1
|
Noncoding RNAs in Retrovirus Replication. RETROVIRUS-CELL INTERACTIONS 2018. [PMCID: PMC7173536 DOI: 10.1016/b978-0-12-811185-7.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although a limited percentage of the genome produces proteins, approximately 90% is transcribed, indicating important roles for noncoding RNA (ncRNA). It is now known that these ncRNAs have a multitude of cellular functions ranging from the regulation of gene expression to roles as structural elements in ribonucleoprotein complexes. ncRNA is also represented at nearly every step of viral life cycles. This chapter will focus on ncRNAs of both host and viral origin and their roles in retroviral life cycles. Cellular ncRNA represents a significant portion of material packaged into retroviral virions and includes transfer RNAs, 7SL RNA, U RNA, and vault RNA. Initially thought to be random packaging events, these host RNAs are now proposed to contribute to viral assembly and infectivity. Within the cell, long ncRNA and endogenous retroviruses have been found to regulate aspects of the retroviral life cycle in diverse ways. Additionally, the HIV-1 transactivating response element RNA is thought to impact viral infection beyond the well-characterized role as a transcription activator. RNA interference, thought to be an early version of the innate immune response to viral infection, can still be observed in plants and invertebrates today. The ability of retroviral infection to manipulate the host RNAi pathway is described here. Finally, RNA-based therapies, including gene editing approaches, are being explored as antiretroviral treatments and are discussed.
Collapse
|
2
|
Wilhelm FX, Wilhelm M, Gabriel A. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element. Cytogenet Genome Res 2005; 110:269-87. [PMID: 16093680 DOI: 10.1159/000084960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022] Open
Abstract
Integrase (IN) and reverse transcriptase (RT) play a central role in transposition of retroelements. The mechanism of integration by IN and the steps of the replication process mediated by RT are briefly described here. Recently, active recombinant forms of Ty1 IN and RT have been obtained. This has allowed a more detailed understanding of their biochemical and structural properties and has made possible combined in vitro and in vivo analyses of their functions. A focus of this review is to discuss some of the results obtained thus far with these two recombinant proteins and to propose future directions.
Collapse
Affiliation(s)
- F-X Wilhelm
- Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|
3
|
Mules EH, Uzun O, Gabriel A. In vivo Ty1 reverse transcription can generate replication intermediates with untidy ends. J Virol 1998; 72:6490-503. [PMID: 9658092 PMCID: PMC109815 DOI: 10.1128/jvi.72.8.6490-6503.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 05/11/1998] [Indexed: 02/08/2023] Open
Abstract
Ty1 retrotransposition, like retroviral replication, is a complex series of events requiring reverse transcription of an RNA intermediate, RNA-primed minus- and plus-strand DNA synthesis, multiple strand transfers, and precise cleavages of the template and primers by RNase H. In this report, we examine the structure of in vivo Ty1 replication intermediates, specifically with regard to the behavior of reverse transcriptase upon reaching template ends and to the precision with which RNase H might generate these ends. While the expected 3' termini were always identified, terminal nontemplated bases were also observed at all of the RNA and DNA template ends examined. Nontemplated A residues were most common at all 3' ends, although C residues were preferentially added to minus-strand termini paused at the 5' end of capped Ty1 RNA. In addition, we observed that RNase H removal of the tRNA primer and of the polypurine tract was not always precise or efficient. Finally, we noted numerous instances of Ty1 reverse transcriptase transferring from normal Ty1 template ends to various tRNA templates, with continued synthesis to specific modified bases. A similar pattern was obtained for Ty2, indicating that template ends offer unique opportunities for these two related reverse transcriptases to generate errors.
Collapse
Affiliation(s)
- E H Mules
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08855, USA
| | | | | |
Collapse
|
4
|
Friant S, Heyman T, Byström AS, Wilhelm M, Wilhelm FX. Interactions between Ty1 retrotransposon RNA and the T and D regions of the tRNA(iMet) primer are required for initiation of reverse transcription in vivo. Mol Cell Biol 1998; 18:799-806. [PMID: 9447976 PMCID: PMC108791 DOI: 10.1128/mcb.18.2.799] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Reverse transcription of the Saccharomyces cerevisiae Ty1 retrotransposon is primed by tRNA(iMet) base paired to the primer binding site (PBS) near the 5' end of Ty1 genomic RNA. The 10-nucleotide PBS is complementary to the last 10 nucleotides of the acceptor stem of tRNA(iMet). A structural probing study of the interactions between the Ty1 RNA template and the tRNA(iMet) primer showed that besides interactions between the PBS and the 3' end of tRNA(iMet), three short regions of Ty1 RNA, named boxes 0, 1, and 2.1, interact with the T and D stems and loops of tRNA(iMet). To determine if these sequences are important for the reverse transcription pathway of the Ty1 retrotransposon, mutant Ty1 elements and tRNA(iMet) were tested for the ability to support transposition. We show that the Ty1 boxes and the complementary sequences in the T and D stems and loops of tRNA(iMet) contain bases that are critical for Ty1 retrotransposition. Disruption of 1 or 2 bp between tRNA(iMet) and box 0, 1, or 2.1 dramatically decreases the level of transposition. Compensatory mutations which restore base pairing between the primer and the template restore transposition. Analysis of the reverse transcription intermediates generated inside Ty1 virus-like particles indicates that initiation of minus-strand strong-stop DNA synthesis is affected by mutations disrupting complementarity between Ty1 RNA and primer tRNA(iMet).
Collapse
Affiliation(s)
- S Friant
- Unité Propre de Recherche 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
5
|
Morris DK, Lundblad V. Programmed translational frameshifting in a gene required for yeast telomere replication. Curr Biol 1997; 7:969-76. [PMID: 9382847 DOI: 10.1016/s0960-9822(06)00416-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Telomeres are replicated in most eukaryotes by the enzyme telomerase, a specialized reverse transcriptase. A genetic screen in Saccharomyces cerevisiae designed to detect telomerase components previously led to the identification of four EST ('ever shorter telomeres') genes which are required for telomerase function in vivo. This report describes the cloning and characterization of EST3. RESULTS We identified a potential site of +1 ribosomal frameshifting in the EST3 coding sequence and demonstrated that translation both upstream and downstream of this site is required for EST3 function. Mutation of EST3 such that it could not frameshift resulted in a strain with the same phenotype as an est3 null mutant, showing that EST3 frameshifting is required for telomere replication. Immunoblot analysis revealed that two proteins were synthesized from EST3: a truncated protein resulting from translation of only the first open reading frame, as well as the full-length 181 amino-acid Est3 protein resulting from translation through the frameshift site. Only the full-length Est3 protein was required for normal EST3 function. CONCLUSIONS A programmed translational frameshifting mechanism similar to that used by yeast retrotransposons is employed to produce full-length Est3 protein. This is the first example in yeast of a cellular gene that uses frameshifting to make its protein product, and a potential link is suggested between retrotransposition and the telomerase pathway for telomere maintenance.
Collapse
Affiliation(s)
- D K Morris
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
6
|
Luschnig C, Bachmair A. RNA packaging of yeast retrotransposon Ty1 in the heterologous host, Escherichia coli. Biol Chem 1997; 378:39-46. [PMID: 9049063 DOI: 10.1515/bchm.1997.378.1.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Expression of components of the yeast retrotransposon Ty1 in E. coli was used to study early steps of retrotransposition. We find that polypeptides encompassing the capsid-forming component of Ty1 can assemble into particles in the heterologous host. Ty RNA can be detected in particle fractions. RNA packaging depends on features in the 5' part of Ty RNA, because deletion of 5' proximal sequences leads to decreased packaging efficiency. Protein domains required for the RNA packaging process reside between amino acids 146 and 394 of the capsid protein. The data presented also indicate that several early steps in the Ty1 life cycle can occur in a cellular environment which differs from yeast cytoplasm, supporting the notion that these steps are independent of host factors.
Collapse
Affiliation(s)
- C Luschnig
- Department of Cytology and Genetics, University of Vienna, Austria
| | | |
Collapse
|
7
|
Friant S, Heyman T, Wilhelm ML, Wilhelm FX. Extended interactions between the primer tRNAi(Met) and genomic RNA of the yeast Ty1 retrotransposon. Nucleic Acids Res 1996; 24:441-9. [PMID: 8602356 PMCID: PMC145666 DOI: 10.1093/nar/24.3.441] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Reverse transcription of the yeast Ty1 retrotransposon is primed by tRNAi(Met) base paired to the primer binding site near the 5'-end of Ty1 genomic RNA. To understand the molecular basis of the tRNAi(Met)-Ty1 RNA interaction the secondary structure of the binary complex was analysed. Enzymatic probes were used to test the conformation of tRNAi(Met) and of Ty1 RNA in the free form and in the complex. A secondary structure model of the tRNAi(Met) Ty1 RNA complex consistent with the probing data was constructed with the help of a computer program. The model shows that besides interactions between the primer binding site and the last 10 nt at the 3'-end of tRNAi(Met), three short regions of Ty1 RNA named boxes 0, 1 and 2.1 interact with the T and D stems and loops of tRNAiMet. Mutations were made in the boxes or in the complementary sequences of tRNAi(Met) to study the contribution of these sequences to formation of the complex. We find that interaction with at least one of the two boxes 0 or 1 is absolutely required for efficient annealing of the two RNAs. Sequence comparison showing that the primary sequence of the boxes is strictly conserved in Ty1 and Ty2 elements and previously published in vivo results underline the functional importance of the primary sequence of the boxes and suggest that extended interactions between genomic Ty1 RNA and the primary tRNAi(Met) play a role in the reverse transcription pathway.
Collapse
Affiliation(s)
- S Friant
- Unité Propre de Recherche, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
8
|
Sandmeyer SB, Menees TM. Morphogenesis at the retrotransposon-retrovirus interface: gypsy and copia families in yeast and Drosophila. Curr Top Microbiol Immunol 1996; 214:261-96. [PMID: 8791731 DOI: 10.1007/978-3-642-80145-7_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S B Sandmeyer
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717, USA
| | | |
Collapse
|
9
|
Friant S, Heyman T, Wilhelm FX, Wilhelm M. Role of RNA primers in initiation of minus-strand and plus-strand DNA synthesis of the yeast retrotransposon Ty1. Biochimie 1996; 78:674-80. [PMID: 8955910 DOI: 10.1016/s0300-9084(96)80013-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Ty1 retrotransposon of the yeast Saccharomyces cerevisiae is a long terminal repeat mobile genetic element that transposes through an RNA intermediate. Initiation of minus-strand and plus-strand DNA synthesis are two critical steps during reverse transcription of the retrotransposon genome. Initiation of minus-strand DNA synthesis of the Ty1 element is primed by the cytoplasmic initiator methionine tRNA base paired to the primer binding site near the 5' end of the genomic RNA. A structural probing study of the primer tRNA-Ty1 RNA binary complex reveals that besides interactions between the primer binding site and the last 10 nucleotides at the 3' end of the primer tRNA, three short regions of Ty1 RNA named box 0, box 1 and box 2.1 interact with the T and D stems and loops of the primer tRNA. Some in vivo results underline the functional importance of the nucleotide sequence of the boxes and suggest that extended interactions between genomic Ty1 RNA and the primer tRNA play a role in the reverse transcription pathway. Plus-strand DNA synthesis is initiated from an RNase H resistant oligoribonucleotide spanning a purine-rich sequence, the polypurine tract (PPT). Two sites of initiation located at the 5' boundary of the 3' long terminal repeat (PPT1) and near the middle of the TyB (pol) gene in the integrase coding sequence (PPT2) have been identified in the genome of Ty1. The two PPTs have an identical sequence, TGGGTGGTA. Mutations replacing purines by pyrimidines in this sequence significantly diminish or abolish initiation of plus-strand DNA synthesis. Ty1 elements bearing a mutated PPT2 sequence are not defective for transposition whereas mutations in PPT1 abolish transposition.
Collapse
Affiliation(s)
- S Friant
- UPR 9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
10
|
Keeney JB, Chapman KB, Lauermann V, Voytas DF, Aström SU, von Pawel-Rammingen U, Byström A, Boeke JD. Multiple molecular determinants for retrotransposition in a primer tRNA. Mol Cell Biol 1995; 15:217-26. [PMID: 7528326 PMCID: PMC231938 DOI: 10.1128/mcb.15.1.217] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Retroviruses and long terminal repeat-containing retroelements use host-encoded tRNAs as primers for the synthesis of minus strong-stop DNA, the first intermediate in reverse transcription of the retroelement RNA. Usually, one or more specific tRNAs, including the primer, are selected and packaged within the virion. The reverse transcriptase (RT) interacts with the primer tRNA and initiates DNA synthesis. The structural and sequence features of primer tRNAs important for these specific interactions are poorly understood. We have developed a genetic assay in which mutants of tRNA(iMet), the primer for the Ty1 retrotransposon of Saccharomyces cerevisiae, can be tested for the ability to serve as primers in the reverse transcription process. This system allows any tRNA mutant to be tested, regardless of its ability to function in the initiation of protein synthesis. We find that mutations in the T psi C loop and the acceptor stem regions of the tRNA(iMet) affect transposition most severely. Conversely, mutations in the anticodon region have only minimal effects on transposition. Further study of the acceptor stem and other mutants demonstrates that complementarity to the element primer binding site is a necessary but not sufficient requirement for effective tRNA priming. Finally, we have used interspecies hybrid initiator tRNA molecules to implicate nucleotides in the D arm as additional recognition determinants. Ty3 and Ty1, two very distantly related retrotransposons, require similar molecular determinants in this primer tRNA for transposition.
Collapse
Affiliation(s)
- J B Keeney
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wilhelm M, Wilhelm FX, Keith G, Agoutin B, Heyman T. Yeast Ty1 retrotransposon: the minus-strand primer binding site and a cis-acting domain of the Ty1 RNA are both important for packaging of primer tRNA inside virus-like particles. Nucleic Acids Res 1994; 22:4560-5. [PMID: 7527135 PMCID: PMC308501 DOI: 10.1093/nar/22.22.4560] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reverse transcription of the yeast retrotransposon Ty1 is primed by the cytoplasmic initiator methionine tRNA (tRNA(iMet)). The primer tRNA(iMet) is packaged inside virus-like particles (VLPs) and binds to a 10 nucleotides minus-strand primer binding site, the (-)PBS, complementary to its 3' acceptor stem. We have found that three short sequences of the Ty1 RNA (box 1, box 2.1 and box 2.2) located 3' to the (-)PBS are complementary to other regions of the primer tRNA(iMet) (T psi C and DHU stems and loops). Reconstitution of reverse transcription in vitro with T7 transcribed Ty1 RNA species and tRNA(iMet) purified from yeast cells shows that the boxes do not affect the efficiency of reverse transcription. Thus the role of the boxes on packaging of the primer tRNA(iMet) into the VLPs was investigated by analysing the level of tRNA(iMet) packaged into mutant VLPs. Specific nucleotide changes in the (-)PBS or in the boxes that do not change the protein coding sequence but disrupt the complementarity with the primer tRNA(iMet) within the VLPs. We propose that base pairing between the primer tRNA(iMet) and the Ty1 RNA is of major importance for tRNA(iMet) packaging into the VLPs. Moreover the intactness of the boxes is essential for retrotransposition as shown by the transposition defect of a Ty1 element harboring an intact (-)PBS and mutated boxes.
Collapse
Affiliation(s)
- M Wilhelm
- Unité Propre de Recherche 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, France
| | | | | | | | | |
Collapse
|
12
|
Heyman T, Agoutin B, Fix C, Dirheimer G, Keith G. Yeast serine isoacceptor tRNAs: variations of their content as a function of growth conditions and primary structure of the minor tRNA(Ser)GCU. FEBS Lett 1994; 347:143-6. [PMID: 8033992 DOI: 10.1016/0014-5793(94)00524-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The primary structure of Saccharomyces cerevisiae tRNA(Ser)GCU is presented (EMBL database accession No. X74268 S. cerevisiae tRNA-Ser). In addition, quantitation of the relative amounts of serine isoaccepting tRNAs in yeast grown on different media showed that the minor tRNA(Ser)GCU decreased while the major tRNA(Ser)AGA increased as the growth rate and the cellular protein content increased. The minor species, tRNA(Ser)CGA and tRNA(Ser)UGA, were not separated by our gel system, however, taken together they appeared to vary in the same way as tRNA(Ser)GCU. These data suggest a growth rate dependence of yeast tRNAs similar to that previously described for E. coli tRNAs.
Collapse
Affiliation(s)
- T Heyman
- Unité de recherche associée 1342 du CNRS, Institut Curie-Biologie, Orsay, France
| | | | | | | | | |
Collapse
|
13
|
Das AT, Koken SE, Essink BB, van Wamel JL, Berkhout B. Human immunodeficiency virus uses tRNA(Lys,3) as primer for reverse transcription in HeLa-CD4+ cells. FEBS Lett 1994; 341:49-53. [PMID: 7511112 DOI: 10.1016/0014-5793(94)80238-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant amounts of different tRNA molecules are present in retroviral particles, but one specific tRNA species functions as primer in reverse transcription. It is generally believed that the HIV-1 virus uses the tRNA(Lys,3) molecule as primer. This is based on sequence complementarity between the 3' end of tRNA(Lys,3) and the primer-binding site (PBS) on HIV-1 genomic RNA. Recent biochemical analyses indicated that tRNA(LYs,3) is indeed incorporated into viral particles. Interestingly, tRNA(Lys,3) could not be detected in virions produced by HeLa-CD4+ cells [(1992) Biochem. Biophys. Res. Commun. 185, 1105-1115]. In order to test whether alternative tRNA molecules can function as primer in HIV replication, we performed a series of experiments based on the observation that tRNA primer sequences are inherited by the viral progeny. We cultured HIV-1 for prolonged periods of time in HeLa-CD4+ cells, but did not detect sequence changes in the PBS region. Furthermore, we found PBS-mutants to be replication-incompetent, again suggesting that HIV-1 solely uses tRNA(Lys,3) as primer. Most importantly, we obtained revertants of one such PBS-mutant, which had restored a wild-type PBS sequence. This tRNA(Lys,3)-mediated repair demonstrates a general requirement for this primer in HIV-1 reverse transcription.
Collapse
Affiliation(s)
- A T Das
- Department of Virology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Pochart P, Agoutin B, Rousset S, Chanet R, Doroszkiewicz V, Heyman T. Biochemical and electron microscope analyses of the DNA reverse transcripts present in the virus-like particles of the yeast transposon Ty1. Identification of a second origin of Ty1DNA plus strand synthesis. Nucleic Acids Res 1993; 21:3513-20. [PMID: 8393990 PMCID: PMC331453 DOI: 10.1093/nar/21.15.3513] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transposition of Saccharomyces cerevisiae Ty1 retroelements has been shown to involve reverse transcription in intracytoplasmic virus-like particles (Ty-VLPs). Ty DNA present in the particles specified by Ty1-H3 element was found to consist of the full-length genomic DNA as well as incomplete cDNAs mainly of plus polarity. Our results indicate that identical sequences (TGGGTGGTA) are used as primers for the synthesis of plus strand cDNA, generating cDNAs of 0.345 kb (analogous to the retroviral strong-stop plus cDNA) and of 2.1 kb. Electron microscopic analyses of Ty1-VLP DNA revealed two distinct classes, one full-length and the other corresponding to 0.34 kbp molecules, the size of a LTR sequence. The full-length molecules are either completely double-stranded or only partially double- stranded at one end or at both ends. These double-stranded regions are of a length corresponding to those of incomplete plus strands detected by biochemical techniques. Double-stranded circular molecules mainly of a length corresponding to that of two-LTR circles were also detected on electron micrographs. These analyses allowed us to propose a scheme for reverse transcription in Ty particles.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- DNA/analysis
- DNA Restriction Enzymes
- DNA Transposable Elements
- DNA, Circular/analysis
- DNA, Circular/ultrastructure
- DNA, Fungal/analysis
- DNA, Fungal/chemistry
- DNA, Fungal/ultrastructure
- DNA, Single-Stranded/analysis
- Electrophoresis, Polyacrylamide Gel
- Microscopy, Electron
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Repetitive Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Virion/genetics
Collapse
Affiliation(s)
- P Pochart
- Institut Curie-Biologie, URA 1342 CNRS, Orsay, France
| | | | | | | | | | | |
Collapse
|