1
|
Gudeta DD, Zhao S, Aljahdali N, Foley SL. Coupling antitoxins and blue/white screening with parAB/resolvase mutation as a strategy for Salmonella spp. plasmid curing. Microbiol Spectr 2024; 12:e0122024. [PMID: 39315784 PMCID: PMC11537010 DOI: 10.1128/spectrum.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Despite the dissemination of multidrug resistance plasmids, including those carrying virulence genes in Salmonella spp., efficient plasmid curing tools are lacking. Plasmid partitioning and multimer resolution systems are attractive targets for plasmid cure. However, plasmid curing strategies targeting these systems are often hindered by the host addiction system through a process known as post-segregation killing. Here, we developed vector tools that can mutate the above systems while replenishing short-lived antitoxins. Cloning was performed using Gibson assembly. parAB or resolvase (res) genes on Incompatibility Group (Inc)FIB, IncA/C, IncX4, and plasmids carried by Salmonella species were deleted by first knocking in the N-terminal ß-galactosidase encoding gene (bgaB), followed by in-frame insertion of its C-terminal region using pDG1 and pDG2 vectors, respectively. pDG1 was used as a backbone to develop a vector, designated as pDG-At, expressing 13 antitoxins driven by strong promoters. Plasmid curing was achieved by transforming pDG-At to parAB or res mutants followed by blue-white screening and PCR; however, parAB mutant isolation with this method was low and often non-reproducible. To elucidate whether the prior presence of pDG-At in cells improves viable mutant isolation, we re-constructed pDG-At, designated as pDG-Atπ, using a vector with the R6Kϒ origin of replication with its π-factor required for replication under araBAD promoter. Results showed that pDG-Atπ can replicate in the absence of arabinose but can be cured by growing cells in glucose-rich media. Next, we repeated IncFIB's parAB deletion using pDG1 but in cells carrying pDG-Atπ. Many white colonies were detected on X-Gal-supplemented media but none of them carried the target parA mutation; however, ~80% of the white colonies lost IncFIB plasmid, while the others retained the wild-type plasmid. Similar results were obtained for IncX4 plasmid curing but also found that this method was not reproducible as the white colonies obtained after allelic replacement did not always result in plasmid curing or mutant isolation. This is the first report describing a simple blue/white screening method for plasmid curing that can avoid laborious screening procedures. IMPORTANCE Plasmids play an important role in bacterial physiology, adaptation, evolution, virulence, and antibiotic resistance. An in-depth study of these roles partly depends on the generation of plasmid-free cells. This study shows that vector tools that target genes required for plasmid stability in the presence of an antitoxin-expressing helper plasmid are a viable approach to cure specific plasmids. Expression of bgaB from target plasmids can greatly facilitate visual detection of plasmid cured colonies avoiding time-consuming screening procedures. This approach can be refined for the development of a universal plasmid curing system that can be used to generate plasmid-free cells in other human bacterial pathogens including Gram positives and Gram negatives.
Collapse
Affiliation(s)
- Dereje D. Gudeta
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Shaohua Zhao
- Office of Applied Science, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Nesreen Aljahdali
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
Feng H, Li F, Wang T, Xing XH, Zeng AP, Zhang C. Deep-learning-assisted Sort-Seq enables high-throughput profiling of gene expression characteristics with high precision. SCIENCE ADVANCES 2023; 9:eadg5296. [PMID: 37939173 PMCID: PMC10631719 DOI: 10.1126/sciadv.adg5296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Owing to the nondeterministic and nonlinear nature of gene expression, the steady-state intracellular protein abundance of a clonal population forms a distribution. The characteristics of this distribution, including expression strength and noise, are closely related to cellular behavior. However, quantitative description of these characteristics has so far relied on arrayed methods, which are time-consuming and labor-intensive. To address this issue, we propose a deep-learning-assisted Sort-Seq approach (dSort-Seq) in this work, enabling high-throughput profiling of expression properties with high precision. We demonstrated the validity of dSort-Seq for large-scale assaying of the dose-response relationships of biosensors. In addition, we comprehensively investigated the contribution of transcription and translation to noise production in Escherichia coli, from which we found that the expression noise is strongly coupled with the mean expression level. We also found that the transcriptional interference caused by overlapping RpoD-binding sites contributes to noise production, which suggested the existence of a simple and feasible noise control strategy in E. coli.
Collapse
Affiliation(s)
- Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fan Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tianmin Wang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin-hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - An-ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg 21073, Germany
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Zhou S, Zhu R, Niu X, Zhao Y, Deng Y. Metabolic engineering of Paracoccus denitrificans for dual degradation of sulfamethoxazole and ammonia nitrogen. Microbiol Spectr 2023; 11:e0014623. [PMID: 37732744 PMCID: PMC10581052 DOI: 10.1128/spectrum.00146-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Sulfamethoxazole (SMX), as one of the most widely used sulfonamide antibiotics, has been frequently detected in the aqueous environment, posing potential risks to the environment and human health. Although microbial degradation methods have been widely applied, some issues remain, including low degradation efficiency and poor environmental adaptability. In this regard, constructing efficient degrading bacteria by metabolic engineering is an ideal solution to these challenges. In this study, we used Paracoccus denitrificans DYTN-1, a superior nitrogen removal environment strain, as chassis to construct an SMX degradation pathway, obtaining a new bacteria for simultaneous degradation of SMX and removal of ammonia nitrogen. In doing this, we first identified and characterized four native promoters of P. denitrificans DYTN-1 with gradient strength to control the expression of the SMX degradation pathway. After degradation pathway expression level optimization and FMN reductase optimization, SMX degradation efficiency was significantly improved. The constructed P. d-pIAB4-PCS-sutR strain exhibited superior co-degradation of SMX and ammonia nitrogen contaminants with degradation rates of 44% and 71%, respectively. This study could pave the way for SMX degradation engineered strain design and evolution of environmental bioremediation. IMPORTANCE The abuse of sulfamethoxazole (SMX) had led to an increased accumulation in the environment, resulting in the disruption of the structure of microbial communities, further disrupting the bio-degradation process of other pollutants, such as ammonia nitrogen. To solve this challenge, we first identified and characterized four native promoters of Paracoccus denitrificans DYTN-1 with gradient strength to control the expression of the SMX degradation pathway. Then SMX degradation efficiency was significantly improved with degradation pathway expression level optimization and FMN reductase optimization. Finally, the superior nitrogen removal environment strain, P. denitrificans DYTN-1, obtained an SMX degradation function. This pioneering study of metabolic engineering to enhance the SMX degradation in microorganisms could pave the way for designing the engineered strains of SMX and nitrogen co-degradation and the environmental bioremediation.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Rongrong Zhu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaoqian Niu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunying Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Anand D, Jakkala K, Nair RR, Sharan D, Pradhan A, Mukkayyan N, Ajitkumar P. Complete identity and expression of StfZ, the cis-antisense RNA to the mRNA of the cell division gene ftsZ, in Escherichia coli. Front Microbiol 2022; 13:920117. [PMID: 36338044 PMCID: PMC9628754 DOI: 10.3389/fmicb.2022.920117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria regulate FtsZ protein levels through transcriptional and translational mechanisms for proper cell division. A cis-antisense RNA, StfZ, produced from the ftsA-ftsZ intergenic region, was proposed to regulate FtsZ level in Escherichia coli. However, its structural identity remained unknown. In this study, we determined the complete sequence of StfZ and identified the isoforms and its promoters. We find that under native physiological conditions, StfZ is expressed at a 1:6 ratio of StfZ:ftsZ mRNA at all growth phases from three promoters as three isoforms of 366, 474, and 552 nt RNAs. Overexpression of StfZ reduces FtsZ protein level, increases cell length, and blocks cell division without affecting the ftsZ mRNA stability. We did not find differential expression of StfZ under the stress conditions of heat shock, cold shock, or oxidative stress, or at any growth phase. These data indicated that the cis-encoded StfZ antisense RNA to ftsZ mRNA may be involved in the fine tuning of ftsZ mRNA levels available for translation as per the growth-phase-specific requirement at all phases of growth and cell division.
Collapse
Affiliation(s)
- Deepak Anand
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Biology, Lund University, Lund, Sweden
- *Correspondence: Deepak Anand,
| | - Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Deepti Sharan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbiology, The University of Chicago, Chicago, IL, United States
| | - Atul Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Nagaraja Mukkayyan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | | |
Collapse
|
5
|
Characterization of Phages YuuY, KaiHaiDragon, and OneinaGillian Isolated from Microbacterium foliorum. Int J Mol Sci 2022; 23:ijms23126609. [PMID: 35743053 PMCID: PMC9224216 DOI: 10.3390/ijms23126609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Microbacterium foliorum is a Gram-positive bacteria found in organic matter. Three lytic bacteriophages, KaiHaiDragon, OneinaGillian, and YuuY, were isolated from M. foliorum strain NRRL B-24224. Phage YuuY in particular expresses a broad host range as it possesses the ability to infect closely related bacterial species Microbacterium aerolatum at a high plating efficiency. Characterization tests were performed on all three Microbacterium phage to assess morphology, genomic characteristics, pH and thermal stabilities, life cycle, and the type of receptor used for infection. All three phages showed similar pH stability, ranging from pH 5-11, except for KaiHaiDragon, which had a reduced infection effectiveness at a pH of 11. YuuY possessed a significantly higher temperature tolerance compared to the other Microbacterium phages as some phage particles remained viable after incubation temperatures of up to 80 °C. Based on the one-step growth curve assay, all three Microbacterium phages possessed a relatively short latent period of 90 min and an approximately two-fold burst size factor. Moreover, all three phages utilize a carbohydrate receptor to initiate infection. Based on bioinformatics analysis, YuuY, KaiHaiDragon and OneinaGillian were assigned to clusters EA10, EC, and EG, respectively.
Collapse
|
6
|
A Vibrio-based microbial platform for accelerated lignocellulosic sugar conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:58. [PMID: 35614459 PMCID: PMC9134653 DOI: 10.1186/s13068-022-02157-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/15/2022] [Indexed: 11/26/2022]
Abstract
Background Owing to increasing concerns about climate change and the depletion of fossil fuels, the development of efficient microbial processes for biochemical production from lignocellulosic biomass has been a key issue. Because process efficiency is greatly affected by the inherent metabolic activities of host microorganisms, it is essential to utilize a microorganism that can rapidly convert biomass-derived sugars. Here, we report a novel Vibrio-based microbial platform that can rapidly and simultaneously consume three major lignocellulosic sugars (i.e., glucose, xylose, and arabinose) faster than any previously reported microorganisms. Results The xylose isomerase pathway was constructed in Vibrio sp. dhg, which naturally displays high metabolic activities on glucose and arabinose but lacks xylose catabolism. Subsequent adaptive laboratory evolution significantly improved xylose catabolism of initial strain and led to unprecedently high growth and sugar uptake rate (0.67 h−1 and 2.15 g gdry cell weight−1 h−1, respectively). Furthermore, we achieved co-consumption of the three sugars by deletion of PtsG and introduction of GalP. We validated its superior performance and applicability by demonstrating efficient lactate production with high productivity (1.15 g/L/h) and titer (83 g/L). Conclusions In this study, we developed a Vibrio-based microbial platform with rapid and simultaneous utilization of the three major sugars from lignocellulosic biomass by applying an integrated approach of rational and evolutionary engineering. We believe that the developed strain can be broadly utilized to accelerate the production of diverse biochemicals from lignocellulosic biomass. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02157-3.
Collapse
|
7
|
John J, Jabbar J, Badjatia N, Rossi MJ, Lai WKM, Pugh BF. Genome-wide promoter assembly in E. coli measured at single-base resolution. Genome Res 2022; 32:878-892. [PMID: 35483960 PMCID: PMC9104697 DOI: 10.1101/gr.276544.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/19/2022] [Indexed: 11/04/2022]
Abstract
When detected at single-base-pair resolution, the genome-wide location, occupancy level, and structural organization of DNA-binding proteins provide mechanistic insights into genome regulation. Here we use ChIP-exo to provide a near-base-pair resolution view of the epigenomic organization of the Escherichia coli transcription machinery and nucleoid structural proteins at the time when cells are growing exponentially and upon rapid reprogramming (acute heat shock). We examined the site specificity of three sigma factors (RpoD/σ70, RpoH/σ32, and RpoN/σ54), RNA polymerase (RNAP or RpoA, -B, -C), and two nucleoid proteins (Fis and IHF). We suggest that DNA shape at the flanks of cognate motifs helps drive site specificity. We find that although RNAP and sigma factors occupy active cognate promoters, RpoH and RpoN can occupy quiescent promoters without the presence of RNAP. Thus, promoter-bound sigma factors can be triggered to recruit RNAP by a mechanism that is distinct from an obligatory cycle of free sigma binding RNAP followed by promoter binding. These findings add new dimensions to how sigma factors achieve promoter specificity through DNA sequence and shape, and further define mechanistic steps in regulated genome-wide assembly of RNAP at promoters in E. coli.
Collapse
Affiliation(s)
- Jordan John
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Javaid Jabbar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Nitika Badjatia
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Matthew J Rossi
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - William K M Lai
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Department of Computational Biology, Cornell University, Ithaca, New York 14850, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
8
|
Kariyazono R, Osanai T. Identification of the genome-wide distribution of cyanobacterial group-2 sigma factor SigE, accountable for its regulon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:548-561. [PMID: 35092706 DOI: 10.1111/tpj.15687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ryo Kariyazono
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takashi Osanai
- School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
9
|
Optimised Heterologous Expression and Functional Analysis of the Yersinia pestis F1-Capsular Antigen Regulator Caf1R. Int J Mol Sci 2021; 22:ijms22189805. [PMID: 34575967 PMCID: PMC8470410 DOI: 10.3390/ijms22189805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The bacterial pathogen, Yersinia pestis, has caused three historic pandemics and continues to cause small outbreaks worldwide. During infection, Y. pestis assembles a capsule-like protective coat of thin fibres of Caf1 subunits. This F1 capsular antigen has attracted much attention due to its clinical value in plague diagnostics and anti-plague vaccine development. Expression of F1 is tightly regulated by a transcriptional activator, Caf1R, of the AraC/XylS family, proteins notoriously prone to aggregation. Here, we have optimised the recombinant expression of soluble Caf1R. Expression from the native and synthetic codon-optimised caf1R cloned in three different expression plasmids was examined in a library of E. coli host strains. The functionality of His-tagged Caf1R was demonstrated in vivo, but insolubility was a problem with overproduction. High levels of soluble MBP-Caf1R were produced from codon optimised caf1R. Transcriptional-lacZ reporter fusions defined the PM promoter and Caf1R binding site responsible for transcription of the cafMA1 operon. Use of the identified Caf1R binding caf DNA sequence in an electrophoretic mobility shift assay (EMSA) confirmed correct folding and functionality of the Caf1R DNA-binding domain in recombinant MBP-Caf1R. Availability of functional recombinant Caf1R will be a valuable tool to elucidate control of expression of F1 and Caf1R-regulated pathophysiology of Y. pestis.
Collapse
|
10
|
Sant DW, Sinclair M, Mungall CJ, Schulz S, Zerbino D, Lovering RC, Logie C, Eilbeck K. Sequence ontology terminology for gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194745. [PMID: 34389511 DOI: 10.1016/j.bbagrm.2021.194745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023]
Abstract
The Sequence Ontology (SO) is a structured, controlled vocabulary that provides terms and definitions for genomic annotation. The Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC) initiative has gathered input from many groups of researchers, including the SO, the Gene Ontology (GO), and gene regulation experts, with the goal of curating information about how gene expression is regulated at the molecular level. Here we discuss recent updates to the SO reflecting current knowledge. We have developed more accurate human-readable terms (also known as classes), including new definitions, and relationships related to the expression of genes. New findings continue to give us insight into the biology of gene regulation, including the order of events, and participants in those events. These updates to the SO support logical reasoning with the current understanding of gene expression regulation at the molecular level.
Collapse
Affiliation(s)
- David W Sant
- Department of biomedical informatics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT, USA.
| | - Michael Sinclair
- Department of biomedical informatics, University of Utah, Salt Lake City, UT, USA
| | - Christopher J Mungall
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory: Berkeley, CA, US.
| | - Stefan Schulz
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria.
| | - Daniel Zerbino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK.
| | - Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK.
| | - Colin Logie
- Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525, GA Nijmegen, Netherlands.
| | - Karen Eilbeck
- Department of biomedical informatics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Wu Q, Fu J, Sun J, Wang X, Tang X, Lu W, Tan C, Li L, Deng X, Xu Q. A plant CitPITP1 protein-coding exon sequence serves as a promoter in bacteria. J Biotechnol 2021; 339:1-13. [PMID: 34298024 DOI: 10.1016/j.jbiotec.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/19/2022]
Abstract
Genetic manipulation of plant genes in prokaryotes has been widely used in molecular biology, but the function of a DNA sequence is far from being fully known. Here, we discovered that a plant protein-coding gene containing the CRAL_TRIO domain serves as a promoter in bacteria. We firstly characterized CitPITP1 from Citrus, which contains the CRAL_TRIO domain, and identified a 64-bp sequence (key64) that is critical for prokaryotic promoter activity. In vitro experiments indicated that the bacterial RNA polymerase subunit RpoD specifically binds to key64. We then expanded our research to fungi, plant and animal species to identify key64-like sequences. Five such prokaryotic promoters were isolated from Amborella, Rice, Arabidopsis and Citrus. Two conserved motifs were identified, and mutation analysis indicated that the nucleotides at positions 7, 29 and 30 are crucial for key64-like transcription activity. We detected full-length recombinant CitPITP1 from E. coli, and visualized a CitPITP1-GFP fusion protein in plant cells, supporting the idea that CitPITP1 encodes a protein. However, although exon 4 of CitPITP1 contained key64, it did not demonstrate promoter activity in plants. Our study describes a new basal promoter, provides evidence for neofunction of gene elements across different kingdoms, and provides new knowledge for the modular design of promoters.
Collapse
Affiliation(s)
- Qingjiang Wu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Jialing Fu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Juan Sun
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xiaomei Tang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA; Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China.
| |
Collapse
|
12
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
13
|
Shimamoto N, Imashimizu M. RNA Polymerase and Transcription Mechanisms: The Forefront of Physicochemical Studies of Chemical Reactions. Biomolecules 2020; 11:E32. [PMID: 33383858 PMCID: PMC7823607 DOI: 10.3390/biom11010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
The study of transcription and its regulation is an interdisciplinary field that is closely connected with genetics, structural biology, and reaction theory. Among these, although less attention has been paid to reaction theory, it is becoming increasingly useful for research on transcription. Rate equations are commonly used to describe reactions involved in transcription, but they tend to be used unaware of the timescales of relevant physical processes. In this review, we discuss the limitation of rate equation for describing three-dimensional diffusion and one-dimensional diffusion along DNA. We then introduce the chemical ratchet mechanism recently proposed for explaining the antenna effect, an enhancement of the binding affinity to a specific site on longer DNA, which deviates from a thermodynamic rule. We show that chemical ratchet cannot be described with a single set of rate equations but alternative sets of rate equations that temporally switch no faster than the binding reaction.
Collapse
Affiliation(s)
- Nobuo Shimamoto
- National Institute of Genetics Mishima, Shizuoka-ken 411-8540, Japan
| | - Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan;
| |
Collapse
|
14
|
Expanding the promoter toolbox of Bacillus megaterium. J Biotechnol 2019; 294:38-48. [DOI: 10.1016/j.jbiotec.2019.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 02/02/2023]
|
15
|
Yona AH, Alm EJ, Gore J. Random sequences rapidly evolve into de novo promoters. Nat Commun 2018; 9:1530. [PMID: 29670097 PMCID: PMC5906472 DOI: 10.1038/s41467-018-04026-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 11/09/2022] Open
Abstract
How new functions arise de novo is a fundamental question in evolution. We studied de novo evolution of promoters in Escherichia coli by replacing the lac promoter with various random sequences of the same size (~100 bp) and evolving the cells in the presence of lactose. We find that ~60% of random sequences can evolve expression comparable to the wild-type with only one mutation, and that ~10% of random sequences can serve as active promoters even without evolution. Such a short mutational distance between random sequences and active promoters may improve the evolvability, yet may also lead to accidental promoters inside genes that interfere with normal expression. Indeed, our bioinformatic analyses indicate that E. coli was under selection to reduce accidental promoters inside genes by avoiding promoter-like sequences. We suggest that a low threshold for functionality balanced by selection against undesired targets can increase the evolvability by making new beneficial features more accessible. Bacterial promoters initiate gene transcription and have distinct sequence features. Here, the authors show that random sequences that contain no information are just on the verge of functioning as promoters in Escherichia coli.
Collapse
Affiliation(s)
- Avihu H Yona
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
16
|
Kaloudas D, Pavlova N, Penchovsky R. EBWS: Essential Bioinformatics Web Services for Sequence Analyses. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 16:942-953. [PMID: 29993817 DOI: 10.1109/tcbb.2018.2816645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Essential Bioinformatics Web Services (EBWS) are implemented on a new PHP-based server that provides useful tools for analyses of DNA, RNA, and protein sequences applying a user-friendly interface. Nine Web-based applets are currently available on the Web server. They include reverse complementary DNA and random DNA/RNA/peptide oligomer generators, a pattern sequence searcher, a DNA restriction cutter, a prokaryotic ORF finder, a random DNA/RNA mutation generator. It also includes calculators of melting temperature (TM) of DNA/DNA, RNA/RNA, and DNA/RNA hybrids, a guide RNA (gRNA) generator for the CRISPR/Cas9 system and an annealing temperature calculator for multiplex PCR. The pattern-searching applet has no limitations in the number of motif inputs and applies a toolbox of Regex quantifiers that can be used for defining complex sequence queries of RNA, DNA, and protein sequences. The DNA enzyme digestion program utilizes a large database of 1502 restriction enzymes. The gRNA generator has a database of 25 bacterial genomes searchable for gRNA target sequences and has an option for searching in any genome sequence given by the user. All programs are permanently available online at http://penchovsky.atwebpages.com/applications.php without any restrictions.
Collapse
|
17
|
Role of a single noncoding nucleotide in the evolution of an epidemic African clade of Salmonella. Proc Natl Acad Sci U S A 2018; 115:E2614-E2623. [PMID: 29487214 PMCID: PMC5856525 DOI: 10.1073/pnas.1714718115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Invasive nontyphoidal Salmonella disease is a major and previously neglected tropical disease responsible for an estimated ∼390,000 deaths per year in Africa, largely caused by a variant of Salmonella Typhimurium called ST313. Despite the availability of >100,000 Salmonella genomes, it has proven challenging to associate individual SNPs with pathogenic traits of this dangerous bacterium. Here, we used a transcriptomic strategy to identify a single-nucleotide change in a promoter region responsible for crucial phenotypic differences of African S. Typhimurium. Our findings show that a noncoding nucleotide of the bacterial genome can have a profound effect upon the pathogenesis of infectious disease. Salmonella enterica serovar Typhimurium ST313 is a relatively newly emerged sequence type that is causing a devastating epidemic of bloodstream infections across sub-Saharan Africa. Analysis of hundreds of Salmonella genomes has revealed that ST313 is closely related to the ST19 group of S. Typhimurium that cause gastroenteritis across the world. The core genomes of ST313 and ST19 vary by only ∼1,000 SNPs. We hypothesized that the phenotypic differences that distinguish African Salmonella from ST19 are caused by certain SNPs that directly modulate the transcription of virulence genes. Here we identified 3,597 transcriptional start sites of the ST313 strain D23580, and searched for a gene-expression signature linked to pathogenesis of Salmonella. We identified a SNP in the promoter of the pgtE gene that caused high expression of the PgtE virulence factor in African S. Typhimurium, increased the degradation of the factor B component of human complement, contributed to serum resistance, and modulated virulence in the chicken infection model. We propose that high levels of PgtE expression by African S. Typhimurium ST313 promote bacterial survival and dissemination during human infection. Our finding of a functional role for an extragenic SNP shows that approaches used to deduce the evolution of virulence in bacterial pathogens should include a focus on noncoding regions of the genome.
Collapse
|
18
|
Bottacini F, Zomer A, Milani C, Ferrario C, Lugli GA, Egan M, Ventura M, van Sinderen D. Global transcriptional landscape and promoter mapping of the gut commensal Bifidobacterium breve UCC2003. BMC Genomics 2017; 18:991. [PMID: 29281966 PMCID: PMC5746004 DOI: 10.1186/s12864-017-4387-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Background Bifidobacterium breve represents a common member of the infant gut microbiota and its presence in the gut has been associated with host well being. For this reason it is relevant to investigate and understand the molecular mechanisms underlying the establishment, persistence and activities of this gut commensal in the host environment. Results The assessment of vegetative promoters in the bifidobacterial prototype Bifidobacterium breve UCC2003 was performed employing a combination of RNA tiling array analysis and cDNA sequencing. Canonical −10 (TATAAT) and −35 (TTGACA) sequences were identified upstream of transcribed genes or operons, where deviations from this consensus correspond to transcription level variations. A Random Forest analysis assigned the −10 region of B. breve promoters as the element most impacting on the level of transcription, followed by the spacer length and the 5’-UTR length of transcripts. Furthermore, our transcriptome study also identified rho-independent termination as the most common and effective termination signal of highly and moderately transcribed operons in B. breve. Conclusion The present study allowed us to identify genes and operons that are actively transcribed in this organism during logarithmic growth, and link promoter elements with levels of transcription of essential genes in this organism. As homologs of many of our identified genes are present across the whole genus Bifidobacterium, our dataset constitutes a transcriptomic reference to be used for future investigations of gene expression in members of this genus. Electronic supplementary material The online version of this article (10.1186/s12864-017-4387-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Bottacini
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Muireann Egan
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
19
|
Dostálová H, Holátko J, Busche T, Rucká L, Rapoport A, Halada P, Nešvera J, Kalinowski J, Pátek M. Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum. AMB Express 2017. [PMID: 28651382 PMCID: PMC5483222 DOI: 10.1186/s13568-017-0436-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Corynebacterium glutamicum is an important industrial producer of various amino acids and other metabolites. The C. glutamicum genome encodes seven sigma subunits (factors) of RNA polymerase: the primary sigma factor SigA (σA), the primary-like σB and five alternative sigma factors (σC, σD, σE, σH and σM). We have developed in vitro and in vivo methods to assign particular sigma factors to individual promoters of different classes. In vitro transcription assays and measurements of promoter activity using the overexpression of a single sigma factor gene and the transcriptional fusion of the promoter to the gfpuv reporter gene enabled us to reliably define the sigma factor dependency of promoters. To document the strengths of these methods, we tested examples of respective promoters for each C. glutamicum sigma factor. Promoters of the rshA (anti-sigma for σH) and trxB1 (thioredoxin) genes were found to be σH-dependent, whereas the promoter of the sigB gene (sigma factor σB) was σE- and σH-dependent. It was confirmed that the promoter of the cg2556 gene (iron-regulated membrane protein) is σC-dependent as suggested recently by other authors. The promoter of cmt1 (trehalose corynemycolyl transferase) was found to be clearly σD-dependent. No σM-dependent promoter was identified. The typical housekeeping promoter P2sigA (sigma factor σA) was proven to be σA-dependent but also recognized by σB. Similarly, the promoter of fba (fructose-1,6-bisphosphate aldolase) was confirmed to be σB-dependent but also functional with σA. The study provided demonstrations of the broad applicability of the developed methods and produced original data on the analyzed promoters.
Collapse
|
20
|
Hook-Barnard IG, Hinton DM. Transcription Initiation by Mix and Match Elements: Flexibility for Polymerase Binding to Bacterial Promoters. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial RNA polymerase is composed of a core of subunits (β β′, α1, α2, ω), which have RNA synthesizing activity, and a specificity factor (σ), which identifies the start of transcription by recognizing and binding to sequence elements within promoter DNA. Four core promoter consensus sequences, the –10 element, the extended –10 (TGn) element, the –35 element, and the UP elements, have been known for many years; the importance of a nontemplate G at position -5 has been recognized more recently. However, the functions of these elements are not the same. The AT-rich UP elements, the –35 elements (–35TTGACA–30), and the extended –10 (15TGn–13) are recognized as double-stranded binding elements, whereas the –5 nontemplate G is recognized in the context of single-stranded DNA at the transcription bubble. Furthermore, the –10 element (–12TATAAT–7) is recognized as both double-stranded DNA for the T:A bp at position –12 and as nontemplate, single-stranded DNA from positions –11 to –7. The single-stranded sequences at positions –11 to –7 as well as the –5 contribute to later steps in transcription initiation that involve isomerization of polymerase and separation of the promoter DNA around the transcription start site. Recent work has demonstrated that the double-stranded elements may be used in various combinations to yield an effective promoter. Thus, while some minimal number of contacts is required for promoter function, polymerase allows the elements to be mixed and matched. Interestingly, which particular elements are used does not appear to fundamentally alter the transcription bubble generated in the stable complex. In this review, we discuss the multiple steps involved in forming a transcriptionally competent polymerase/promoter complex, and we examine what is known about polymerase recognition of core promoter elements. We suggest that considering promoter elements according to their involvement in early (polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply from their match to conventional promoter consensus sequences is a more instructive form of promoter classification.
Collapse
Affiliation(s)
- India G. Hook-Barnard
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8 Room 2A-13, Bethesda, MD 20892-0830
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8 Room 2A-13, Bethesda, MD 20892-0830
| |
Collapse
|
21
|
Decoene T, De Paepe B, Maertens J, Coussement P, Peters G, De Maeseneire SL, De Mey M. Standardization in synthetic biology: an engineering discipline coming of age. Crit Rev Biotechnol 2017; 38:647-656. [PMID: 28954542 DOI: 10.1080/07388551.2017.1380600] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Leaping DNA read-and-write technologies, and extensive automation and miniaturization are radically transforming the field of biological experimentation by providing the tools that enable the cost-effective high-throughput required to address the enormous complexity of biological systems. However, standardization of the synthetic biology workflow has not kept abreast with dwindling technical and resource constraints, leading, for example, to the collection of multi-level and multi-omics large data sets that end up disconnected or remain under- or even unexploited. PURPOSE In this contribution, we critically evaluate the various efforts, and the (limited) success thereof, in order to introduce standards for defining, designing, assembling, characterizing, and sharing synthetic biology parts. The causes for this success or the lack thereof, as well as possible solutions to overcome these, are discussed. CONCLUSION Akin to other engineering disciplines, extensive standardization will undoubtedly speed-up and reduce the cost of bioprocess development. In this respect, further implementation of synthetic biology standards will be crucial for the field in order to redeem its promise, i.e. to enable predictable forward engineering.
Collapse
Affiliation(s)
- Thomas Decoene
- a Centre for Synthetic Biology, Ghent University , Ghent , Belgium
| | - Brecht De Paepe
- a Centre for Synthetic Biology, Ghent University , Ghent , Belgium
| | - Jo Maertens
- a Centre for Synthetic Biology, Ghent University , Ghent , Belgium
| | | | - Gert Peters
- a Centre for Synthetic Biology, Ghent University , Ghent , Belgium
| | - Sofie L De Maeseneire
- b InBio.be, Centre for Industrial Biotechnology and Biocatalysis, Ghent University , Ghent , Belgium
| | - Marjan De Mey
- a Centre for Synthetic Biology, Ghent University , Ghent , Belgium
| |
Collapse
|
22
|
RNA-Mediated cis Regulation in Acinetobacter baumannii Modulates Stress-Induced Phenotypic Variation. J Bacteriol 2017; 199:JB.00799-16. [PMID: 28320880 DOI: 10.1128/jb.00799-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
In the nosocomial opportunistic pathogen Acinetobacter baumannii, RecA-dependent mutagenesis, which causes antibiotic resistance acquisition, is linked to the DNA damage response (DDR). Notably, unlike the Escherichia coli paradigm, recA and DDR gene expression in A. baumannii is bimodal. Namely, there is phenotypic variation upon DNA damage, which may provide a bet-hedging strategy for survival. Thus, understanding recA gene regulation is key to elucidate the yet unknown DDR regulation in A. baumannii Here, we identify a structured 5' untranslated region (UTR) in the recA transcript which serves as a cis-regulatory element. We show that a predicted stem-loop structure in this 5' UTR affects mRNA half-life and underlies bimodal gene expression and thus phenotypic variation in response to ciprofloxacin treatment. We furthermore show that the stem-loop structure of the recA 5' UTR influences intracellular RecA protein levels and, in vivo, impairing the formation of the stem-loop structure of the recA 5' UTR lowers cell survival of UV treatment and decreases rifampin resistance acquisition from DNA damage-induced mutagenesis. We hypothesize that the 5' UTR allows for stable recA transcripts during stress, including antibiotic treatment, enabling cells to maintain suitable RecA levels for survival. This innovative strategy to regulate the DDR in A. baumannii may contribute to its success as a pathogen.IMPORTANCEAcinetobacter baumannii is an opportunistic pathogen quickly gaining antibiotic resistances. Mutagenesis and antibiotic resistance acquisition are linked to the DNA damage response (DDR). However, how the DDR is regulated in A. baumannii remains unknown, since unlike most bacteria, A. baumannii does not follow the regulation of the Escherichia coli paradigm. In this study, we have started to uncover the mechanisms regulating the novel A. baumannii DDR. We have found that a cis-acting 5' UTR regulates recA transcript stability, RecA protein levels, and DNA damage-induced phenotypic variation. Though 5' UTRs are known to provide stability to transcripts in bacteria, this is the first example in which it regulates a bimodal DDR response through recA transcript stabilization, potentially enabling cells to have enough RecA for survival and genetic variability.
Collapse
|
23
|
Cheng J, Romantsov T, Engel K, Doxey AC, Rose DR, Neufeld JD, Charles TC. Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences. PLoS One 2017; 12:e0172545. [PMID: 28273103 PMCID: PMC5342196 DOI: 10.1371/journal.pone.0172545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
The techniques of metagenomics have allowed researchers to access the genomic potential of uncultivated microbes, but there remain significant barriers to determination of gene function based on DNA sequence alone. Functional metagenomics, in which DNA is cloned and expressed in surrogate hosts, can overcome these barriers, and make important contributions to the discovery of novel enzymes. In this study, a soil metagenomic library carried in an IncP cosmid was used for functional complementation for β-galactosidase activity in both Sinorhizobium meliloti (α-Proteobacteria) and Escherichia coli (γ-Proteobacteria) backgrounds. One β-galactosidase, encoded by six overlapping clones that were selected in both hosts, was identified as a member of glycoside hydrolase family 2. We could not identify ORFs obviously encoding possible β-galactosidases in 19 other sequenced clones that were only able to complement S. meliloti. Based on low sequence identity to other known glycoside hydrolases, yet not β-galactosidases, three of these ORFs were examined further. Biochemical analysis confirmed that all three encoded β-galactosidase activity. Lac36W_ORF11 and Lac161_ORF7 had conserved domains, but lacked similarities to known glycoside hydrolases. Lac161_ORF10 had neither conserved domains nor similarity to known glycoside hydrolases. Bioinformatic and structural modeling implied that Lac161_ORF10 protein represented a novel enzyme family with a five-bladed propeller glycoside hydrolase domain. By discovering founding members of three novel β-galactosidase families, we have reinforced the value of functional metagenomics for isolating novel genes that could not have been predicted from DNA sequence analysis alone.
Collapse
Affiliation(s)
- Jiujun Cheng
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Katja Engel
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - David R. Rose
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Josh D. Neufeld
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- * E-mail:
| |
Collapse
|
24
|
Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLoS One 2017; 12:e0171410. [PMID: 28158264 PMCID: PMC5291440 DOI: 10.1371/journal.pone.0171410] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/20/2017] [Indexed: 11/18/2022] Open
Abstract
Accurate computational identification of promoters remains a challenge as these key DNA regulatory regions have variable structures composed of functional motifs that provide gene-specific initiation of transcription. In this paper we utilize Convolutional Neural Networks (CNN) to analyze sequence characteristics of prokaryotic and eukaryotic promoters and build their predictive models. We trained a similar CNN architecture on promoters of five distant organisms: human, mouse, plant (Arabidopsis), and two bacteria (Escherichia coli and Bacillus subtilis). We found that CNN trained on sigma70 subclass of Escherichia coli promoter gives an excellent classification of promoters and non-promoter sequences (Sn = 0.90, Sp = 0.96, CC = 0.84). The Bacillus subtilis promoters identification CNN model achieves Sn = 0.91, Sp = 0.95, and CC = 0.86. For human, mouse and Arabidopsis promoters we employed CNNs for identification of two well-known promoter classes (TATA and non-TATA promoters). CNN models nicely recognize these complex functional regions. For human promoters Sn/Sp/CC accuracy of prediction reached 0.95/0.98/0,90 on TATA and 0.90/0.98/0.89 for non-TATA promoter sequences, respectively. For Arabidopsis we observed Sn/Sp/CC 0.95/0.97/0.91 (TATA) and 0.94/0.94/0.86 (non-TATA) promoters. Thus, the developed CNN models, implemented in CNNProm program, demonstrated the ability of deep learning approach to grasp complex promoter sequence characteristics and achieve significantly higher accuracy compared to the previously developed promoter prediction programs. We also propose random substitution procedure to discover positionally conserved promoter functional elements. As the suggested approach does not require knowledge of any specific promoter features, it can be easily extended to identify promoters and other complex functional regions in sequences of many other and especially newly sequenced genomes. The CNNProm program is available to run at web server http://www.softberry.com.
Collapse
Affiliation(s)
- Ramzan Kh. Umarov
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | |
Collapse
|
25
|
|
26
|
Schwab S, Pessoa CA, de Lima Bergami AA, de Azevedo Figueiredo NL, Dos Santos Teixeira KR, Baldani JI. Isolation and characterization of active promoters from Gluconacetobacter diazotrophicus strain PAL5 using a promoter-trapping plasmid. Arch Microbiol 2016; 198:445-58. [PMID: 26914247 DOI: 10.1007/s00203-016-1203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/18/2016] [Accepted: 02/07/2016] [Indexed: 12/27/2022]
Abstract
Gluconacetobacter diazotrophicus is a nitrogen-fixing, endophytic bacterium that has the potential to promote plant growth and increase yield. Genetically modified strains might get more benefits to host plants, including through expression of useful proteins, such as Cry toxins from B. thuringiensis, or enzymes involved in phytohormone production, proteins with antagonistic activity for phytopathogens, or that improve nutrient utilization by the plant. For that, expression systems for G. diazotrophicus are needed, which requires active promoters fused to foreign (or innate) genes. This article describes the construction of a G. diazotrophicus PAL5 promoter library using a promoter-less lacZ-bearing vector, and the identification of six active promoters through β-galactosidase activity assays, sequencing and localization in the bacterial genome. The characterized promoters, which are located on distinct regions of the bacterial genome and encoding either sense or antisense transcripts, present variable expression strengths and might be used in the future for expressing useful proteins.
Collapse
Affiliation(s)
- Stefan Schwab
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, Brazil.
| | - Cristiane Alves Pessoa
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
- Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Amanda Aparecida de Lima Bergami
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
- Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
| | - Nathália Lima de Azevedo Figueiredo
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
- Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
| | | | - José Ivo Baldani
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, Brazil
| |
Collapse
|
27
|
Prada-Ramírez HA, Pérez-Mendoza D, Felipe A, Martínez-Granero F, Rivilla R, Sanjuán J, Gallegos MT. AmrZ regulates cellulose production in Pseudomonas syringae pv. tomato DC3000. Mol Microbiol 2015; 99:960-77. [PMID: 26564578 DOI: 10.1111/mmi.13278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2015] [Indexed: 11/27/2022]
Abstract
In Pseudomonas syringae pv. tomato DC3000, the second messenger c-di-GMP has been previously shown to stimulate pellicle formation and cellulose biosynthesis. A screen for genes involved in cellulose production under high c-di-GMP intracellular levels led to the identification of insertions in two genes, wssB and wssE, belonging to the Pto DC3000 cellulose biosynthesis operon wssABCDEFGHI. Interestingly, beside cellulose-deficient mutants, colonies with a rougher appearance than the wild type also arouse among the transposants. Those mutants carry insertions in amrZ, a gene encoding a transcriptional regulator in different Pseudomonas. Here, we provide evidence that AmrZ is involved in the regulation of bacterial cellulose production at transcriptional level by binding to the promoter region of the wssABCDEFGHI operon and repressing cellulose biosynthesis genes. Mutation of amrZ promotes wrinkly colony morphology, increased cellulose production and loss of motility in Pto DC3000. AmrZ regulon includes putative c-di-GMP metabolising proteins, like AdcA and MorA, which may also impact those phenotypes. Furthermore, an amrZ but not a cellulose-deficient mutant turned out to be impaired in pathogenesis, indicating that AmrZ is a key regulator of Pto DC3000 virulence probably by controlling bacterial processes other than cellulose production.
Collapse
Affiliation(s)
- Harold A Prada-Ramírez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Daniel Pérez-Mendoza
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Antonia Felipe
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | | | - Rafael Rivilla
- Department of Biology, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Sanjuán
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
28
|
Abstract
Proline was among the last biosynthetic precursors to have its biosynthetic pathway unraveled. This review recapitulates the findings on the biosynthesis and transport of proline. Glutamyl kinase (GK) catalyzes the ATP-dependent phosphorylation of L-glutamic acid. Purification of γ-GK from Escherichia coli was facilitated by the expression of the proB and proA genes from a high-copy-number plasmid and the development of a specific coupled assay based on the NADPH-dependent reduction of GP by γ-glutamyl phosphate reductase (GPR). GPR catalyzes the NADPH-dependent reduction of GP to GSA. Site directed mutagenesis was used to identify residues that constitute the active site of E. coli GK. This analysis indicated that there is an overlap between the binding sites for glutamate and the allosteric inhibitor proline, suggesting that proline competes with the binding of glutamate. The review also summarizes the genes involved in the metabolism of proline in E. coli and Salmonella. Among the completed genomic sequences of Enterobacteriaceae, genes specifying all three proline biosynthetic enzymes can be discerned in E. coli, Shigella, Salmonella enterica, Serratia marcescens, Erwinia carotovora, Yersinia, Photorhabdus luminescens, and Sodalis glossinidius strain morsitans. The intracellular proline concentration increases with increasing external osmolality in proline-overproducing mutants. This apparent osmotic regulation of proline accumulation in the overproducing strains may be the result of increased retention or recapture of proline, achieved by osmotic stimulation of the ProP or ProU proline transport systems. A number of proline analogs can be incorporated into proteins in vivo or in vitro.
Collapse
|
29
|
Castillo-Lizardo MG, Aragón IM, Carvajal V, Matas IM, Pérez-Bueno ML, Gallegos MT, Barón M, Ramos C. Contribution of the non-effector members of the HrpL regulon, iaaL and matE, to the virulence of Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Microbiol 2015; 15:165. [PMID: 26285820 PMCID: PMC4544800 DOI: 10.1186/s12866-015-0503-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phytohormone indole-3-acetic acid (IAA) is widely distributed among plant-associated bacteria. Certain strains of the Pseudomonas syringae complex can further metabolize IAA into a less biologically active amino acid conjugate, 3-indole-acetyl-ε-L-lysine, through the action of the iaaL gene. In P. syringae and Pseudomonas savastanoi strains, the iaaL gene is found in synteny with an upstream gene, here called matE, encoding a putative MATE family transporter. In P. syringae pv. tomato (Pto) DC3000, a pathogen of tomato and Arabidopsis plants, the HrpL sigma factor controls the expression of a suite of virulence-associated genes via binding to hrp box promoters, including that of the iaaL gene. However, the significance of HrpL activation of the iaaL gene in the virulence of Pto DC3000 is still unclear. RESULTS A conserved hrp box motif is found upstream of the iaaL gene in the genomes of P. syringae strains. However, although the promoter region of matE is only conserved in genomospecies 3 of this bacterial group, we showed that this gene also belongs to the Pto DC3000 HrpL regulon. We also demonstrated that the iaaL gene is transcribed both independently and as part of an operon with matE in this pathogen. Deletion of either the iaaL or the matE gene resulted in reduced fitness and virulence of Pto DC3000 in tomato plants. In addition, we used multicolor fluorescence imaging to visualize the responses of tomato plants to wild-type Pto DC3000 and to its ΔmatE and ΔiaaL mutants. Activation of secondary metabolism prior to the development of visual symptoms was observed in tomato leaves after bacterial challenges with all strains. However, the observed changes were strongest in plants challenged by the wild-type strain, indicating lower activation of secondary metabolism in plants infected with the ΔmatE or ΔiaaL mutants. CONCLUSIONS Our results provide new evidence for the roles of non-type III effector genes belonging to the Pto DC3000 HrpL regulon in virulence.
Collapse
Affiliation(s)
- Melissa G Castillo-Lizardo
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain.,German Center for Neurodegenerative Diseases, DZNE, Otfried-Müller-Straße, 27, 72076, Tübingen, Germany
| | - Isabel M Aragón
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain
| | - Vivian Carvajal
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Isabel M Matas
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain.,Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | - María Luisa Pérez-Bueno
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María-Trinidad Gallegos
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Matilde Barón
- Estación Experimental del Zaidín, CSIC (EEZ-CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Cayo Ramos
- Área de Genética, Universidad de Málaga, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-CSIC (IHSM-UMA-CSIC), Campus de Teatinos, 29071, Málaga, Spain.
| |
Collapse
|
30
|
Abstract
Transcription initiation is a highly regulated step of gene expression. Here, we discuss the series of large conformational changes set in motion by initial specific binding of bacterial RNA polymerase (RNAP) to promoter DNA and their relevance for regulation. Bending and wrapping of the upstream duplex facilitates bending of the downstream duplex into the active site cleft, nucleating opening of 13 bp in the cleft. The rate-determining opening step, driven by binding free energy, forms an unstable open complex, probably with the template strand in the active site. At some promoters, this initial open complex is greatly stabilized by rearrangements of the discriminator region between the -10 element and +1 base of the nontemplate strand and of mobile in-cleft and downstream elements of RNAP. The rate of open complex formation is regulated by effects on the rapidly-reversible steps preceding DNA opening, while open complex lifetime is regulated by effects on the stabilization of the initial open complex. Intrinsic DNA opening-closing appears less regulated. This noncovalent mechanism and its regulation exhibit many analogies to mechanisms of enzyme catalysis.
Collapse
|
31
|
Sun Z, Westermann C, Yuan J, Riedel CU. Experimental determination and characterization of the gap promoter of Bifidobacterium bifidum S17. Bioengineered 2014; 5:371-7. [PMID: 25482086 DOI: 10.4161/bioe.34423] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The DNA sequence upstream of the glyceraldehyde 3-phosphate dehydrogenase gene (gap) of various strains of bifidobacteria is used in a number of vector systems for homologous and heterologous expression in this group of bacteria. To date none of the bifidobacterial gap promoters (Pgap) have been verified experimentally. Here, we probe a range of putative bifidobacterial promoters hypothesized to show high constitutive transcriptional activity using a β-glucuronidase reporter system. In silico analysis revealed a predicted bacterial promoter upstream of the gap gene of Bifidobacterium bifidum S17. The corresponding DNA sequences was cloned into the promoter probe vector pMDY23 and yielded highest reporter activities among the promoter sequences tested confirming previous studies. Using rapid amplification of cDNA ends (5'-RACE), we identified the transcription start site (TSS) of Pgap of B. bifidum S17. The experimentally determined TSS and the associated -10 and -35 regions do not match with the promoter predicted in silico. Moreover, a potential ribosome-binding site (RBS) was identified upstream of the ATG start codon of the gap gene, which is complementary to the 3'-end of the 16S rRNA with only 1 mismatch suggesting efficient initiation of translation. Alignment of the Pgap sequences of a number of representative bifidobacteria showed a high level of conservation and the presence of -35 and -10 regions, which are similar but not identical to the consensus promoter sequences of house-keeping genes of Escherichia coli and Bacillus subtilis. Collectively, these results confirm the suitability of Pgap for high level, constitutive expression in bifidobacteria.
Collapse
Affiliation(s)
- Zhongke Sun
- a Institute of Microbiology and Biotechnology ; University of Ulm ; Ulm , Germany
| | | | | | | |
Collapse
|
32
|
Romero DA, Hasan AH, Lin YF, Kime L, Ruiz-Larrabeiti O, Urem M, Bucca G, Mamanova L, Laing EE, van Wezel GP, Smith CP, Kaberdin VR, McDowall KJ. A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing. Mol Microbiol 2014; 94:963-987. [PMID: 25266672 PMCID: PMC4681348 DOI: 10.1111/mmi.12810] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2014] [Indexed: 12/12/2022]
Abstract
Streptomyces coelicolor is a model for studying bacteria renowned as the foremost source of natural products used clinically. Post-genomic studies have revealed complex patterns of gene expression and links to growth, morphological development and individual genes. However, the underlying regulation remains largely obscure, but undoubtedly involves steps after transcription initiation. Here we identify sites involved in RNA processing and degradation as well as transcription within a nucleotide-resolution map of the transcriptional landscape. This was achieved by combining RNA-sequencing approaches suited to the analysis of GC-rich organisms. Escherichia coli was analysed in parallel to validate the methodology and allow comparison. Previously, sites of RNA processing and degradation had not been mapped on a transcriptome-wide scale for E. coli. Through examples, we show the value of our approach and data sets. This includes the identification of new layers of transcriptional complexity associated with several key regulators of secondary metabolism and morphological development in S. coelicolor and the identification of host-encoded leaderless mRNA and rRNA processing associated with the generation of specialized ribosomes in E. coli. New regulatory small RNAs were identified for both organisms. Overall the results illustrate the diversity in mechanisms used by different bacterial groups to facilitate and regulate gene expression.
Collapse
Affiliation(s)
- David A Romero
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Ayad H Hasan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Yu-fei Lin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| | - Olatz Ruiz-Larrabeiti
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHULeioa, Spain
| | - Mia Urem
- Institute of Biology, Sylvius Laboratories, Leiden UniversityLeiden, NL-2300 RA, The Netherlands
| | - Giselda Bucca
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Lira Mamanova
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, CB10 1SA, UK
| | - Emma E Laing
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Gilles P van Wezel
- Institute of Biology, Sylvius Laboratories, Leiden UniversityLeiden, NL-2300 RA, The Netherlands
| | - Colin P Smith
- Department of Microbial & Cellular Sciences, Faculty of Health & Medical Sciences, University of SurreyGuildford, GU2 7XH, UK
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHULeioa, Spain
- IKERBASQUE, Basque Foundation for Science48011, Bilbao, Spain
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT, UK
| |
Collapse
|
33
|
Singh AK, Sad K, Singh SK, Shivaji S. Regulation of gene expression at low temperature: role of cold-inducible promoters. Microbiology (Reading) 2014; 160:1291-1296. [DOI: 10.1099/mic.0.077594-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Psychrophilic micro-organisms are the most dominant flora in cold habitats. Their unique ability to survive and multiply at low temperatures (<5 °C) is based on their ability to modulate the rigidity of the membrane, to transcribe, to translate and to catalyse biochemical reactions at low temperature. A number of genes are known to be upregulated during growth at low temperature and cold-inducible promoters are known to regulate the expression of genes at low temperature. In this review, we attempted to compile promoter sequences of genes that are cold-inducible so as to identify similarities and to compare the distinct features of each type of promoter when microbes are grown in the cold.
Collapse
Affiliation(s)
| | - Kirti Sad
- Centre of Biotechnology (University of Allahabad), Allahabad, India
| | | | | |
Collapse
|
34
|
Gunnelius L, Hakkila K, Kurkela J, Wada H, Tyystjärvi E, Tyystjärvi T. The omega subunit of the RNA polymerase core directs transcription efficiency in cyanobacteria. Nucleic Acids Res 2014; 42:4606-14. [PMID: 24476911 PMCID: PMC3985657 DOI: 10.1093/nar/gku084] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The eubacterial RNA polymerase core, a transcription machinery performing DNA-dependent RNA polymerization, consists of two α subunits and β, β' and ω subunits. An additional σ subunit is recruited for promoter recognition and transcription initiation. Cyanobacteria, a group of eubacteria characterized by oxygenic photosynthesis, have a unique composition of the RNA polymerase (RNAP) core due to splitting of the β' subunit to N-terminal γ and C-terminal β' subunits. The physiological roles of the small ω subunit of RNAP, encoded by the rpoZ gene, are not yet completely understood in any bacteria. We found that although ω is non-essential in cyanobacteria, it has a major impact on the overall gene expression pattern. In ΔrpoZ strain, recruitment of the primary σ factor into the RNAP holoenzyme is inefficient, which causes downregulation of highly expressed genes and upregulation of many low-expression genes. Especially, genes encoding proteins of photosynthetic carbon concentrating and carbon fixing complexes were down, and the ΔrpoZ mutant showed low light-saturated photosynthetic activity and accumulated photoprotective carotenoids and α-tocopherol. The results indicate that the ω subunit facilitates the association of the primary σ factor with the RNAP core, thereby allowing efficient transcription of highly expressed genes.
Collapse
Affiliation(s)
- Liisa Gunnelius
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland and Department of Life Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Derepressed transfer properties leading to the efficient spread of the plasmid encoding carbapenemase OXA-48. Antimicrob Agents Chemother 2013; 58:467-71. [PMID: 24189247 DOI: 10.1128/aac.01344-13] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current emergence of the carbapenemase OXA-48 among Enterobacteriaceae is related to the spread of a single IncL/M-type plasmid, pOXA-48a. This plasmid harbors the blaOXA-48 gene within a composite transposon, Tn1999, which is inserted into the tir gene, encoding a transfer inhibition protein. We showed that the insertion of Tn1999 into the tir gene was involved in a higher transfer frequency of plasmid pOXA-48a. This may likely be the key factor for the successful dissemination of this plasmid.
Collapse
|
36
|
Lin YF, A DR, Guan S, Mamanova L, McDowall KJ. A combination of improved differential and global RNA-seq reveals pervasive transcription initiation and events in all stages of the life-cycle of functional RNAs in Propionibacterium acnes, a major contributor to wide-spread human disease. BMC Genomics 2013; 14:620. [PMID: 24034785 PMCID: PMC3848588 DOI: 10.1186/1471-2164-14-620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/11/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sequencing of the genome of Propionibacterium acnes produced a catalogue of genes many of which enable this organism to colonise skin and survive exposure to the elements. Despite this platform, there was little understanding of the gene regulation that gives rise to an organism that has a major impact on human health and wellbeing and causes infections beyond the skin. To address this situation, we have undertaken a genome-wide study of gene regulation using a combination of improved differential and global RNA-sequencing and an analytical approach that takes into account the inherent noise within the data. RESULTS We have produced nucleotide-resolution transcriptome maps that identify and differentiate sites of transcription initiation from sites of stable RNA processing and mRNA cleavage. Moreover, analysis of these maps provides strong evidence for 'pervasive' transcription and shows that contrary to initial indications it is not biased towards the production of antisense RNAs. In addition, the maps reveal an extensive array of riboswitches, leaderless mRNAs and small non-protein-coding RNAs alongside vegetative promoters and post-transcriptional events, which includes unusual tRNA processing. The identification of such features will inform models of complex gene regulation, as illustrated here for ribonucleotide reductases and a potential quorum-sensing, two-component system. CONCLUSIONS The approach described here, which is transferable to any bacterial species, has produced a step increase in whole-cell knowledge of gene regulation in P. acnes. Continued expansion of our maps to include transcription associated with different growth conditions and genetic backgrounds will provide a new platform from which to computationally model the gene expression that determines the physiology of P. acnes and its role in human disease.
Collapse
Affiliation(s)
- Yu-fei Lin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - David Romero A
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Shuang Guan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Lira Mamanova
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
37
|
Del Peso-Santos T, Landfors M, Skärfstad E, Ryden P, Shingler V. Pr is a member of a restricted class of σ70-dependent promoters that lack a recognizable -10 element. Nucleic Acids Res 2012; 40:11308-20. [PMID: 23066105 PMCID: PMC3526299 DOI: 10.1093/nar/gks934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The Pr promoter is the first verified member of a class of bacterial σ70-promoters that only possess a single match to consensus within its −10 element. In its native context, the activity of this promoter determines the ability of Pseudomonas putida CF600 to degrade phenolic compounds, which provides proof-of-principle for the significance of such promoters. Lack of identity within the −10 element leads to non-detection of Pr-like promoters by current search engines, because of their bias for detection of the −10 motif. Here, we report a mutagenesis analysis of Pr that reveals strict sequence requirements for its activity that includes an essential −15 element and preservation of non-consensus bases within its −35 and −10 elements. We found that highly similar promoters control plasmid- and chromosomally- encoded phenol degradative systems in various Pseudomonads. However, using a purpose-designed promoter-search algorithm and activity analysis of potential candidate promoters, no bona fide Pr-like promoter could be found in the entire genome of P. putida KT2440. Hence, Pr-like σ70-promoters, which have the potential to be a widely distributed class of previously unrecognized promoters, are in fact highly restricted and remain in a class of their own.
Collapse
|
38
|
Newton-Foot M, Gey van Pittius NC. The complex architecture of mycobacterial promoters. Tuberculosis (Edinb) 2012; 93:60-74. [PMID: 23017770 DOI: 10.1016/j.tube.2012.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023]
Abstract
The genus Mycobacterium includes a variety of species with differing phenotypic properties, including growth rate, pathogenicity and environment- and host-specificity. Although many mycobacterial species have been extensively studied and their genomes sequenced, the reasons for phenotypic variation between closely related species remain unclear. Variation in gene expression may contribute to these characteristics and enable the bacteria to respond to changing environmental conditions. Gene expression is controlled primarily at the level of transcription, where the main element of regulation is the promoter. Transcriptional regulation and associated promoter sequences have been studied extensively in E. coli. This review describes the complex structure and characteristics of mycobacterial promoters, in comparison to the classical E. coli prokaryotic promoter structure. Some components of mycobacterial promoters are similar to those of E. coli. These include the predominant guanine residue at the transcriptional start point, conserved -10 hexamer, similar interhexameric distances, the use of ATG as a start codon, the guanine- and adenine-rich ribosome binding site and the presence of extended -10 (TGn) motifs in strong promoters. However, these components are much more variable in sequence in mycobacterial promoters and no conserved -35 hexamer sequence (clearly defined in E. coli) can be identified. This may be a result of the high G+C content of mycobacterial genomes, as well as the large number of sigma factors present in mycobacteria, which may recognise different promoter sequences. Mycobacteria possess a complex transcriptional regulatory network. Numerous regulatory motifs have been identified in mycobacterial promoters, predominantly in the interhexameric region. These are bound by specific transcriptional regulators in response to environmental changes. The combination of specific promoter sequences, transcriptional regulators and a variety of sigma factors enables rapid and specific responses to diverse conditions and different stages of infection. This review aims to provide an overview of the complex architecture of mycobacterial transcriptional regulation.
Collapse
Affiliation(s)
- Mae Newton-Foot
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Francie van Zijl Drive, Tygerberg 7505, South Africa.
| | | |
Collapse
|
39
|
Todt TJ, Wels M, Bongers RS, Siezen RS, van Hijum SAFT, Kleerebezem M. Genome-wide prediction and validation of sigma70 promoters in Lactobacillus plantarum WCFS1. PLoS One 2012; 7:e45097. [PMID: 23028780 PMCID: PMC3447810 DOI: 10.1371/journal.pone.0045097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In prokaryotes, sigma factors are essential for directing the transcription machinery towards promoters. Various sigma factors have been described that recognize, and bind to specific DNA sequence motifs in promoter sequences. The canonical sigma factor σ(70) is commonly involved in transcription of the cell's housekeeping genes, which is mediated by the conserved σ(70) promoter sequence motifs. In this study the σ(70)-promoter sequences in Lactobacillus plantarum WCFS1 were predicted using a genome-wide analysis. The accuracy of the transcriptionally-active part of this promoter prediction was subsequently evaluated by correlating locations of predicted promoters with transcription start sites inferred from the 5'-ends of transcripts detected by high-resolution tiling array transcriptome datasets. RESULTS To identify σ(70)-related promoter sequences, we performed a genome-wide sequence motif scan of the L. plantarum WCFS1 genome focussing on the regions upstream of protein-encoding genes. We obtained several highly conserved motifs including those resembling the conserved σ(70)-promoter consensus. Position weight matrices-based models of the recovered σ(70)-promoter sequence motif were employed to identify 3874 motifs with significant similarity (p-value<10(-4)) to the model-motif in the L. plantarum genome. Genome-wide transcript information deduced from whole genome tiling-array transcriptome datasets, was used to infer transcription start sites (TSSs) from the 5'-end of transcripts. By this procedure, 1167 putative TSSs were identified that were used to corroborate the transcriptionally active fraction of these predicted promoters. In total, 568 predicted promoters were found in proximity (≤ 40 nucleotides) of the putative TSSs, showing a highly significant co-occurrence of predicted promoter and TSS (p-value<10(-263)). CONCLUSIONS High-resolution tiling arrays provide a suitable source to infer TSSs at a genome-wide level, and allow experimental verification of in silico predicted promoter sequence motifs.
Collapse
Affiliation(s)
- Tilman J. Todt
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- HAN University of Applied Sciences, Institute of Applied Sciences, Nijmegen, The Netherlands
| | - Michiel Wels
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Roger S. Bongers
- NIZO food research, Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| | - Roland S. Siezen
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- HAN University of Applied Sciences, Institute of Applied Sciences, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
| | - Sacha A. F. T. van Hijum
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- NIZO food research, Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
- * E-mail:
| | - Michiel Kleerebezem
- NIZO food research, Ede, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
- Wageningen University, Host Microbe Interactomics Group, Wageningen, The Netherlands
| |
Collapse
|
40
|
Abstract
Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell’s transcription machinery. Application of high-throughput methods has revealed the expression throughout bacterial genomes of transcripts encoded on the strand complementary to protein-coding genes. Because transcription is costly, it is usually assumed that these transcripts, termed antisense RNAs (asRNAs), serve some function; however, the role of most asRNAs is unclear, raising questions about their relevance in cellular processes. Because natural selection conserves functional elements, comparisons between related species provide a method for assessing functionality genome-wide. Applying such an approach, we assayed all transcripts in two closely related bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, and demonstrate that, although the levels of genome-wide antisense transcription are similarly high in both bacteria, only a small fraction of asRNAs are shared across species. Moreover, the promoters associated with asRNAs show no evidence of sequence conservation between, or even within, species. These findings indicate that despite the genome-wide transcription of asRNAs, many of these transcripts are likely nonfunctional.
Collapse
|
41
|
Liu J, Li J, Wu Z, Pei H, Zhou J, Xiang H. Identification and characterization of the cognate anti-sigma factor and specific promoter elements of a T. tengcongensis ECF sigma factor. PLoS One 2012; 7:e40885. [PMID: 22815853 PMCID: PMC3397946 DOI: 10.1371/journal.pone.0040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/14/2012] [Indexed: 11/18/2022] Open
Abstract
Extracytoplasmic function (ECF) σ factors, the largest group of alternative σ factors, play important roles in response to environmental stresses. Tt-RpoE1 is annotated as an ECF σ factor in Thermoanaerobacter tengcongensis. In this study, we revealed that the Tt-tolB gene located downstream of the Tt-rpoE1 gene encoded the cognate anti-σ factor, which could inhibit the transcription activity of Tt-RpoE1 by direct interaction with Tt-RpoE1 via its N-terminal domain. By in vitro transcription assay, the auto-regulation ability of Tt-RpoE1 was determined, and band shift assay showed that Tt-RpoE1 preferred to bind a fork-junction promoter DNA. With truncation or base-specific scanning mutations, the contribution of the nucleotides in −35 and −10 regions to interaction between Tt-RpoE1 and promoter DNA was explored. The promoter recognition pattern of Tt-RpoE1 was determined as 5′ tGTTACN16CGTC 3′, which was further confirmed by in vitro transcription assays. This result showed that the Tt-RpoE1-recognized promoter possessed a distinct −10 motif (−13CGTC−10) as the recognition determinant, which is distinguished from the −10 element recognized by σ70. Site-directed mutagenesis in Region 2.4 of Tt-RpoE1 indicated that the “D” residue of DXXR motif was responsible for recognizing the −12G nucleotide. Our results suggested that distinct −10 motif may be an efficient and general strategy used by ECF σ factors in adaptive response regulation of the related genes.
Collapse
Affiliation(s)
- Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhenfang Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Huadong Pei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
42
|
Influence of DNA template choice on transcription and inhibition of Escherichia coli RNA polymerase. Antimicrob Agents Chemother 2012; 56:4536-9. [PMID: 22664971 DOI: 10.1128/aac.00198-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In recent decades, quantitative transcription assays using bacterial RNA polymerase (RNAP) have been performed under widely diverse experimental conditions. We demonstrate that the template choice can influence the inhibitory potency of RNAP inhibitors. Furthermore, we illustrate that the sigma factor (σ(70)) surprisingly increases the transcription efficiency of templates with nonphysiological nonprokaryotic promoters. Our results might be a useful guideline in the early stages of using RNAP for drug discovery.
Collapse
|
43
|
MA QICHENG, WANG JASONTL. BIOLOGICAL DATA MINING USING BAYESIAN NEURAL NETWORKS: A CASE STUDY. INT J ARTIF INTELL T 2011. [DOI: 10.1142/s0218213099000294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biological data mining is the activity of finding significant information in biomolecular data. The significant information may refer to motifs, clusters, genes, and protein signatures. This paper presents an example of biological data mining: the recognition of promoters in DNA. We propose a two-level ensemble of classifiers to recognize E. Coli promoter sequences. The first-level classifiers include three Bayesian neural networks that learn from three different feature sets. The outputs of the first-level classifiers are combined in the second-level to give the final result. Empirical study shows that a precision rate of 92.2% is achieved, indicating an excellent performance of the proposed approach.
Collapse
Affiliation(s)
- QICHENG MA
- Department of Computer and Information Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - JASON T. L. WANG
- Department of Computer and Information Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
44
|
Peng Q, Zhang X, Shang M, Wang X, Wang G, Li B, Guan G, Li Y, Wang Y. A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea. Microb Cell Fact 2011; 10:95. [PMID: 22067554 PMCID: PMC3226443 DOI: 10.1186/1475-2859-10-95] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine microbes are a large and diverse group, which are exposed to a wide variety of pressure, temperature, salinity, nutrient availability and other environmental conditions. They provide a huge potential source of novel enzymes with unique properties that may be useful in industry and biotechnology. To explore the lipolytic genetic resources in the South China Sea, 23 sediment samples were collected in the depth < 100 m marine areas. RESULTS A metagenomic library of South China Sea sediments assemblage in plasmid vector containing about 194 Mb of community DNA was prepared. Screening of a part of the unamplified library resulted in isolation of 15 unique lipolytic clones with the ability to hydrolyze tributyrin. A positive recombinant clone (pNLE1), containing a novel esterase (Est_p1), was successfully expressed in E. coli and purified. In a series of assays, Est_p1 displayed maximal activity at pH 8.57, 40°C, with ρ-Nitrophenyl butyrate (C4) as substrate. Compared to other metagenomic esterases, Est_p1 played a notable role in specificity for substrate C4 (kcat/Km value 11,500 S-1m M-1) and showed no inhibited by phenylmethylsulfonyl fluoride, suggested that the substrate binding pocket was suitable for substrate C4 and the serine active-site residue was buried at the bottom of substrate binding pocket which sheltered by a lid structure. CONCLUSIONS Esterase, which specificity towards short chain fatty acids, especially butanoic acid, is commercially available as potent flavoring tools. According the outstanding activity and specificity for substrate C4, Est_p1 has potential application in flavor industries requiring hydrolysis of short chain esters.
Collapse
Affiliation(s)
- Qing Peng
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Sofia Österberg
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
| | | | - Victoria Shingler
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
| |
Collapse
|
46
|
Vargas P, Felipe A, Michán C, Gallegos MT. Induction of Pseudomonas syringae pv. tomato DC3000 MexAB-OprM multidrug efflux pump by flavonoids is mediated by the repressor PmeR. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1207-19. [PMID: 21649511 DOI: 10.1094/mpmi-03-11-0077] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we have analyzed the expression of the Pseudomonas syringae pv. tomato DC3000 mexAB-oprM efflux pump operon and of the regulatory gene pmeR, and we have investigated the role of the PmeR protein on transcription from both promoters. We demonstrate that mexAB-oprM and pmeR are expressed in vivo at a relatively high and moderate basal level, respectively, which, in both cases, increases in the presence of different flavonoids and other compounds, such as butyl and methylparaben. We show that PmeR is the local repressor of the mexAB-oprM promoter and is able to regulate its own expression. The mechanism for this regulation includes binding to a pseudopalindromic operator site which overlaps both mexAB-oprM and pmeR promoters. We have also proven that flavonoids are able to interact with PmeR and induce a conformational change that interferes with the DNA binding ability of PmeR, thereby modulating mexAB-oprM and pmeR expression. Finally, we demonstrate by in vivo experiments that the PmeR/MexAB-OprM system contributes to the colonization of tomato plants. These results provide new insight into a transcriptional regulator and a transport system that play essential roles in the ability of P. syringae pv. tomato DC3000 to resist the action of flavonoids produced by the host.
Collapse
Affiliation(s)
- Paola Vargas
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidin, Granada, Spain
| | | | | | | |
Collapse
|
47
|
Gal-Mor O, Elhadad D, Deng W, Rahav G, Finlay BB. The Salmonella enterica PhoP directly activates the horizontally acquired SPI-2 gene sseL and is functionally different from a S. bongori ortholog. PLoS One 2011; 6:e20024. [PMID: 21625519 PMCID: PMC3098285 DOI: 10.1371/journal.pone.0020024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/09/2011] [Indexed: 11/22/2022] Open
Abstract
To establish a successful infection within the host, a pathogen must closely regulate multiple virulence traits to ensure their accurate temporal and spatial expression. As a highly adapted intracellular pathogen, Salmonella enterica has acquired during its evolution various virulence genes via numerous lateral transfer events, including the acquisition of the Salmonella Pathogenicity Island 2 (SPI-2) and its associated effectors. Beneficial use of horizontally acquired genes requires that their expression is effectively coordinated with the already existing virulence programs and the regulatory set-up in the bacterium. As an example for such a mechanism, we show here that the ancestral PhoPQ system of Salmonella enterica is able to regulate directly the SPI-2 effector gene sseL (encoding a secreted deubiquitinase) in an SsrB-independent manner and that PhoP plays a part in a feed-forward regulatory loop, which fine-tunes the cellular level of SseL. Additionally, we demonstrate the presence of conserved cis regulatory elements in the promoter region of sseL and show direct binding of purified PhoP to this region. Interestingly, in contrast to the S. enterica PhoP, an ortholog regulator from a S. bongori SARC 12 strain was found to be impaired in promoting transcription of sseL and other genes from the PhoP regulon. These findings have led to the identification of a previously uncharacterized residue in the DNA-binding domain of PhoP, which is required for the transcriptional activation of PhoP regulated genes in Salmonella spp. Collectively our data demonstrate an interesting interface between the acquired SsrB regulon and the ancestral PhoPQ regulatory circuit, provide novel insights into the function of PhoP, and highlight a mechanism of regulatory integration of horizontally acquired genes into the virulence network of Salmonella enterica.
Collapse
Affiliation(s)
- Ohad Gal-Mor
- Infectious Diseases Research Laboratory, Sheba Medical Center Tel-Hashomer, Tel-Hashomer, Israel.
| | | | | | | | | |
Collapse
|
48
|
bla(KPC) RNA expression correlates with two transcriptional start sites but not always with gene copy number in four genera of Gram-negative pathogens. Antimicrob Agents Chemother 2011; 55:3936-8. [PMID: 21576436 DOI: 10.1128/aac.01509-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing organisms are therapeutically and diagnostically challenging. It is possible that bla(KPC) gene expression plays a role in the variability observed in clinical susceptibility testing. bla(KPC) transformants together with 10 clinical isolates representing four genera were evaluated for bla(KPC) copy number and gene expression and correlated with β-lactam MIC data. The data suggest that mechanisms other than gene copy number and expression of bla(KPC) contribute to variability in susceptibility when testing KPC-producing isolates.
Collapse
|
49
|
Del Peso-Santos T, Bernardo LMD, Skärfstad E, Holmfeldt L, Togneri P, Shingler V. A hyper-mutant of the unusual sigma70-Pr promoter bypasses synergistic ppGpp/DksA co-stimulation. Nucleic Acids Res 2011; 39:5853-65. [PMID: 21447563 PMCID: PMC3152329 DOI: 10.1093/nar/gkr167] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The activities of promoters can be temporally and conditionally regulated by mechanisms other than classical DNA-binding repressors and activators. One example is the inherently weak σ70-dependent Pr promoter that ultimately controls catabolism of phenolic compounds. The activity of Pr is up-regulated through the joint action of ppGpp and DksA that enhance the performance of RNA polymerase at this promoter. Here, we report a mutagenesis analysis that revealed substantial differences between Pr and other ppGpp/DksA co-stimulated promoters. In vitro transcription and RNA polymerase binding assays show that it is the T at the −11 position of the extremely suboptimal −10 element of Pr that underlies both poor binding of σ70-RNAP and a slow rate of open complex formation—the process that is accelerated by ppGpp and DksA. Our findings support the idea that collaborative action of ppGpp and DksA lowers the rate-limiting transition energy required for conversion between intermediates on the road to open complex formation.
Collapse
|
50
|
Welch M, Villalobos A, Gustafsson C, Minshull J. Designing genes for successful protein expression. Methods Enzymol 2011; 498:43-66. [PMID: 21601673 DOI: 10.1016/b978-0-12-385120-8.00003-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA sequences are now far more readily available in silico than as physical DNA. De novo gene synthesis is an increasingly cost-effective method for building genetic constructs, and effectively removes the constraint of basing constructs on extant sequences. This allows scientists and engineers to experimentally test their hypotheses relating sequence to function. Molecular biologists, and now synthetic biologists, are characterizing and cataloging genetic elements with specific functions, aiming to combine them to perform complex functions. However, the most common purpose of synthetic genes is for the expression of an encoded protein. The huge number of different proteins makes it impossible to characterize and catalog each functional gene. Instead, it is necessary to abstract design principles from experimental data: data that can be generated by making predictions followed by synthesizing sequences to test those predictions. Because of the degeneracy of the genetic code, design of gene sequences to encode proteins is a high-dimensional problem, so there is no single simple formula to guarantee success. Nevertheless, there are several straightforward steps that can be taken to greatly increase the probability that a designed sequence will result in expression of the encoded protein. In this chapter, we discuss gene sequence parameters that are important for protein expression. We also describe algorithms for optimizing these parameters, and troubleshooting procedures that can be helpful when initial attempts fail. Finally, we show how many of these methods can be accomplished using the synthetic biology software tool Gene Designer.
Collapse
Affiliation(s)
- Mark Welch
- DNA2.0, Inc., Suite A, Menlo Park, California, USA
| | | | | | | |
Collapse
|