameshifting specifically during the pause prior to translation of the second codon, which makes frameshifting exquisitely sensitive to the rate of translation of that codon. In both contexts frameshifting increases in a mutant strain that fails to modify tRNA base A37, which is 3'of the anticodon. Thus, those base modifications may limit frameshifting at UUU codons. Finally, statistical analyses show that UUU Ynn dicodons are extremely rare in E.coli genes that have highly biased codon usage.
Collapse
Affiliation(s)
- R Schwartz
- Department of Biology, Wake Forest University, PO Box 7325, Winston-Salem, NC 27109, USA
| | | |
Collapse
|
34
|
Lubbers MW, Waterfield NR, Beresford TP, Le Page RW, Jarvis AW. Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol 1995; 61:4348-56. [PMID: 8534101 PMCID: PMC167745 DOI: 10.1128/aem.61.12.4348-4356.1995] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 22,163-bp genome of the lactococcal prolate-headed phage c2 was sequenced. Thirty-nine open reading frames (ORFs), early and late promoters, and a putative transcription terminator were identified. Twenty-two ORFs were in the early gene region, and 17 were in the late gene region. Putative genes for a DNA polymerase, a recombination protein, a sigma factor protein, a transcription regulatory protein, holin proteins, and a terminase were identified. Transcription of the early and late genes proceeded divergently from a noncoding 611-bp region. A 521-bp fragment contained within the 611-bp intergenic region could act as an origin of replication in Lactococcus lactis. Three major structural proteins, with sizes of 175, 90, and 29 kDa, and eight minor proteins, with sizes of 143, 82, 66, 60, 44, 42, 32, and 28 kDa, were identified. Several of these proteins appeared to be posttranslationally modified by proteolytic cleavage. The 175- and 90-kDa proteins were identified as the major phage head proteins, and the 29- and 60-kDa proteins were identified as the major tail protein and (possibly) the tail adsorption protein, respectively. The head proteins appeared to be covalently linked multimers of the same 30-kDa gene product. Phage c2 and prolate-headed lactococcal phage bIL67 (C. Schouler, S. D. Ehrlich, and M.-C. Chopin, Microbiology 140:3061-3069, 1994) shared 80% nucleotide sequence identity. However, several DNA deletions or insertions which corresponded to the loss or acquisition of specific ORFs, respectively, were noted. The identification of direct nucleotide repeats flanking these sequences indicated that recombination may be important in the evolution of these phages.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M W Lubbers
- Biological Science Section, New Zealand Dairy Research Institute, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
35
|
Curran JF, Poole ES, Tate WP, Gross BL. Selection of aminoacyl-tRNAs at sense codons: the size of the tRNA variable loop determines whether the immediate 3' nucleotide to the codon has a context effect. Nucleic Acids Res 1995; 23:4104-8. [PMID: 7479072 PMCID: PMC307350 DOI: 10.1093/nar/23.20.4104] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Codon context can affect translational efficiency by several molecular mechanisms. The base stacking interactions between a codon-anticodon complex and the neighboring nucleotide immediately 3' can facilitate translation by amber suppressors and the tRNA structure is also known to modulate the sensitivity to context. In this study the relative rates of aminoacyl-tRNA selection were measured at four sense codons (UGG, CUC, UUC and UCA), in all four 3' nucleotide contexts, through direct competition with a programmed frameshift at a site derived from the release factor 2 gene. Two codons (UGG and UUC) are read by tRNAs with small variable regions and their rates of aminoacyl-tRNA selection correlated with the potential base stacking strength of the 3' neighboring nucleotide. The other two codons (CUC and UCA) are read by tRNAs with large variable regions and the rate of selection of the aminoacyl-tRNAs in these cases varied little among the four contexts. Re-examination of published data on amber suppression also revealed an inverse correlation between context sensitivity and the size of the variable region. Collectively the data suggest that a large variable loop in a tRNA decreases the influence of the 3' context on tRNA selection, probably by strengthening tRNA-ribosomal interactions.
Collapse
Affiliation(s)
- J F Curran
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | | | |
Collapse
|
36
|
Abstract
tRNAs with inosine (I) in the first position read three codons ending in U, C and A. However, A-ending codons read with I are rarely used. In Escherichia coli, CGA/U/C are all read solely by tRNAICGArg. CGU and CGC are very common codons, but CGA is very rare. Three independent in vivo assays show that translation of CGA is relatively inefficient. In the first, nine tandem CGA cause a strong rho-mediated polar effect on expression of a lacZ reporter gene. The inhibition is made more extreme by a mutation in ribosomal protein S12 (rpsL), which indicates that ribosomal binding by tRNAICGArg is slow and/or unstable in the CGA cluster. The second assay, in which codons are substituted for the regulatory UGA of the RF2 frameshift, confirms that aa-tRNA selection is slow and/or unstable at CGA. In the third assay, CGA is found to be a poor 5' context for amber suppression, which suggests that an A:I base pair in the P site can interfere with translation of a codon in the A site. Two possible errors, frameshifting and premature termination by RF2, are not significant causes for inefficiency at CGA. It is concluded that the A:I pair destabilizes codon:anticodon complexes during two successive ribosomal cycles, and it is suggested that these properties contribute to the rare usage of codons read with the A:I base pair.
Collapse
Affiliation(s)
- J F Curran
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109
| |
Collapse
|
37
|
Abstract
One of three mRNA codons--UAA, UAG and UGA--is used to signal to the elongating ribosome that translation should be terminated at this point. Upon the arrival of the stop codon at the ribosomal acceptor(A)-site, a protein release factor (RF) binds to the ribosome resulting in the peptidyl transferase centre of the ribosome switching to a hydrolytic function to remove the completed polypeptide chain from the peptidyl-tRNA bound at the adjacent ribosomal peptidyl(P)-site. In this review recent advances in our understanding of the mechanism of termination in the bacterium Escherichia coli will be summarised, paying particular attention to the roles of 16S ribosomal RNA and the release factors RF-1, RF-2 and RF-3 in stop codon recognition. Our understanding of the translation termination process in eukaryotes is much more rudimentary with the identity of the single eukaryotic release factor (eRF) still remaining elusive. Finally, several examples of how the termination mechanism can be subverted either to expand the genetic code (e.g. selenocysteine insertion at UGA codons) or to regulate the expression of mammalian retroviral or plant viral genomes will be discussed.
Collapse
Affiliation(s)
- M F Tuite
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|