1
|
Porat N, Bogdanov K, Danielli A, Arie A, Samina I, Hadani A. Direct detection of chicken genomic DNA for gender determination by thymine-DNA glycosylase. Br Poult Sci 2011; 52:58-65. [DOI: 10.1080/00071668.2010.549665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Butcher LM, Beck S. Future impact of integrated high-throughput methylome analyses on human health and disease. J Genet Genomics 2009; 35:391-401. [PMID: 18640619 DOI: 10.1016/s1673-8527(08)60057-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/08/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
A spate of high-powered genome-wide association studies (GWAS) have recently identified numerous single-nucleotide polymorphisms (SNPs) robustly linked with complex disease. Despite interrogating the majority of common human variation, these SNPs only account for a small proportion of the phenotypic variance, which suggests genetic factors are acting in concert with non-genetic factors. Although environmental measures are logical covariants for genotype-phenotype investigations, another non-genetic intermediary exists: epigenetics. Epigenetics is the analysis of somatically-acquired and, in some cases, transgenerationally inherited epigenetic modifications that regulate gene expression, and offers to bridge the gap between genetics and environment to understand phenotype. The most widely studied epigenetic mark is DNA methylation. Aberrant methylation at gene promoters is strongly implicated in disease etiology, most notably cancer. This review will highlight the importance of DNA methylation as an epigenetic regulator, outline techniques to characterize the DNA methylome and present the idea of reverse phenotyping, where multiple layers of analysis are integrated at the individual level to create personalized digital phenotypes and, at a phenotype level, to identify novel molecular signatures of disease.
Collapse
Affiliation(s)
- Lee M Butcher
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | | |
Collapse
|
3
|
|
4
|
Lari SU, Famulski K, Al-Khodairy F. Multiplicity of strand incision at G:T base mismatches in DNA by human cell extracts. Biochemistry 2004; 43:6691-7. [PMID: 15157103 DOI: 10.1021/bi0302550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell extract from the HT29 human colon carcinoma cell line (lacking mutator phenotype) was used to study the ATP-dependent G:T mismatch repair. We found that when a 45-bp (model) DNA with a single CpG/TpG mispair was incubated with the cell extract and ATP, it was incised immediately 5' and 3' to the mismatched T, and we noted that the actual 5'- and 3'-labeled fragments were similar to the cleaved products of thymine DNA glycosylase (TDG). This TDG-like cleavage product was enhanced (5-fold) with stimulation of several novel fragments, as inferred from the effect on incision at CpG/TpG site of the addition of G:U competitor DNA and ATP to the HT29 extract. The novel fragments were compatible with a strand incision on both sides of the mismatch (the third phosphodiester bond 5' and the second phosphodiester bond 3' to the mismatched T) and an incision 3' to the mismatched T, respectively. This suggests that while the ATP-dependent (TDG-like) incision activity, contrary to expectation, shows a lack of substrate competition, its catalytic property is likely modified by an interaction with G:U mispair. These multiple ATP-dependent incision events were not detected when extracts of the mismatch repair (MMR) defective HCT15 or HCT116 cell line were augmented with ATP and G:U. We postulate that these multiple ATP-dependent incision events possibly require the same MMR factors, and together they constitute a modified single ATP-dependent G:T incision activity. This activity toward the CpG/TpG was competitively inhibited by a 45-bp DNA with an ApG/TpT mispair; incision at a single site 5' to the latter mismatch compares with one of the multiple sites incised 5' to the former mismatch. These results suggest that one of several mismatch-incision factors is required by the human ATP-dependent G:T incision activity, in addition to MMR factors and ATP.
Collapse
Affiliation(s)
- Sibghat-Ullah Lari
- Department of Biological and Medical Research (MBC 03), King Faisal Specialist Hospital and Research Center (KFSH&RC), P.O. Box 3354, Riyadh 11211, Saudi Arabia.
| | | | | |
Collapse
|
5
|
Abstract
The double mismatch reversion (DMR) assay quantifies the repair of G:T mispairs exclusively by base excision repair in vivo. Synthetic oligonucleotides containing two G:T mispairs on opposite strands were placed into the suppressor tRNA gene supF in the shuttle plasmid pDMR. Placement of two mispairs on opposite strands of supF creates a one to one correspondence between the number of correct repair events prior to replication in which G:T mispairs are converted to G:C base pairs and the number of post-replication progeny plasmids with functional supF. Replication of unrepaired or incorrectly repaired mispairs cannot produce progeny plasmids containing functional supF. Indeed, direct transformation of Escherichia coli strain MBL50, which reports the functional status of supF, with pDMR constructs containing two G:T or G:G mispairs yielded <0.5% wild-type supF-containing colonies. In contrast, passage of G:T mispair-containing pDMR constructs through human 5637 bladder carcinoma cells for 48h prior to plasmid recovery and transformation of the reporter E. coli strain MBL50 produced 47% wild-type supF-containing colonies. This finding was indicative of repair prior to the onset of replication in 5637 cells. However, passage of G:G mispair-containing pDMR constructs through 5637 cells yielded <0.5% wild-type supF-containing colonies. Moreover, no difference was observed in the rate of G:T mispair repair by HCT 116 colorectal carcinoma cells deficient in long-patch mismatch repair and a long-patch mismatch repair proficient HCT 116 subline. These data demonstrate that repair measured by the DMR assay is exclusively attributable to short-patch pathways. The DMR assay proved useful in the analysis of the effect of the base 5' to a mispaired G on the rate of G:T base excision repair by 5637 cells, indicating the sequence preference CpG approximately 5mCpG>TpG>GpG approximately ApG, and in the comparison of G:T base excision repair rates between cell lines.
Collapse
Affiliation(s)
- S B Waters
- Department of Cancer Biology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
6
|
Lari SU, Day RS, Dobler K, Paterson MC. Initiation of strand incision at G:T and O(6)-methylguanine:T base mismatches in DNA by human cell extracts. Nucleic Acids Res 2001; 29:2409-17. [PMID: 11376160 PMCID: PMC55701 DOI: 10.1093/nar/29.11.2409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extracts of the human glioma cell line A1235 (lacking O(6)-methylguanine-DNA methyltransferase) are known to restore a G:T mismatch to a normal G:C pair in a G:T-containing model (45 bp) DNA substrate. Herein we demonstrate that substitution of G:T with O(6)-methylguanine:T (m6G:T) results in extract-induced intra-strand incision in the DNA at an efficiency comparable to that of complete repair of the G:T-containing substrate, although the m6G:T mispair serves as a poor substrate for later repair steps (e.g. gap filling, as judged by defective DNA repair synthesis). The A1235 extract, when supplemented with ATP and the four normal dNTPs, incises 5' to the mismatched T, as inferred by the generation of a single-stranded 20mer fragment. Unlike its parental (A1235) counterpart, an extract of the alkylation-tolerant derivative cell line A1235-MR4 produces no 20mer fragment, even when thymine-DNA glycosylase (TDG) is added to the reaction mixture. In contrast, the A1235 extract, when augmented with TDG, catalyzes enhanced incision at m6G:T in the 45 bp DNA, yielding 5-10-fold greater 20mer than that of either extract or TDG alone. Interestingly, the absence of m6G:T incision activity in the A1235-MR4 extract is similar to that seen for extracts of several known mismatch repair-deficient cell lines of colon tumor origin. Together these results suggest that derivative A1235-MR4 cells are defective in m6G:T incision activity and that the efficiency of this activity in the parental (A1235) cells may depend on the presence of several ill-defined mismatch repair recognition proteins along with TDG and ATP.
Collapse
Affiliation(s)
- S U Lari
- Department of Biological and Medical Research (MBC 03), King Faisal Specialist Hospital and Research Center, PO Box 3354, Riyadh 11211, Saudi Arabia.
| | | | | | | |
Collapse
|
7
|
Abstract
About 23% of mutations in hereditary human diseases and 24% of mutations in p53 in human cancers are G to A transitions at sites of cytosine methylation suggesting that these sites are either foci for DNA damage, or foci for damage that is poorly repaired. Thymine produced at these sites by the hydrolytic deamination of 5-methylcytosine is removed by thymine-DNA glycosylase. Thymine-DNA glycosylase will also remove 3,N(4)-ethenocytosine and uracil from DNA. The action of this enzyme is limited by its very low k(cat) and by tight binding to the apurinic site produced when the thymine is removed. These properties of the enzyme suggest that the inefficiency of the base excision repair pathway that it initiates may be the underlying cause of the prevalence of these mutations.
Collapse
Affiliation(s)
- T R Waters
- Department of Biochemistry and Molecular Biology, University College London, London, UK.
| | | |
Collapse
|
8
|
Krawczak M, Ball EV, Cooper DN. Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet 1998; 63:474-88. [PMID: 9683596 PMCID: PMC1377306 DOI: 10.1086/301965] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The spectrum of single-base-pair substitutions logged in The Human Gene Mutation Database (HGMD), comprising 7,271 different lesions in the coding regions of 547 different human genes, was analyzed for nearest-neighbor effects on relative mutation rates. Owing to its retrospective nature, HGMD allows mutation rates to be estimated only in relative terms. Therefore, a novel methodology was devised in order to obtain these estimates in iterative fashion, correcting, at the same time, for the confounding effects of differential codon usage and for the fact that different types of amino acid replacement come to clinical attention with different probabilities. Over and above the hypermutability of CpG dinucleotides, reflected in transition rates five times the base mutation rate, only a subtle and locally confined influence of the surrounding DNA sequence on relative single-base-pair substitution rates was observed, which extended no farther than 2 bp from the substitution site. A disparity between the two DNA strands was evidenced by the fact that, when substitution rates were estimated conditional on the 5' and 3' flanking nucleotides, a significant rate difference emerged for 10 of 96 possible pairs of complementary substitutional events. Mutational bias, favoring substitutions toward flanking bases, a phenomenon reminiscent of misalignment mutagenesis, was apparent and exhibited both directionality and reading-frame sensitivity. No specific preponderance of repeat-sequence motifs was observed in the vicinity of nucleotide substitutions, but a moderate correlation between the relative mutability and thermodynamic stability of DNA triplets emerged, suggesting either inefficient DNA replication in regions of high stability or the transient stabilization of misaligned intermediates.
Collapse
Affiliation(s)
- M Krawczak
- Institute of Medical Genetics, University of Wales College of Medicine,Cardiff CF4 4XN, United Kingdom.
| | | | | |
Collapse
|
9
|
David SS, Williams SD. Chemistry of Glycosylases and Endonucleases Involved in Base-Excision Repair. Chem Rev 1998; 98:1221-1262. [PMID: 11848931 DOI: 10.1021/cr980321h] [Citation(s) in RCA: 425] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sheila S. David
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | | |
Collapse
|
10
|
Schärer OD, Kawate T, Gallinari P, Jiricny J, Verdine GL. Investigation of the mechanisms of DNA binding of the human G/T glycosylase using designed inhibitors. Proc Natl Acad Sci U S A 1997; 94:4878-83. [PMID: 9144158 PMCID: PMC24599 DOI: 10.1073/pnas.94.10.4878] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Deamination of 5-methylcytosine residues in DNA gives rise to the G/T mismatched base pair. In humans this lesion is repaired by a mismatch-specific thymine DNA glycosylase (TDG or G/T glycosylase), which catalyzes specific excision of the thymine base through N-glycosidic bond hydrolysis. Unlike other DNA glycosylases, TDG recognizes an aberrant pairing of two normal bases rather than a damaged base per se. An important structural issue is thus to understand how the enzyme specifically targets the T (or U) residue of the mismatched base pair. Our approach toward the study of substrate recognition and processing by catalytic DNA binding proteins has been to modify the substrate so as to preserve recognition of the base but to prevent its excision. Here we report that replacement of 2'-hydrogen atoms with fluorine in the substrate 2'-deoxyguridine (dU) residue abrogates glycosidic bond cleavage, thereby leading to the formation of a tight, specific glycosylase-DNA complex. Biochemical characterization of these complexes reveals that the enzyme protects an approximately 20-bp stretch of the substrate from DNase I cleavage, and directly contacts a G residue on the 3' side of the mismatched U derivative. These studies provide a mechanistic rationale for the preferential repair of deaminated CpG sites and pave the way for future high-resolution studies of TDG bound to DNA.
Collapse
Affiliation(s)
- O D Schärer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
11
|
Singh J, Su L, Snow ET. Replication across O6-methylguanine by human DNA polymerase beta in vitro. Insights into the futile cytotoxic repair and mutagenesis of O6-methylguanine. J Biol Chem 1996; 271:28391-8. [PMID: 8910463 DOI: 10.1074/jbc.271.45.28391] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Replication in vivo across unrepaired O6-methylguanine (m6dG) lesions by mammalian DNA polymerase beta (pol beta) during short patch repair may contribute to the cytotoxicity and mutagenesis of m6dG. We have employed in vitro steady state kinetic analysis to investigate the replication of oligonucleotide templates containing site-specific m6dG by human pol beta. Our results show that m6dG is a strong but not absolute block to replication by pol beta. pol beta exhibits mixed kinetic discrimination during overall replication across dG and m6dG. pol beta preferentially inserts dTMP rather than dCMP opposite m6dG. However, pol beta extends from the dC-m6dG base pair more efficiently than from the dT-m6dG base pair. This is in strong contrast to other polymerases such as the exonuclease-deficient Klenow fragment of Escherichia coli DNA polymerase I (exo-KF) that preferentially extends dT-m6dG by a factor of 10 over dC-m6dG. When both insertion and extension are considered, pol beta has a 15-fold overall preference for incorporation of the mutagenic substrate dTTP rather than the nonmutagenic substrate dCTP during replication across m6dG. This suggests that pol beta, in concert with the T:G-specific thymine DNA glycosylase, may be intricately involved in the futile cytotoxic repair induced by m6dG. Our results also suggest that replication across m6dG by pol beta may contribute to m6dG-induced G --> A transition mutations.
Collapse
Affiliation(s)
- J Singh
- Nelson Institute of Environmental Medicine, New York University Medical Center, Tuxedo, New York 10987, USA.
| | | | | |
Collapse
|
12
|
Neddermann P, Gallinari P, Lettieri T, Schmid D, Truong O, Hsuan JJ, Wiebauer K, Jiricny J. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J Biol Chem 1996; 271:12767-74. [PMID: 8662714 DOI: 10.1074/jbc.271.22.12767] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hydrolytic deamination of 5-methylcytosine leads to the formation of G/T mismatches. We have shown previously that these G/T mispairs are corrected to G/C pairs by a mismatch-specific thymine-DNA glycosylase, TDG, which we subsequently purified from human cells. Here we describe the cloning of the human cDNA encoding TDG. We have identified two distinct cDNA species that differ by 100 nucleotides at the 3'-untranslated region. These cDNAs contain a 410-amino acid open reading frame that encodes a 46-kDa polypeptide. The G/T glycosylase, expressed both in vitro and in Escherichia coli, migrated in denaturing polyacrylamide gels with an apparent size of 60 kDa. The substrate specificity of the recombinant protein corresponded to that of the cellular enzyme, and polyclonal antisera raised against the recombinant protein neutralized both activities. We therefore conclude that the cDNA described below encodes human TDG. Data base searches identified a serendipitously cloned mouse cDNA sequence that could be shown to encode the murine TDG homologue. No common amino acid sequence motifs between the G/T-specific enzyme and other DNA glycosylases could be found, suggesting that TDG belongs to a new class of base-excision repair enzymes.
Collapse
Affiliation(s)
- P Neddermann
- Department of Biochemistry, Istituto di Ricerche di Biologia Molecolare P. Angeletti, Via Pontina Km 30,600, 00040-Pomezia (Roma), Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tiller GE, Polumbo PA, Weis MA, Bogaert R, Lachman RS, Cohn DH, Rimoin DL, Eyre DR. Dominant mutations in the type II collagen gene, COL2A1, produce spondyloepimetaphyseal dysplasia, Strudwick type. Nat Genet 1995; 11:87-9. [PMID: 7550321 DOI: 10.1038/ng0995-87] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The chondrodysplasias are a heterogeneous group of disorders characterized by abnormal growth or development of cartilage. Current classification is based on mode of inheritance as well as clinical, histologic, and/or radiographic features. A clinical spectrum of chondrodysplasia phenotypes, ranging from mild to perinatal lethal, is due to defects in the gene for type II collagen, COL2A1. This spectrum includes Stickler syndrome, Kniest dysplasia, spondyloepiphyseal dysplasia congenita (SEDC), achondrogenesis type II, and hypochondrogenesis. Individuals affected with these disorders exhibit abnormalities of the growth plate, nucleus pulposus, and vitreous humor, which are tissues that contain type II collagen. The Strudwick type of spondyloepimetaphyseal dysplasia (SEMD) is characterized by disproportionate short stature, pectus carinatum, and scoliosis, as well as dappled metaphyses (which are not seen in SEDC). The phenotype was first described by Murdoch and Walker in 1969, and a series of 14 patients was later reported by Anderson et al. The observation of two affected sibs born to unaffected parents led to the classification of SEMD Strudwick as an autosomal recessive disorder. We now describe the biochemical characterization of defects in alpha 1(II) collagen in three unrelated individuals with SEMD Strudwick, each of which is due to heterozygosity for a unique mutation in COL2A1. Our data support the hypothesis that some cases, if not all cases, of this distinctive chondrodysplasia result from dominant mutations in COL2A1, thus expanding the clinical spectrum of phenotypes associated with this gene.
Collapse
Affiliation(s)
- G E Tiller
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hentosh P, Tibudan M, Grippo P. A human factor that recognizes DNA substituted with 2-chloroadenine, an antileukemic purine analog. Mol Carcinog 1995; 13:245-53. [PMID: 7646763 DOI: 10.1002/mc.2940130407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
2-Chloro-2'-deoxyadenosine (cladribine), an analog of deoxyadenosine, is an important new drug for the treatment of hairy cell leukemia and other forms of adult and pediatric leukemia. By a gel-shift binding assay, we identified an activity in HeLa nuclear extracts that recognizes and binds to oligonucleotides substituted with 2-chloroadenine (ClAde). The activity was specific for ClAde residues because control oligomers did not readily compete out the complex. The binding factor was a monomeric protein that was resistant to inactivation by heating at 45 degrees C but sensitive to heating at 65 degrees C, proteinase K treatment, and 5 mM ZnCl2. This protein, designated ClAde recognition protein (CARP), appeared to be related to a protein that recognized other forms of DNA damage. Gel-shift binding reactions with ultraviolet (UV)-irradiated oligomers revealed a UV-specific protein/DNA complex that had an electrophoretic mobility similar to that of the CARP/DNA complex, and CARP binding to ClAde-containing oligomers was readily competed out by UV-irradiated DNA. Moreover, CARP activity was present in extracts prepared from UV-sensitive xeroderma pigmentosum group A cells but not in a subset of cells from group E, suggesting that CARP was similar to a previously described repair associated factor, xeroderma pigmentosum-E binding factor. Our findings support a possible repair process for ClAde residues incorporated into cellular DNA.
Collapse
Affiliation(s)
- P Hentosh
- Department of Pharmacology and Molecular Biology, Chicago Medical School, Illinois 60064, USA
| | | | | |
Collapse
|
15
|
Day RS. Site specificity of incisions at G:T and O6-methylguanine:T base mismatches in DNA by human cell-free extracts. Biochemistry 1995; 34:6869-75. [PMID: 7756318 DOI: 10.1021/bi00020a034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free extract from human tumor cell line A1235 (lacking O6-methylguanine-DNA methyltransferase) was employed to compare incision at G:T base mispairs with that at O6-methylguanine (m6G):T pairs at two different sites (sites 20 and 25) in 45-bp heteroduplexes. To study the effect of neighboring bases on the activity(ies), the base pair immediately 5' to the mismatched G at each site was varied to provide four contexts: CpG:T, TpG:T, ApG:T, and GpG:T (and two analogous series for m6G:T pairs). At site 20, cell-free extract produced observable incision only in the 45-bp DNA with the G:T mispair in the CpG:T context, giving a product with incisions immediately 5' and 3' to the mismatched T. We observed incision of neither the strand containing the mismatched G nor the DNAs with the site 20 ApG:T, GpG:T, and TpG:T mismatches. By contrast, at site 25, incision specificity was different. All four G:T mismatched DNAs were incised, and the ApG:T-25, GpG:T-25, and TpG:T-25 DNAs were incised 1-3 bonds 3' to the mismatched T, while similar in other respects to the CpG:T-25 DNA, which showed a pattern like the CpG:T-20 DNA. CpG:T-20 specific incision activity in the extract was strongly inhibited by both CpG:T (sites 20 and 25) DNAs, but at least 10-fold more poorly by DNAs with Apg:T-25 and GpG:T-25 pairs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
16
|
Abstract
The pattern of 20,200 point substitutions in the 16 unique neighbor-pair environments has been determined from aligned gene/pseudogene sequences in the current database of human DNA sequences. Substitution rates, representing averages over those for different regions of the genome, are distributed over a 60-fold range with strong biases in particular neighbor-pair environments. The rates for substitutions involving the CG doublet are the most rapid overall, where changes of the C.G pair vary over a tenfold range depending on the type of substitution and the 5' neighbor-pair. In general, the rates are fastest in alternating purine-pyrimidine sequences and slowest in purine.pyrimidine tracts, suggesting that the frequencies of one or both key molecular misadventures that can occur during replication, dNTP misinsertion and transient misalignment, may be associated with structural alternations and flexibility of the backbone. By contrast, purine.pyrimidine tracts are less flexible, less prone to substitution, and therefore their proportions accumulate in sequences over time. Characteristic biases of the content and arrangement of oligonucleotide strings or tuples in all sequence elements, but particularly in non-coding regions, appear to be due to the pattern of different neighbor-dependent substitution rates. Computer simulations of numerous replicative cycles have been carried out with substitutions occurring on the same schedule found in this study for pseudogenes. Statistical analyses of tuple frequencies at periodic intervals during the simulation experiment indicate that sequences slowly change in lexical complexity toward a quasi-equilibrium state that corresponds to that for introns.
Collapse
Affiliation(s)
- S T Hess
- Department of Biochemistry, Microbiology and Molecular Biology, University of Maine, Orono 04469
| | | | | |
Collapse
|
17
|
Cotton RG, Dahl HH, Forrest S, Howells DW, Ramus SJ, Bishop RE, Dianzani I, Saleeba JA, Palombo E, Anderson MJ. Analysis of sequence contexts flanking T.G mismatches leads to predictions about reactivity of the mismatched T to osmium tetroxide. DNA Cell Biol 1993; 12:945-9. [PMID: 8274226 DOI: 10.1089/dna.1993.12.945] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Osmium tetroxide and hydroxylamine are used to detect mutations in DNA and RNA after hybridization of mutant and wild-type DNA. Mismatched T and C bases, respectively, are modified by these reagents and the DNA strand cleaved at the mismatched bases by subsequent treatment with piperidine. This allows detection and location of the mutation. Although most T.G mismatches have been reported to be reactive to osmium tetroxide, some have been reported to be unreactive. The aim of this study was to collect and analyze the reactive and unreactive T.G mismatches. We have collected sequence contexts of all reactive and unreactive T.G mismatches for analysis. This involves 10 unreactive T.G mismatches (plus one T.C) and 19 reactive T.G mismatches. Sequence effects of bases surrounding these mismatches must influence this reactivity. There must be many types of such sequence effects. We postulate that because of the dominance of 5' G bases near the T of unreactive T.G mismatches and the absence of 5' G bases in reactive T.G mismatches that the stacking of the 5' G on the mismatched T is the reason for this lack of reactivity in the majority of the cases studied here.
Collapse
Affiliation(s)
- R G Cotton
- Murdoch Institute, Royal Childrens Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|