1
|
Massey SE. The identities of stop codon reassignments support ancestral tRNA stop codon decoding activity as a facilitator of gene duplication and evolution of novel function. Gene 2017; 619:37-43. [DOI: 10.1016/j.gene.2017.03.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 10/19/2022]
|
2
|
Pánek T, Žihala D, Sokol M, Derelle R, Klimeš V, Hradilová M, Zadrobílková E, Susko E, Roger AJ, Čepička I, Eliáš M. Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC Biol 2017; 15:8. [PMID: 28193262 PMCID: PMC5304391 DOI: 10.1186/s12915-017-0353-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Departures from the standard genetic code in eukaryotic nuclear genomes are known for only a handful of lineages and only a few genetic code variants seem to exist outside the ciliates, the most creative group in this regard. Most frequent code modifications entail reassignment of the UAG and UAA codons, with evidence for at least 13 independent cases of a coordinated change in the meaning of both codons. However, no change affecting each of the two codons separately has been documented, suggesting the existence of underlying evolutionary or mechanistic constraints. RESULTS Here, we present the discovery of two new variants of the nuclear genetic code, in which UAG is translated as an amino acid while UAA is kept as a termination codon (along with UGA). The first variant occurs in an organism noticed in a (meta)transcriptome from the heteropteran Lygus hesperus and demonstrated to be a novel insect-dwelling member of Rhizaria (specifically Sainouroidea). This first documented case of a rhizarian with a non-canonical genetic code employs UAG to encode leucine and represents an unprecedented change among nuclear codon reassignments. The second code variant was found in the recently described anaerobic flagellate Iotanema spirale (Metamonada: Fornicata). Analyses of transcriptomic data revealed that I. spirale uses UAG to encode glutamine, similarly to the most common variant of a non-canonical code known from several unrelated eukaryotic groups, including hexamitin diplomonads (also a lineage of fornicates). However, in these organisms, UAA also encodes glutamine, whereas it is the primary termination codon in I. spirale. Along with phylogenetic evidence for distant relationship of I. spirale and hexamitins, this indicates two independent genetic code changes in fornicates. CONCLUSIONS Our study documents, for the first time, that evolutionary changes of the meaning of UAG and UAA codons in nuclear genomes can be decoupled and that the interpretation of the two codons by the cytoplasmic translation apparatus is mechanistically separable. The latter conclusion has interesting implications for possibilities of genetic code engineering in eukaryotes. We also present a newly developed generally applicable phylogeny-informed method for inferring the meaning of reassigned codons.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Martin Sokol
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Romain Derelle
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Eliška Zadrobílková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague, Czech Republic
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, ON, Canada
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
| |
Collapse
|
3
|
Vallabhaneni H, Fan-Minogue H, Bedwell DM, Farabaugh PJ. Connection between stop codon reassignment and frequent use of shifty stop frameshifting. RNA (NEW YORK, N.Y.) 2009; 15:889-897. [PMID: 19329535 PMCID: PMC2673066 DOI: 10.1261/rna.1508109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/05/2009] [Indexed: 05/27/2023]
Abstract
Ciliated protozoa of the genus Euplotes have undergone genetic code reassignment, redefining the termination codon UGA to encode cysteine. In addition, Euplotes spp. genes very frequently employ shifty stop frameshifting. Both of these phenomena involve noncanonical events at a termination codon, suggesting they might have a common cause. We recently demonstrated that Euplotes octocarinatus peptide release factor eRF1 ignores UGA termination codons while continuing to recognize UAA and UAG. Here we show that both the Tetrahymena thermophila and E. octocarinatus eRF1 factors allow efficient frameshifting at all three termination codons, suggesting that UGA redefinition also impaired UAA/UAG recognition. Mutations of the Euplotes factor restoring a phylogenetically conserved motif in eRF1 (TASNIKS) reduced programmed frameshifting at all three termination codons. Mutation of another conserved residue, Cys124, strongly reduces frameshifting at UGA while actually increasing frameshifting at UAA/UAG. We will discuss these results in light of recent biochemical characterization of these mutations.
Collapse
Affiliation(s)
- Haritha Vallabhaneni
- Program in Molecular and Cell Biology, Department of Biological Sciences, University of Maryland Baltimore County, Baltimore,Maryland 21250, USA
| | | | | | | |
Collapse
|
4
|
Massey SE, Garey JR. A comparative genomics analysis of codon reassignments reveals a link with mitochondrial proteome size and a mechanism of genetic code change via suppressor tRNAs. J Mol Evol 2007; 64:399-410. [PMID: 17390094 DOI: 10.1007/s00239-005-0260-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Using a comparative genomics approach we demonstrate a negative correlation between the number of codon reassignments undergone by 222 mitochondrial genomes and the mitochondrial genome size, the number of mitochondrial ORFs, and the sizes of the large and small subunit mitochondrial rRNAs. In addition, we show that the TGA-to-tryptophan codon reassignment, which has occurred 11 times in mitochondrial genomes, is found in mitochondrial genomes smaller than those which have not undergone the reassignment. We therefore propose that mitochondrial codon reassignments occur in a wide range of phyla, particularly in Metazoa, due to a reduced "proteomic constraint" on the mitochondrial genetic code, compared to the nuclear genetic code. The reduced proteomic constraint reflects the small size of the mitochondrial-encoded proteome and allows codon reassignments to occur with less likelihood of lethality. In addition, we demonstrate a striking link between nonsense codon reassignments and the decoding properties of naturally occurring nonsense suppressor tRNAs. This suggests that natural preexisting nonsense suppression facilitated nonsense codon reassignments and constitutes a novel mechanism of genetic code change. These findings explain for the first time the identity of the stop codons and amino acids reassigned in mitochondrial and nuclear genomes. Nonsense suppressor tRNAs provided the raw material for nonsense codon reassignments, implying that the properties of the tRNA anticodon have dictated the identity of nonsense codon reassignments.
Collapse
Affiliation(s)
- Steven E Massey
- Department of Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | | |
Collapse
|
5
|
Salas-Marco J, Fan-Minogue H, Kallmeyer AK, Klobutcher LA, Farabaugh PJ, Bedwell DM. Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes. Mol Cell Biol 2006; 26:438-47. [PMID: 16382136 PMCID: PMC1346903 DOI: 10.1128/mcb.26.2.438-447.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reassignment of stop codons is common among many ciliate species. For example, Tetrahymena species recognize only UGA as a stop codon, while Euplotes species recognize only UAA and UAG as stop codons. Recent studies have shown that domain 1 of the translation termination factor eRF1 mediates stop codon recognition. While it is commonly assumed that changes in domain 1 of ciliate eRF1s are responsible for altered stop codon recognition, this has never been demonstrated in vivo. To carry out such an analysis, we made hybrid proteins that contained eRF1 domain 1 from either Tetrahymena thermophila or Euplotes octocarinatus fused to eRF1 domains 2 and 3 from Saccharomyces cerevisiae. We found that the Tetrahymena hybrid eRF1 efficiently terminated at all three stop codons when expressed in yeast cells, indicating that domain 1 is not the sole determinant of stop codon recognition in Tetrahymena species. In contrast, the Euplotes hybrid facilitated efficient translation termination at UAA and UAG codons but not at the UGA codon. Together, these results indicate that while domain 1 facilitates stop codon recognition, other factors can influence this process. Our findings also indicate that these two ciliate species used distinct approaches to diverge from the universal genetic code.
Collapse
Affiliation(s)
- Joe Salas-Marco
- Department of Microbiology, BBRB 432/Box 8, 1530 Third Avenue South, The University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA
| | | | | | | | | | | |
Collapse
|
6
|
Beier H, Grimm M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 2001; 29:4767-82. [PMID: 11726686 PMCID: PMC96686 DOI: 10.1093/nar/29.23.4767] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translational stop codon readthrough provides a regulatory mechanism of gene expression that is extensively utilised by positive-sense ssRNA viruses. The misreading of termination codons is achieved by a variety of naturally occurring suppressor tRNAs whose structure and function is the subject of this survey. All of the nonsense suppressors characterised to date (with the exception of selenocysteine tRNA) are normal cellular tRNAs that are primarily needed for reading their cognate sense codons. As a consequence, recognition of stop codons by natural suppressor tRNAs necessitates unconventional base pairings in anticodon-codon interactions. A number of intrinsic features of the suppressor tRNA contributes to the ability to read non-cognate codons. Apart from anticodon-codon affinity, the extent of base modifications within or 3' of the anticodon may up- or down-regulate the efficiency of suppression. In order to out-compete the polypeptide chain release factor an absolute prerequisite for the action of natural suppressor tRNAs is a suitable nucleotide context, preferentially at the 3' side of the suppressed stop codon. Three major types of viral readthrough sites, based on similar sequences neighbouring the leaky stop codon, can be defined. It is discussed that not only RNA viruses, but also the eukaryotic host organism might gain some profit from cellular suppressor tRNAs.
Collapse
Affiliation(s)
- H Beier
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
7
|
|
8
|
Grimm M, Nass A, Schüll C, Beier H. Nucleotide sequences and functional characterization of two tobacco UAG suppressor tRNA(Gln) isoacceptors and their genes. PLANT MOLECULAR BIOLOGY 1998; 38:689-97. [PMID: 9862487 DOI: 10.1023/a:1006068303683] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We isolated and sequenced the two major tRNA(Gln) isoacceptors with CUG and UmUG anticodons from the cytoplasm of Nicotiana rustica. These are the first tRNAs(Gln) of nuclear origin characterized in plants. The tRNA(Gln) sequences were used to design probes for the isolation of the corresponding genes from a nuclear DNA library of N. rustica. The two cloned Nicotiana tRNA(Gln) genes, coding for either of the two isoacceptors, are efficiently transcribed in HeLa cell nuclear extract. In vitro translation in the presence of purified Nicotiana tRNAs(Gln) was carried out in a wheat germ extract partially depleted of endogenous tRNAs. Cytoplasmic (cyt) tRNA(Gln)CUG and to a lesser extent cyt tRNA(Gln)UmUG stimulated readthrough over the UAG stop codon present in the tobacco mosaic virus-specific context. The two tRNA(Gln) isoacceptors are the second class of natural UAG suppressors identified in plants, in addition to cyt tRNA(Tyr)GpsiA which has previously been characterized as the first natural UAG suppressor.
Collapse
Affiliation(s)
- M Grimm
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Würzburg, Germany
| | | | | | | |
Collapse
|
9
|
Nowak MW, Gallivan JP, Silverman SK, Labarca CG, Dougherty DA, Lester HA. In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system. Methods Enzymol 1998; 293:504-29. [PMID: 9711626 DOI: 10.1016/s0076-6879(98)93031-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A general method for the incorporation of unnatural amino acids into ion channels and membrane receptors using a Xenopus oocyte expression system has been described. A large number of unnatural amino acids have been incorporated into the nAChR, GIRK, and Shaker K+ channels. Continuing efforts focus on incorporating unnatural amino acids that differ substantially from the natural amino acids, for example, residues that include fluorophores. In addition, we are addressing the feasibility of incorporating unnatural amino acids into ion channels and membrane receptors in mammalian cells.
Collapse
MESH Headings
- Amino Acids/chemistry
- Amino Acids/metabolism
- Animals
- Base Sequence
- Codon
- Female
- Gene Expression
- In Vitro Techniques
- Ion Channels/biosynthesis
- Ion Channels/chemistry
- Molecular Sequence Data
- Molecular Structure
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- Oocytes/physiology
- Point Mutation
- Potassium Channels/biosynthesis
- Potassium Channels/chemistry
- Promoter Regions, Genetic
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/chemistry
- Receptors, Nicotinic/biosynthesis
- Receptors, Nicotinic/chemistry
- Shaker Superfamily of Potassium Channels
- Suppression, Genetic
- Thermus thermophilus/genetics
- Transcription, Genetic
- Xenopus laevis
Collapse
Affiliation(s)
- M W Nowak
- Department of Psychiatry, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | |
Collapse
|
10
|
Baum M, Beier H. Wheat cytoplasmic arginine tRNA isoacceptor with a U*CG anticodon is an efficient UGA suppressor in vitro. Nucleic Acids Res 1998; 26:1390-5. [PMID: 9490782 PMCID: PMC147420 DOI: 10.1093/nar/26.6.1390] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many RNA viruses express part of their genomic information by read-through over internal termination codons. We have recently characterized tobacco cytoplasmic (cyt) and chloroplast (chl) tRNACmCATrp and tRNAGCACys as natural suppressor tRNAs that are able to read the leaky UGA codon in RNA-1 of tobacco rattle virus, albeit with different efficiencies. Here we have identified a third natural UGA suppressor in plants. We have purified and sequenced four cyt tRNAArg isoacceptors with ICG, CCG, U*CG and CCU anticodons from wheat germ. With the exception of tRNAICGArg, these are the first sequences of plant tRNAsArg. In order to study the potential suppressor activity of wheat tRNAsArg we have used in vitro synthesized mRNA transcripts in which different viral read-through regions had been placed. In vitro translation was carried out in a homologous wheat germ extract. We found that tRNAU*CGArg is an efficient UGA suppressor in vitro, whereas the other three tRNAArg isoacceptors exhibit no or very low suppressor activity. Interaction of tRNAU*CGArg with the UGA codon requires a G:U base pair at the third anticodon position. This is the first time that an arginine-accepting tRNA has been characterized as a natural UGA suppressor. A remarkable feature of cyt tRNAU*CGArg is its ability to misread the UGA at the end of the coat protein cistron in RNA-1 of pea enation mosaic virus, which is not accomplished by cyt tRNACmCATrp or cyt tRNAGCACys, due to an unfavourable codon context.
Collapse
MESH Headings
- Anticodon/genetics
- Base Sequence
- Codon, Terminator/genetics
- Cytoplasm/metabolism
- DNA, Plant/genetics
- Molecular Sequence Data
- Mosaic Viruses/genetics
- Mosaic Viruses/metabolism
- Nucleic Acid Conformation
- Pisum sativum/virology
- Plant Viruses/genetics
- Plant Viruses/metabolism
- Plants, Toxic
- Protein Biosynthesis
- RNA Viruses/genetics
- RNA Viruses/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- RNA, Viral/genetics
- Suppression, Genetic
- Nicotiana/virology
- Triticum/genetics
- Triticum/metabolism
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
Collapse
Affiliation(s)
- M Baum
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany.
| | | |
Collapse
|
11
|
Rusconi CP, Cech TR. The anticodon is the signal sequence for mitochondrial import of glutamine tRNA in Tetrahymena. Genes Dev 1996; 10:2870-80. [PMID: 8918888 DOI: 10.1101/gad.10.22.2870] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The import of nuclear-encoded RNAs into mitochondria is required for proper mitochondrial function in most organisms. However, the mechanisms used to achieve RNA import are largely unknown. In particular, the RNA elements that direct import have not been identified in any organism. In Tetrahymena, only one of three nuclear-encoded glutamine accepting tRNAs is imported into mitochondria. We transform Tetrahymena with marked glutamine tRNAs and quantitate their level of accumulation in mitochondria. Of several isostructural nucleotide substitutions tested, alteration of the anticodon sequence uniquely abolishes import. Furthermore, substitution of a single anticodon nucleotide (UUA-->UUG) confers import on a normally nonimported glutamine tRNA. Thus, the anticodon functions as a mitochondrial localization signal and is both necessary and sufficient for tRNA import. Given the prior evidence that neither the cytoplasmic nor the mitochondrial glutaminyl-tRNA synthetase distinguishes between the imported and nonimported glutamine tRNAs with respect to aminoacylation, we propose that some mitochondrial import factor distinct from a synthetase recognizes the anticodon of the imported glutamine tRNA.
Collapse
Affiliation(s)
- C P Rusconi
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215, USA
| | | |
Collapse
|
12
|
Saks ME, Sampson JR, Nowak MW, Kearney PC, Du F, Abelson JN, Lester HA, Dougherty DA. An engineered Tetrahymena tRNAGln for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression. J Biol Chem 1996; 271:23169-75. [PMID: 8798511 DOI: 10.1074/jbc.271.38.23169] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A new tRNA, THG73, has been designed and evaluated as a vehicle for incorporating unnatural amino acids site-specifically into proteins expressed in vivo using the stop codon suppression technique. The construct is a modification of tRNAGln(CUA) from Tetrahymena thermophila, which naturally recognizes the stop codon UAG. Using electrophysiological studies of mutations at several sites of the nicotinic acetylcholine receptor, it is established that THG73 represents a major improvement over previous nonsense suppressors both in terms of efficiency and fidelity of unnatural amino acid incorporation. Compared with a previous tRNA used for in vivo suppression, THG73 is as much as 100-fold less likely to be acylated by endogenous synthetases of the Xenopus oocyte. This effectively eliminates a major concern of the in vivo suppression methodology, the undesirable incorporation of natural amino acids at the suppression site. In addition, THG73 is 4-10-fold more efficient at incorporating unnatural amino acids in the oocyte system. Taken together, these two advances should greatly expand the range of applicability of the in vivo nonsense suppression methodology.
Collapse
Affiliation(s)
- M E Saks
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Urban C, Zerfass K, Fingerhut C, Beier H. UGA suppression by tRNACmCATrp occurs in diverse virus RNAs due to a limited influence of the codon context. Nucleic Acids Res 1996; 24:3424-30. [PMID: 8811098 PMCID: PMC146097 DOI: 10.1093/nar/24.17.3424] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have recently identified chloroplast and cytoplasmic tRNACmCATrp as the first natural UGA suppressor tRNAs in plants. The interaction of these tRNAs with UGA involves a Cm: A mismatch at the first anticodon position. We show here that tRNACmCATrp is incapable of misreading UAA and UAG codons in vitro, implying that unconventional base pairs are not tolerated in the middle anticodon position. Furthermore, we demonstrate that the ability of tRNACmCATrp to promote UGA read-through depends on a quite simple codon context. Part of the sequence surrounding the leaky UGA stop codon in tobacco rattle virus RNA-1 was subcloned into a zein reporter gene and read-through efficiency was measured by translation of RNA transcripts in wheat germ extract. A number of mutations in the codons adjacent to the UGA were introduced by site-directed mutagenesis. It was found that single nucleotide exchanges at either side of the UGA had little effect on read-through efficiency. A pronounced influence on suppression by tRNACmCATrp was seen only if 2 or 3 nt at the 3'-side of the UGA codon had been simultaneously replaced. As a consequence of the flexible codon context accepted by tRNACmCATrp, this tRNA is able to misread the UGA in a number of plant and animal viral RNAs that use translational read-through for expression of some of their genes.
Collapse
Affiliation(s)
- C Urban
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | | | |
Collapse
|
14
|
Abstract
We have isolated and sequenced chloroplast (chl) and cytoplasmic (cyt) cysteine tRNAs from Nicotiana rustica. Both tRNAs carry a GCA anticodon but beyond that differ considerably in their nucleotide sequences. One obvious distinction resides in the presence of N6-isopentenyladenosine (i6A) and 1-methylguanosine (m1G) at position 37 in chl and cyt tRNA(Cys) respectively. In order to study the potential suppressor activity of tRNAs(Cys) we used in vitro synthesized zein mRNA transcripts in which an internal UGA stop codon had been placed in either the tobacco rattle virus (TRV)- or tobacco mosaic virus (TMV)-specific codon context. In vitro translation was carried out in a messenger- and tRNA-dependent wheat germ extract. Both tRNA(Cys) isoacceptors stimulate read-through over the UGA stop codon, however, chl tRNA(GCA)Cys is more efficient than the cytoplasmic counterpart. The UGA in the two viral codon contexts is suppressed to about the same extent by either of the two tRNAs(Cys), whereas UGA in the beta-globin context is not recognized at all. The interaction of tRNA(GCA)Cys with UGA requires an unconventional G:A base pair in the wobble position, as postulated earlier for plant tRNA(G psi A)Tyr misreading the UAA stop codon. This is the first case that a cysteine-accepting tRNA has been characterized as a natural UGA suppressor.
Collapse
MESH Headings
- Amino Acid Sequence
- Anticodon
- Base Composition
- Base Sequence
- Chloroplasts/metabolism
- Codon/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- Plant Viruses/genetics
- Plants, Toxic
- RNA, Messenger/biosynthesis
- RNA, Plant/biosynthesis
- RNA, Plant/chemistry
- RNA, Plant/metabolism
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Cys/metabolism
- Suppression, Genetic
- Nicotiana/metabolism
- Tobacco Mosaic Virus/genetics
- Transcription, Genetic
- Zein/biosynthesis
Collapse
Affiliation(s)
- C Urban
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | |
Collapse
|