1
|
Malinowska AL, Laski A, Hall J. Design and Application of Mini-libraries of miRNA Probes for an Efficient and Versatile miRNA-mRNA Cross-linking. Chemistry 2021; 27:10193-10200. [PMID: 34000095 PMCID: PMC8362200 DOI: 10.1002/chem.202101171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 01/02/2023]
Abstract
MicroRNAs constitute a class of endogenous, non-coding RNAs that influence various processes within the cell. By base-pairing to partially-complementary sites located in the 3' untranslated region of target messenger RNAs, microRNAs participate in post-transcriptional regulation of the majority of human protein-coding genes. Their dysregulation has been related to many pathological processes and diseases. Thus, an in-depth understanding of the microRNA mechanisms of action is crucial. Here, we present a new concept of probe design to achieve an efficient and sequence-independent miRNA-mRNA cross-linking. The new strategy is based on the utilization of a controlled mixture of probes for a chosen miRNA, in which a trioxsalen moiety is introduced at the N4 -position of a selected cytidine through short oligoethylene glycol-based linkers. In vitro photo-cross-linking experiments with mini-libraries of probes for microRNAs of interest showed variable cross-linking efficiencies, demonstrating a general applicability of the presented approach.
Collapse
Affiliation(s)
- Anna L. Malinowska
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093Zurich
| | - Artur Laski
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093Zurich
| | - Jonathan Hall
- Institute of Pharmaceutical SciencesDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 48093Zurich
| |
Collapse
|
2
|
Rathi P, Maurer S, Summerer D. Selective recognition of N4-methylcytosine in DNA by engineered transcription-activator-like effectors. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0078. [PMID: 29685980 DOI: 10.1098/rstb.2017.0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 01/03/2023] Open
Abstract
The epigenetic DNA nucleobases 5-methylcytosine (5mC) and N4-methylcytosine (4mC) coexist in bacterial genomes and have important functions in host defence and transcription regulation. To better understand the individual biological roles of both methylated nucleobases, analytical strategies for distinguishing unmodified cytosine (C) from 4mC and 5mC are required. Transcription-activator-like effectors (TALEs) are programmable DNA-binding repeat proteins, which can be re-engineered for the direct detection of epigenetic nucleobases in user-defined DNA sequences. We here report the natural, cytosine-binding TALE repeat to not strongly differentiate between 5mC and 4mC. To engineer repeats with selectivity in the context of C, 5mC and 4mC, we developed a homogeneous fluorescence assay and screened a library of size-reduced TALE repeats for binding to all three nucleobases. This provided insights into the requirements of size-reduced TALE repeats for 4mC binding and revealed a single mutant repeat as a selective binder of 4mC. Employment of a TALE with this repeat in affinity enrichment enabled the isolation of a user-defined DNA sequence containing a single 4mC but not C or 5mC from the background of a bacterial genome. Comparative enrichments with TALEs bearing this or the natural C-binding repeat provides an approach for the complete, programmable decoding of all cytosine nucleobases found in bacterial genomes.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Preeti Rathi
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Sara Maurer
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Daniel Summerer
- Department of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
3
|
Felske LR, Lenz SAP, Wetmore SD. Quantum Chemical Studies of the Structure and Stability of N-Methylated DNA Nucleobase Dimers: Insights into the Mutagenic Base Pairing of Damaged DNA. J Phys Chem A 2017; 122:410-419. [PMID: 29189004 DOI: 10.1021/acs.jpca.7b10485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA is constantly under attack from exogenous and endogenous sources that modify the chemical structure of the nucleobases. A common type of nucleobase damage is N-methylation, which can result in mutagenesis. Nevertheless, these lesions are often repaired by the DNA repair enzyme AlkB, albeit at varying rates. Herein we use density functional theory (B3LYP-D3(BJ)/6-311++G(2df,2p)//B3LYP/6-31G(d,p)) to comprehensively examine the structural and energetic properties of base pairs between seven nucleobase lesions resulting from N-methylation on the Watson-Crick (WC) binding face and each canonical nucleobase. By characterizing 105 stable nucleobase dimers, we provide fundamental details regarding the preferred lesion base pairings. Specifically, we reveal that the flexibility of the methylamino group resulting from methylation of an exocyclic amino substituent allows the 2MeG, 4MeC, and 6MeA lesions to maintain a preference for canonical WC base pairing, which correlates with the experimentally reported lack of mutagenicity for these damage products. In contrast, calculated distortions in key structural parameters and altered binding energies for base pairs involving adducts formed upon methylation of a ring nitrogen (namely, 1MeG, 3MeT, 1MeA, and 3MeC) help rationalize the associated mutagenicity and repair efficiencies. Most importantly, our work provides molecular-level information about the interactions between N-methylated and canonical nucleobases that is critical for future large-scale modeling of damaged DNA and enzyme-DNA complexes that strive to further uncover the mutagenicity and repair propensities of these detrimental lesions.
Collapse
Affiliation(s)
- Lindey R Felske
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge T1K 3M4, Alberta, Canada
| | - Stefan A P Lenz
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge T1K 3M4, Alberta, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , 4401 University Drive West, Lethbridge T1K 3M4, Alberta, Canada
| |
Collapse
|
4
|
Flores-Juárez CR, González-Jasso E, Antaramian A, Pless RC. PCR amplification of GC-rich DNA regions using the nucleotide analog N4-methyl-2'-deoxycytidine 5'-triphosphate. Biotechniques 2016; 61:175-182. [PMID: 27712580 DOI: 10.2144/000114457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/06/2016] [Indexed: 11/23/2022] Open
Abstract
GC-rich DNA regions were PCR-amplified with Taq DNA polymerase using either the canonical set of deoxynucleoside triphosphates or mixtures in which the dCTP had been partially or completely replaced by its N4-methylated analog, N4-methyl-2'-deoxycytidine 5'-triphosphate (N4me-dCTP). In the case of a particularly GC-rich region (78.9% GC), the PCR mixtures containing N4me-dCTP produced the expected amplicon in high yield, while mixtures containing the canonical set of nucleotides produced numerous alternative amplicons. For another GC-rich DNA region (80.6% GC), the target amplicon was only generated by re-amplifying a gel-purified sample of the original amplicon with N4me-dCTP-containing PCR mixtures. In a direct PCR comparison on a highly GC-rich template, mixtures containing N4me-dCTP clearly performed better than did solutions containing the canonical set of nucleotides mixed with various organic additives (DMSO, betaine, or ethylene glycol) that have been reported to resolve or alleviate problems caused by secondary structures in the DNA. This nucleotide analog was also tested in PCR amplification of DNA regions with intermediate GC content, producing the expected amplicon in each case with a melting temperature (Tm) clearly below the Tm of the same amplicon synthesized exclusively with the canonical bases.
Collapse
Affiliation(s)
| | - Eva González-Jasso
- CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro, 76090, Mexico
| | - Anaid Antaramian
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, 76230, Mexico
| | - Reynaldo C Pless
- CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro, 76090, Mexico
| |
Collapse
|
5
|
Xu Y, Vanommeslaeghe K, Aleksandrov A, MacKerell AD, Nilsson L. Additive CHARMM force field for naturally occurring modified ribonucleotides. J Comput Chem 2016; 37:896-912. [PMID: 26841080 PMCID: PMC4801715 DOI: 10.1002/jcc.24307] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 01/13/2023]
Abstract
More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all‐atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- You Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, HUDDINGE, SE-141 83, Sweden
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland, 21201.,Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, B-1090, Belgium
| | - Alexey Aleksandrov
- Department of Biology, Ecole Polytechnique, Laboratoire De Biochimie (CNRS UMR7654), Palaiseau, F-91128, France
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland, 21201
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, HUDDINGE, SE-141 83, Sweden
| |
Collapse
|
6
|
Mierzejewska K, Bochtler M, Czapinska H. On the role of steric clashes in methylation control of restriction endonuclease activity. Nucleic Acids Res 2015; 44:485-95. [PMID: 26635397 PMCID: PMC4705667 DOI: 10.1093/nar/gkv1341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/16/2015] [Indexed: 12/30/2022] Open
Abstract
Restriction-modification systems digest non-methylated invading DNA, while protecting host DNA against the endonuclease activity by methylation. It is widely believed that the methylated DNA would not 'fit' into the binding site of the endonuclease in the productive orientation, and thus steric clashes should account for most of the protection. We test this concept statistically by grafting methyl groups in silico onto non-methylated DNA in co-crystal structures with restriction endonucleases. Clash scores are significantly higher for protective than non-protective methylation (P < 0.05% according to the Wilcoxon rank sum test). Structural data alone are sufficient to distinguish between protective and non-protective DNA methylation with 90% confidence and decision thresholds of 1.1 Å and 48 Å(3) for the most severe distance-based and cumulative volume-based clash with the protein, respectively (0.1 Å was deducted from each interatomic distance to allow for coordinate errors). The most severe clashes are more pronounced for protective methyl groups attached to the nitrogen atoms (N6-methyladenines and N4-methylcytosines) than for C5-methyl groups on cytosines. Cumulative clashes are comparable for all three types of protective methylation.
Collapse
Affiliation(s)
- Karolina Mierzejewska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Domingo O, Hellmuth I, Jäschke A, Kreutz C, Helm M. Intermolecular 'cross-torque': the N4-cytosine propargyl residue is rotated to the 'CH'-edge as a result of Watson-Crick interaction. Nucleic Acids Res 2015; 43:5275-83. [PMID: 25934805 PMCID: PMC4477647 DOI: 10.1093/nar/gkv285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Propargyl groups are attractive functional groups for labeling purposes, as they allow CuAAC-mediated bioconjugation. Their size minimally exceeds that of a methyl group, the latter being frequent in natural nucleotide modifications. To understand under which circumstances propargyl-containing oligodeoxynucleotides preserve base pairing, we focused on the exocyclic amine of cytidine. Residues attached to the exocyclic N4 may orient away from or toward the Watson-Crick face, ensuing dramatic alteration of base pairing properties. ROESY-NMR experiments suggest a uniform orientation toward the Watson-Crick face of N(4)-propargyl residues in derivatives of both deoxycytidine and 5-methyl-deoxycytidine. In oligodeoxynucleotides, however, UV-melting indicated that N(4)-propargyl-deoxycytidine undergoes standard base pairing. This implies a rotation of the propargyl moiety toward the 'CH'-edge as a result of base pairing on the Watson-Crick face. In oligonucleotides containing the corresponding 5-methyl-deoxycytidine derivative, dramatically reduced melting temperatures indicate impaired Watson-Crick base pairing. This was attributed to a steric clash of the propargyl moiety with the 5-methyl group, which prevents back rotation to the 'CH'-edge, consequently preventing Watson-Crick geometry. Our results emphasize the tendency of an opposing nucleic acid strand to mechanically rotate single N(4)-substituents to make way for Watson-Crick base pairing, providing no steric hindrance is present on the 'CH'-edge.
Collapse
Affiliation(s)
- Olwen Domingo
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Rhineland-Palatinate, Germany
| | - Isabell Hellmuth
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Rhineland-Palatinate, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Tyrol, Austria
| | - Mark Helm
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Rhineland-Palatinate, Germany
| |
Collapse
|
8
|
Flores-Juárez CR, Leberre Anton V, Trévisiol E, Antaramian A, González-Jasso E, Pless RC. Hybridisation of N4-methylcytosine-containing amplicons on DNA microarrays. J Biotechnol 2014; 189:143-9. [PMID: 25238723 DOI: 10.1016/j.jbiotec.2014.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/02/2014] [Accepted: 09/08/2014] [Indexed: 11/27/2022]
Abstract
5'-Cy5-labelled PCR amplicons containing the analogue base, N(4)-methylcytosine, instead of cytosines were compared in microarray hybridisation experiments with the corresponding amplicons containing the canonical set of bases, with respect to the intensity of the fluorescence signal obtained, and cross hybridisation to non-corresponding probes. In general, higher hybridisation temperatures resulted in reduced signal intensities, particularly in the case of the N(4)-methylcytosine containing amplicons. At the lower hybridisation temperatures tested (40 °C, 30 °C), these modified amplicons gave about equal or stronger fluorescence signal than the corresponding regular amplicons. With the two GC-richest amplicons tested, in one instance the N(4)-methylated target gave a dramatically higher signal intensity than the unmodified amplicon, interpreted as reflecting the reduced formation of hairpin structures in the target sequence, due to the lower thermodynamic stability of the G:N(4)-methylC base pair, making the target more accessible, while in the other case no hybridisation was observed with either version of the amplicon, probably due to interference from a G-tetrad structure. Both for the regular and the N(4)-methylated amplicons, no significant cross hybridisation was seen in these experiments.
Collapse
Affiliation(s)
| | - Véronique Leberre Anton
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Emmanuelle Trévisiol
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Anaid Antaramian
- Instituto de Neurobiología, Universidad Autónoma de México, Juriquilla, Querétaro 76230, Mexico
| | - Eva González-Jasso
- CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro 76090, Mexico
| | - Reynaldo C Pless
- CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro 76090, Mexico.
| |
Collapse
|
9
|
Luo Z, Dauter M, Dauter Z. Phosphates in the Z-DNA dodecamer are flexible, but their P-SAD signal is sufficient for structure solution. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1790-800. [PMID: 25004957 PMCID: PMC4089481 DOI: 10.1107/s1399004714004684] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 11/11/2022]
Abstract
A large number of Z-DNA hexamer duplex structures and a few oligomers of different lengths are available, but here the first crystal structure of the d(CGCGCGCGCGCG)2 dodecameric duplex is presented. Two synchrotron data sets were collected; one was used to solve the structure by the single-wavelength anomalous dispersion (SAD) approach based on the anomalous signal of P atoms, the other set, extending to an ultrahigh resolution of 0.75 Å, served to refine the atomic model to an R factor of 12.2% and an R(free) of 13.4%. The structure consists of parallel duplexes arranged into practically infinitely long helices packed in a hexagonal fashion, analogous to all other known structures of Z-DNA oligomers. However, the dodecamer molecule shows a high level of flexibility, especially of the backbone phosphate groups, with six out of 11 phosphates modeled in double orientations corresponding to the two previously observed Z-DNA conformations: Z(I), with the phosphate groups inclined towards the inside of the helix, and Z(II), with the phosphate groups rotated towards the outside of the helix.
Collapse
Affiliation(s)
- Zhipu Luo
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miroslawa Dauter
- Leidos Biomedical Research Inc., Basic Research Program, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
10
|
Abstract
The DNA backbone geometry was analyzed for 96 crystal structures of oligodeoxynucleotides. The ranges and mean values of the torsion angles for the observed subclasses of the A-, B-, and Z-DNA conformational types were determined by analyzing distributions of the torsion angles and scattergrams relating pairs of angles.
Collapse
Affiliation(s)
- B Schneider
- Rutgers University, Department of Chemistry, Piscataway, NJ 08855-0939, USA
| | | | | |
Collapse
|
11
|
Abstract
We review the effect of sequence on the structure of left-handed Z-DNA in single crystals. The various substituent groups that define a nucleotide base as guanine, cytosine,thymine, or adenine affect both the DNA conformation and the organization of solvent around the duplex. These are discussed in terms of their effect on the ability of sequences to adopt the unusual Z-DNA structure. In addition, the experimental and theoretical methods used to treat DNA hydration are discussed as they relate to the stability of Z-DNA . Finally, we argue that Z-DNA , as defined by the crystal conformation, is sufficient in itself to account for the physical properties of left-handed conformations observed in polymers and in genomic sequences
Collapse
Affiliation(s)
- P S Ho
- Department of Biochemistry and Biophysics Oregon State University, ALSB 2011, Corvallis, OR, USA
| | | |
Collapse
|
12
|
Banerjee A, Yang W, Karplus M, Verdine GL. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 2005; 434:612-8. [PMID: 15800616 DOI: 10.1038/nature03458] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 02/14/2005] [Indexed: 01/22/2023]
Abstract
How DNA repair proteins distinguish between the rare sites of damage and the vast expanse of normal DNA is poorly understood. Recognizing the mutagenic lesion 8-oxoguanine (oxoG) represents an especially formidable challenge, because this oxidized nucleobase differs by only two atoms from its normal counterpart, guanine (G). Here we report the use of a covalent trapping strategy to capture a human oxoG repair protein, 8-oxoguanine DNA glycosylase I (hOGG1), in the act of interrogating normal DNA. The X-ray structure of the trapped complex features a target G nucleobase extruded from the DNA helix but denied insertion into the lesion recognition pocket of the enzyme. Free energy difference calculations show that both attractive and repulsive interactions have an important role in the preferential binding of oxoG compared with G to the active site. The structure reveals a remarkably effective gate-keeping strategy for lesion discrimination and suggests a mechanism for oxoG insertion into the hOGG1 active site.
Collapse
Affiliation(s)
- Anirban Banerjee
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Water distributions around phosphate groups in 59 B-, A-, and Z-DNA crystal structures were analyzed. It is shown that the waters are concentrated in six hydration sites per phosphate and that the positions and occupancies of these sites are dependent on the conformation and type of nucleotide. The patterns of hydration that are characteristic of the backbone of the three DNA helical types can be attributed in part to the interactions of these hydration sites.
Collapse
Affiliation(s)
- B Schneider
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague, Czech Republic
| | | | | |
Collapse
|