1
|
A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria. Sci Rep 2018; 8:491. [PMID: 29323285 PMCID: PMC5765039 DOI: 10.1038/s41598-017-18846-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022] Open
Abstract
The design and engineering of secondary metabolite gene clusters that are characterized by complicated genetic organization, require the development of collections of well-characterized genetic control elements that can be reused reliably. Although a few intrinsic terminators and RBSs are used routinely, their translation and termination efficiencies have not been systematically studied in Actinobacteria. Here, we analyzed the influence of the regions surrounding RBSs on gene expression in these bacteria. We demonstrated that inappropriate RBSs can reduce the expression efficiency of a gene to zero. We developed a genetic device – an in vivo RBS-selector – that allows selection of an optimal RBS for any gene of interest, enabling rational control of the protein expression level. In addition, a genetic tool that provides the opportunity for measurement of termination efficiency was developed. Using this tool, we found strong terminators that lead to a 17–100-fold reduction in downstream expression and are characterized by sufficient sequence diversity to reduce homologous recombination when used with other elements. For the first time, a C-terminal degradation tag was employed for the control of protein stability in Streptomyces. Finally, we describe a collection of regulatory elements that can be used to control metabolic pathways in Actinobacteria.
Collapse
|
2
|
Hockenberry AJ, Pah AR, Jewett MC, Amaral LAN. Leveraging genome-wide datasets to quantify the functional role of the anti-Shine-Dalgarno sequence in regulating translation efficiency. Open Biol 2017; 7:rsob.160239. [PMID: 28100663 PMCID: PMC5303271 DOI: 10.1098/rsob.160239] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
Studies dating back to the 1970s established that sequence complementarity between the anti-Shine–Dalgarno (aSD) sequence on prokaryotic ribosomes and the 5′ untranslated region of mRNAs helps to facilitate translation initiation. The optimal location of aSD sequence binding relative to the start codon, the full extents of the aSD sequence and the functional form of the relationship between aSD sequence complementarity and translation efficiency have not been fully resolved. Here, we investigate these relationships by leveraging the sequence diversity of endogenous genes and recently available genome-wide estimates of translation efficiency. We show that—after accounting for predicted mRNA structure—aSD sequence complementarity increases the translation of endogenous mRNAs by roughly 50%. Further, we observe that this relationship is nonlinear, with translation efficiency maximized for mRNAs with intermediate levels of aSD sequence complementarity. The mechanistic insights that we observe are highly robust: we find nearly identical results in multiple datasets spanning three distantly related bacteria. Further, we verify our main conclusions by re-analysing a controlled experimental dataset.
Collapse
Affiliation(s)
- Adam J Hockenberry
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Adam R Pah
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA.,Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA
| | - Michael C Jewett
- Interdisciplinary Program in Biological Sciences, Northwestern University, Evanston, IL 60208, USA .,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Luís A N Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA .,Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
3
|
The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3' end of 16S rRNA. Proc Natl Acad Sci U S A 2011; 108:10156-61. [PMID: 21646538 DOI: 10.1073/pnas.1017679108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides ( ) near the 3' end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the to double mutation severely affects the viability of bacteria. However, whether Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.
Collapse
|
4
|
Bakowska-Zywicka K, Kietrys AM, Twardowski T. Antisense oligonucleotides targeting universally conserved 26S rRNA domains of plant ribosomes at different steps of polypeptide elongation. Oligonucleotides 2008; 18:175-86. [PMID: 18637734 DOI: 10.1089/oli.2008.0127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A ribosome undergoes significant conformational changes during elongation of polypeptide chain that are correlated with structural changes of rRNAs. We tested nine different antisense oligodeoxynucleotides complementary to the selected, highly conserved sequences of Lupinus luteus 26S rRNA that are engaged in the interactions with tRNA molecules. The ribosomes were converted either to pre- or to posttranslocational states, with or without prehybridized oligonucleotides, using tRNA or mini-tRNA molecules. The activity of those ribosomes was tested via the so-called binding assay. We observed well-defined structural changes of ribosome's conformation during different steps of the elongation cycle of protein biosynthesis. In this article, we present that (i) before and after translocation, fragments of domain V between helices H70/H71 and H74/H89 do not have to interact with nucleotides 72-76 of the acceptor arm of A-site tRNA; (ii) helix H69 does not have to interact with DHU arm of tRNA in positions 25 and 26 after forming the peptide bond, but before translocation; (iii) helices H69 and H70 interact weakly with nucleotides 11, 12, 25, and 26 of A-site tRNA before forming a peptide bond in the ribosome; (iv) interactions between helices H80, H93 and single-stranded region between helices H92 and H93 and CCAend of P-site tRNA are necessary at all steps of elongation cycle; and (v) before and after translocation, helix H89 does not have to interact with nucleotides in positions 64-65 and 50-53 of A-site tRNA TPsiC arm.
Collapse
Affiliation(s)
- Kamilla Bakowska-Zywicka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | | | | |
Collapse
|
5
|
Brock JE, Pourshahian S, Giliberti J, Limbach PA, Janssen GR. Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5'-terminal AUG. RNA (NEW YORK, N.Y.) 2008; 14:2159-2169. [PMID: 18755843 PMCID: PMC2553737 DOI: 10.1261/rna.1089208] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 06/09/2008] [Indexed: 05/26/2023]
Abstract
Leaderless mRNAs are translated in the absence of upstream signals that normally contribute to ribosome binding and translation efficiency. In order to identify ribosomal components that interact with leaderless mRNA, a fragment of leaderless cI mRNA from bacteriophage lambda, with a 4-thiouridine (4(S)-U) substituted at the +2 position of the AUG start codon, was used to form cross-links to Escherichia coli ribosomes during binary (mRNA+ribosome) and ternary (mRNA+ribosome+initiator tRNA) complex formation. Ribosome binding assays (i.e., toeprints) demonstrated tRNA-dependent binding of leaderless mRNA to ribosomes; however, cross-links between the start codon and 30S subunit rRNA and r-proteins formed independent of initiator tRNA. Toeprints revealed that a leaderless mRNA's 5'-AUG is required for stable binding. Furthermore, the addition of a 5'-terminal AUG triplet to a random RNA fragment can make it both competent and competitive for ribosome binding, suggesting that a leaderless mRNA's start codon is a major feature for ribosome interaction. Cross-linking assays indicate that a subset of 30S subunit r-proteins, located at either end of the mRNA tunnel, contribute to tRNA-independent contacts and/or interactions with a leaderless mRNA's start codon. The interaction of leaderless mRNA with ribosomes may reveal features of mRNA binding and AUG recognition that are distinct from known signals but are important for translation initiation of all mRNAs.
Collapse
Affiliation(s)
- Jay E Brock
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | |
Collapse
|
6
|
Determining physical constraints in transcriptional initiation complexes using DNA sequence analysis. PLoS One 2007; 2:e1199. [PMID: 18030333 PMCID: PMC2077805 DOI: 10.1371/journal.pone.0001199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 10/29/2007] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic gene expression is often under the control of cooperatively acting transcription factors whose binding is limited by structural constraints. By determining these structural constraints, we can understand the “rules” that define functional cooperativity. Conversely, by understanding the rules of binding, we can infer structural characteristics. We have developed an information theory based method for approximating the physical limitations of cooperative interactions by comparing sequence analysis to microarray expression data. When applied to the coordinated binding of the sulfur amino acid regulatory protein Met4 by Cbf1 and Met31, we were able to create a combinatorial model that can correctly identify Met4 regulated genes. Interestingly, we found that the major determinant of Met4 regulation was the sum of the strength of the Cbf1 and Met31 binding sites and that the energetic costs associated with spacing appeared to be minimal.
Collapse
|
7
|
Sheflyan GY, Kubareva EA, Gromova ES. Methods for the covalent attachment of nucleic acids and their derivatives to proteins. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1996v065n08abeh000277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Yusupova G, Jenner L, Yusupov M. Messenger RNA movement on the ribosome. Mol Biol 2007. [DOI: 10.1134/s0026893307020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Yusupova G, Jenner L, Rees B, Moras D, Yusupov M. Structural basis for messenger RNA movement on the ribosome. Nature 2006; 444:391-4. [PMID: 17051149 DOI: 10.1038/nature05281] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 09/27/2006] [Indexed: 11/09/2022]
Abstract
Translation initiation is a major determinant of the overall expression level of a gene. The translation of functionally active protein requires the messenger RNA to be positioned on the ribosome such that the start/initiation codon will be read first and in the correct frame. Little is known about the molecular basis for the interaction of mRNA with the ribosome at different states of translation. Recent crystal structures of the ribosomal subunits, the empty 70S ribosome and the 70S ribosome containing functional ligands have provided information about the general organization of the ribosome and its functional centres. Here we compare the X-ray structures of eight ribosome complexes modelling the translation initiation, post-initiation and elongation states. In the initiation and post-initiation complexes, the presence of the Shine-Dalgarno (SD) duplex causes strong anchoring of the 5'-end of mRNA onto the platform of the 30S subunit, with numerous interactions between mRNA and the ribosome. Conversely, the 5' end of the 'elongator' mRNA lacking SD interactions is flexible, suggesting a different exit path for mRNA during elongation. After the initiation of translation, but while an SD interaction is still present, mRNA moves in the 3'-->5' direction with simultaneous clockwise rotation and lengthening of the SD duplex, bringing it into contact with ribosomal protein S2.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Escherichia coli/genetics
- Models, Molecular
- Molecular Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Thermus thermophilus
Collapse
Affiliation(s)
- Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch cedex, France
| | | | | | | | | |
Collapse
|
10
|
Sharma MR, Barat C, Wilson DN, Booth TM, Kawazoe M, Hori-Takemoto C, Shirouzu M, Yokoyama S, Fucini P, Agrawal RK. Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. Mol Cell 2005; 18:319-29. [PMID: 15866174 DOI: 10.1016/j.molcel.2005.03.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/16/2005] [Accepted: 03/24/2005] [Indexed: 11/18/2022]
Abstract
Era (E. coliRas-like protein) is a highly conserved and essential GTPase in bacteria. It binds to the 16S ribosomal RNA (rRNA) of the small (30S) ribosomal subunit, and its depletion leads to accumulation of an unprocessed precursor of the 16S rRNA. We have obtained a three-dimensional cryo-electron microscopic map of the Thermus thermophilus 30S-Era complex. Era binds in the cleft between the head and platform of the 30S subunit and locks the subunit in a conformation that is not favorable for association with the large (50S) ribosomal subunit. The RNA binding KH motif present within the C-terminal domain of Era interacts with the conserved nucleotides in the 3' region of the 16S rRNA. Furthermore, Era makes contact with several assembly elements of the 30S subunit. These observations suggest a direct involvement of Era in the assembly and maturation of the 30S subunit.
Collapse
Affiliation(s)
- Manjuli R Sharma
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sergiev P, Leonov A, Dokudovskaya S, Shpanchenko O, Dontsova O, Bogdanov A, Rinke-Appel J, Mueller F, Osswald M, von Knoblauch K, Brimacombe R. Correlating the X-ray structures for halo- and thermophilic ribosomal subunits with biochemical data for the Escherichia coli ribosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:87-100. [PMID: 12762011 DOI: 10.1101/sqb.2001.66.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- P Sergiev
- Department of Chemistry of Natural Compounds and Belozersky Institute, Moscow State University, Moscow 119899, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Demeshkina N, Laletina E, Meschaninova M, Ven'yaminova A, Graifer D, Karpova G. Positioning of mRNA codons with respect to 18S rRNA at the P and E sites of human ribosome. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1627:39-46. [PMID: 12759190 DOI: 10.1016/s0167-4781(03)00072-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positioning of each nucleotide of the E site and the P site bound codons with respect to the 18S rRNA on the human ribosome was studied by cross-linking with mRNA analogs, derivatives of the hexaribonucleotide UUUGUU (comprising Phe and Val codons) that carried a perfluorophenylazide group on the second or the third uracil, and a derivative of the dodecaribonucleotide UUAGUAUUUAUU with a similar group on the guanine residue. The location of the modified nucleotides at any mRNA position from -3 to +3 (position +1 corresponds to the 5' nucleotide of the P site bound codon) was adjusted by the cognate tRNAs. A modified uridine at positions from -1 to +3 cross-linked to nucleotide G1207 of the 18S rRNA, and to nucleotide G961 when it was in position -2. A modified guanosine cross-linked to nucleotide G1207 if it was in position -3 of the mRNA. These data indicate that nucleotide G961 of the 18S rRNA is close only to mRNA positions -3 and -2, while G1207 is in the vicinity of positions from -3 to +3. The latter suggests that there is a sharp turn between the P and E site bound codons that brings nucleotide G1207 of the 18S rRNA close to each nucleotide of these codons. This correlates well with X-ray crystallographic data on bacterial ribosomes, indicating existence of a sharp turn between the P site and E site bound codons near a conserved nucleotide G926 of the 16S rRNA (corresponding to G1207 in 18S rRNA) close to helix 23b containing the conserved nucleotide 693 of the 16S rRNA (corresponding exactly to G961 of the 18S rRNA).
Collapse
Affiliation(s)
- Natalia Demeshkina
- Laboratory of Ribosomal Structure and Function, and Group of Oligoribonucleotide Chemistry, Novosibirsk Institute of Bioorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva, 8, 630090, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
13
|
Shultzaberger RK, Bucheimer RE, Rudd KE, Schneider TD. Anatomy of Escherichia coli ribosome binding sites. J Mol Biol 2001; 313:215-28. [PMID: 11601857 DOI: 10.1006/jmbi.2001.5040] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During translational initiation in prokaryotes, the 3' end of the 16S rRNA binds to a region just upstream of the initiation codon. The relationship between this Shine-Dalgarno (SD) region and the binding of ribosomes to translation start-points has been well studied, but a unified mathematical connection between the SD, the initiation codon and the spacing between them has been lacking. Using information theory, we constructed a model that treats these three components uniformly by assigning to the SD and the initiation region (IR) conservations in bits of information, and by assigning to the spacing an uncertainty, also in bits. To build the model, we first aligned the SD region by maximizing the information content there. The ease of this process confirmed the existence of the SD pattern within a set of 4122 reviewed and revised Escherichia coli gene starts. This large data set allowed us to show graphically, by sequence logos, that the spacing between the SD and the initiation region affects both the SD site conservation and its pattern. We used the aligned SD, the spacing, and the initiation region to model ribosome binding and to identify gene starts that do not conform to the ribosome binding site model. A total of 569 experimentally proven starts are more conserved (have higher information content) than the full set of revised starts, which probably reflects an experimental bias against the detection of gene products that have inefficient ribosome binding sites. Models were refined cyclically by removing non-conforming weak sites. After this procedure, models derived from either the original or the revised gene start annotation were similar. Therefore, this information theory-based technique provides a method for easily constructing biologically sensible ribosome binding site models. Such models should be useful for refining gene-start predictions of any sequenced bacterial genome.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Codon, Initiator/genetics
- Databases as Topic
- Escherichia coli/genetics
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Genes, Bacterial/genetics
- Information Theory
- Models, Biological
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational/genetics
- Pliability
- Protein Binding
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
|
14
|
Abstract
Using X-ray crystallography, we have directly observed the path of mRNA in the 70S ribosome in Fourier difference maps at 7 A resolution. About 30 nucleotides of the mRNA are wrapped in a groove that encircles the neck of the 30S subunit. The Shine-Dalgarno helix is bound in a large cleft between the head and the back of the platform. At the interface, only about eight nucleotides (-1 to +7), centered on the junction between the A and P codons, are exposed, and bond almost exclusively to 16S rRNA. The mRNA enters the ribosome around position +13 to +15, the location of downstream pseudoknots that stimulate -1 translational frame shifting.
Collapse
MESH Headings
- Bacteriophage T4/genetics
- Base Pairing
- Base Sequence
- Binding Sites
- Codon/genetics
- Crystallography, X-Ray
- DNA-Binding Proteins/genetics
- Escherichia coli/genetics
- Fourier Analysis
- Frameshifting, Ribosomal
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation
- Protein Subunits
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Thermus thermophilus/chemistry
- Viral Proteins/genetics
Collapse
Affiliation(s)
- G Z Yusupova
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
15
|
Vila-Sanjurjo A, Dahlberg AE. Mutational analysis of the conserved bases C1402 and A1500 in the center of the decoding domain of Escherichia coli 16 S rRNA reveals an important tertiary interaction. J Mol Biol 2001; 308:457-63. [PMID: 11327780 DOI: 10.1006/jmbi.2001.4576] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions within the decoding center of the 30 S ribosomal subunit have been investigated by constructing all 15 possible mutations at nucleotides C1402 and A1500 in helix 44 of 16 S rRNA. As expected, most of the mutations resulted in highly deleterious phenotypes, consistent with the high degree of conservation of this region and its functional importance. A total of seven mutants were viable under conditions where the mutant ribosomes comprised 100 % of the ribosomal pool. A suppressor mutation specific for the C1402U-A1500G mutant was isolated at position 1520 in helix 45 of 16 S rRNA. In addition, lack of dimethylation of A1518/A1519 caused by mutation of the ksgA methylase enhanced the deleterious effect of many of the 1402/1500 mutations. These data suggest that a higher-order interaction between helices 44 and 45 in 16 S rRNA is important for the proper functioning of the ribosome. This is consistent with the recent high-resolution crystal structures of the 30 S subunit, which show a tertiary interaction between the 1402/1500 region of helix 44 and the dimethyl A stem loop.
Collapse
MESH Headings
- Aminoglycosides
- Anti-Bacterial Agents/pharmacology
- Base Sequence
- Conserved Sequence/genetics
- Drug Resistance, Microbial/genetics
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Methylation
- Methyltransferases/genetics
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Plasmids/genetics
- Protein Subunits
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Suppression, Genetic/genetics
Collapse
Affiliation(s)
- A Vila-Sanjurjo
- Department of Molecular and Cell Biology and Biochemistry J. W. Wilson Laboratory, Brown University, 69 Brown Street Providence, RI 02912, USA
| | | |
Collapse
|
16
|
Li Z, Stahl G, Farabaugh PJ. Programmed +1 frameshifting stimulated by complementarity between a downstream mRNA sequence and an error-correcting region of rRNA. RNA (NEW YORK, N.Y.) 2001; 7:275-84. [PMID: 11233984 PMCID: PMC1370085 DOI: 10.1017/s135583820100190x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Like most retroviruses and retrotransposons, the retrotransposon Ty3 expresses its pol gene analog (POL3) as a translational fusion to the upstream gag analog (GAG3). The Gag3-Pol3 fusion occurs by frameshifting during translation of the mRNA that encodes the two separate but overlapping ORFs. We showed previously that the shift occurs by out-of-frame binding of a normal aminoacyl-tRNA in the ribosomal A site caused by an aberrant codonoanticodon interaction in the P site. This event is unlike all previously described programmed translational frameshifts because it does not require tRNA slippage between cognate or near-cognate codons in the mRNA. A sequence of 15 nt distal to the frameshift site stimulates frameshifting 7.5-fold. Here we show that the Ty3 stimulator acts as an unstructured region to stimulate frameshifting. Its function depends on strict spacing from the site of frameshifting. Finally, the stimulator increases frameshifting dependent on sense codon-induced pausing, but has no effect on frameshifting dependent on pauses induced by nonsense codons. Complementarity between the stimulator and a portion of the accuracy center of the ribosome, Helix 18, implies that the stimulator may directly disrupt error correction by the ribosome.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Frameshifting, Ribosomal
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutation, Missense
- Nucleic Acid Conformation
- Plasmids
- Protein Biosynthesis
- RNA Viruses/physiology
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Retroelements/genetics
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Z Li
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore 21250, USA
| | | | | |
Collapse
|
17
|
Stenström CM, Jin H, Major LL, Tate WP, Isaksson LA. Codon bias at the 3'-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli. Gene 2001; 263:273-84. [PMID: 11223267 DOI: 10.1016/s0378-1119(00)00550-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The codon that follows the AUG initiation triplet (+2 codon) affects gene expression in Escherichia coli. We have extended this analysis using two model genes lacking any apparent Shine-Dalgarno sequence. Depending on the identity of the +2 codon a difference in gene expression up to 20-fold could be obtained. The effects did not correlate with the levels of intracellular pools of cognate tRNA for the +2 codon, with putative secondary mRNA structures, or with mRNA stability. However, most +2 iso-codons that were decoded by the same species of tRNA gave pairwise similar effects, suggesting that the effect on gene expression was associated with the decoding tRNA. High adenine content of the +2 codon was associated with high gene expression. Of the fourteen +2 codons that mediated the highest efficiency, all except two had an adenine as the first base of the codon. Analysis of the 3540 E. coli genes from the TransTerm database revealed that codons associated with high gene expression in the two expression systems are over-represented at the +2 position in natural genes. Codons that are associated with low gene expression are under-represented. The data suggest that evolution has favored codons at the +2 position that give high translation initiation.
Collapse
MESH Headings
- Codon/genetics
- Codon, Initiator/genetics
- DNA, Bacterial/genetics
- DNA, Recombinant
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Nucleic Acid Conformation
- Plasmids/genetics
- Protein Biosynthesis
- RNA Stability
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- C M Stenström
- Department of Microbiology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
18
|
Demeshkina N, Repkova M, Ven'yaminova A, Graifer D, Karpova G. Nucleotides of 18S rRNA surrounding mRNA codons at the human ribosomal A, P, and E sites: a crosslinking study with mRNA analogs carrying an aryl azide group at either the uracil or the guanine residue. RNA (NEW YORK, N.Y.) 2000; 6:1727-36. [PMID: 11142373 PMCID: PMC1370043 DOI: 10.1017/s1355838200000996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The 18S rRNA environment of the mRNA at the decoding site of human 80S ribosomes has been studied by cross-linking with derivatives of hexaribonucleotide UUUGUU (comprising Phe and Val codons) that carried a perfluorophenylazide group either at the N7 atom of the guanine or at the C5 atom of the 5'-terminal uracil residue. The location of the codons on the ribosome at A, P, or E sites has been adjusted by the cognate tRNAs. Three types of complexes have been obtained for each type derivative, namely, (1) codon UUU and Phe-tRNAPhe at the P site (codon GUU at the A site), (2) codon UUU and tRNAPhe at the P site and PheVal-tRNAVal at the A site, and (3) codon GUU and Val-tRNAVal at the P site (codon UUU at the E site). This allowed the placement of modified nucleotides of the mRNA analog at positions -3, +1, or +4 on the ribosome. Mild UV irradiation resulted in tRNA-dependent crosslinking of the mRNA analogs to the 18S rRNA. Nucleotide G961 crosslinked to mRNA position -3, nucleotide G1207 to position +1, and A1823 together with A1824 to position +4. All of these nucleotides are located in the most strongly conserved regions of the small subunit RNA structure, and correspond to nucleotides G693, G926, G1491, and A1492 of bacterial 16S rRNA. Three of them (with the exception of G1491) had been found earlier at the 70S ribosomal decoding site. The similarities and differences between the 16S and 18S rRNA decoding sites are discussed.
Collapse
Affiliation(s)
- N Demeshkina
- Laboratory of Ribosomal Structure and Function and Group of Oligoribonucleotide Chemistry, Novosibirsk Institute of Bioorganic Chemistry, Siberian Branch of Russian Academy of Sciences
| | | | | | | | | |
Collapse
|
19
|
Golshani A, Kolev V, Mironova R, AbouHaidar MG, Ivanov IG. Enhancing activity of epsilon in Escherichia coli and Agrobacterium tumefaciens cells. Biochem Biophys Res Commun 2000; 269:508-12. [PMID: 10708584 DOI: 10.1006/bbrc.2000.2327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epsilon (epsilon) sequence is a bacterial enhancer of translation found in the bacteriophage T7 gene 10. It is believed that its enhancing effect of epsilon is due to a base-pairing with the nucleotides 458-467 from the helical domain 17 of Escherichia coli 16S rRNA. To prove this we have taken advantage of the difference of this domain in Agrobacterium tumefaciens and E. coli. To evaluate the significance of nucleotide complementarity for the enhancing activity of epsilon, a series of nucleotide sequences matching either E. coli or A. tumefaciens domain 17 are cloned in a binary expression vector in front of the chloramphenicol acetyltransferase (CAT) gene. The CAT assay shows that: (i) the epsilon in combination with an SD consensus sequence increases the yield of CAT in both microorganisms over that obtained with the SD alone; (ii) the epsilon sequence complementary to the A. tumefaciens domain 17 leads to a 2.71-fold increase in the yield of CAT in homologous cells but not in E. coli cells; (iii) the yield of CAT correlates with the free energy of base-pairing with the helical domain 17 in both microorganisms.
Collapse
Affiliation(s)
- A Golshani
- Department of Botany, Virology Group, University of Toronto, 25 Willcocks Street, Toronto, Ontario, M5S 3B2, Canada
| | | | | | | | | |
Collapse
|
20
|
Environment of the 5′-terminal nucleotide of the mRNA codon at the P and E sites of human ribosome: Crosslinking with pUUUGUU derivatives bearing a photoactivatable group at an uracil residue or 5′-phosphate. Mol Biol 2000. [DOI: 10.1007/bf02759645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Karlsson M, Pavlov MY, Malmqvist M, Persson B, Ehrenberg M. Initiation of Escherichia coli ribosomes on matrix coupled mRNAs studied by optical biosensor technique. Biochimie 1999; 81:995-1002. [PMID: 10575353 DOI: 10.1016/s0300-9084(99)00220-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, has been used to study the initiation of protein synthesis by E. coli ribosomes on surface coupled mRNA. mRNA was first periodate oxidized and then hydrazide coupled to the surface of a CM5 sensor chip. The formation of initiation complexes on the surface coupled mRNA was monitored in real-time with a BIACORE 2000 instrument. Mature 70S*mRNA*fMet-tRNA(Met) initiation complexes were assembled on mRNA by sequential introduction of the 30S and 50S subunits supplemented with appropriate initiation factors and fMet-tRNA(Met). We show that the formation of 70S*mRNA complexes on the surface coupled mRNA proceeds efficiently only in the presence of tRNA. Moreover, 70S*mRNA*fMet-tRNA(Met) complexes formed with fMet-tRNA(Met) are more stable than similar complexes formed with deacylated tRNAs. The efficient formation and slow dissociation of mature 70S*mRNA*fMet-tRNA(Met) initiation complexes are most easily explained by the stabilization of the interaction of the ribosomal subunits by fMet-tRNA(Met). This work demonstrates the feasibility of the BIACORE technique for studying the initiation of protein synthesis.
Collapse
Affiliation(s)
- M Karlsson
- Department of Cell and Molecular Biology, BMC, Box 596, 75124 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
22
|
Wang R, Alexander RW, VanLoock M, Vladimirov S, Bukhtiyarov Y, Harvey SC, Cooperman BS. Three-dimensional placement of the conserved 530 loop of 16 S rRNA and of its neighboring components in the 30 S subunit. J Mol Biol 1999; 286:521-40. [PMID: 9973568 DOI: 10.1006/jmbi.1998.2493] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotides 518-533 form a loop in ribosomal 30 S subunits that is almost universally conserved. Both biochemical and genetic evidence clearly implicate the 530 loop in ribosomal function, with respect both to the accuracy control mechanism and to tRNA binding. Here, building on earlier work, we identify proteins and nucleotides (or limited sequences) site-specifically photolabeled by radioactive photolabile oligoDNA probes targeted toward the 530 loop of 30 S subunits. The probes we employ are complementary to 16 S rRNA nucleotides 517-527, and have aryl azides attached to nucleotides complementary to nucleotides 518, 522, and 525-527, positioning the photogenerated nitrene a maximum of 19-26 A from the complemented rRNA base. The crosslinks obtained are used as constraints to revise an earlier model of 30 S structure, using the YAMMP molecular modeling package, and to place the 530 loop region within that structure.
Collapse
MESH Headings
- Cross-Linking Reagents/radiation effects
- DNA, Complementary/metabolism
- Escherichia coli/chemistry
- Escherichia coli/ultrastructure
- Models, Molecular
- Nucleic Acid Conformation
- Photoaffinity Labels/radiation effects
- RNA, Bacterial/chemistry
- RNA, Bacterial/radiation effects
- RNA, Messenger/chemistry
- RNA, Messenger/radiation effects
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/radiation effects
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/radiation effects
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- R Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Burkhardt N, Jünemann R, Spahn CM, Nierhaus KH. Ribosomal tRNA binding sites: three-site models of translation. Crit Rev Biochem Mol Biol 1998; 33:95-149. [PMID: 9598294 DOI: 10.1080/10409239891204189] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The first models of translation described protein synthesis in terms of two operationally defined tRNA binding sites, the P-site for the donor substrate, the peptidyl-tRNA, and the A-site for the acceptor substrates, the aminoacyl-tRNAs. The discovery and analysis of the third tRNA binding site, the E-site specific for deacylated tRNAs, resulted in the allosteric three-site model, the two major features of which are (1) the reciprocal relationship of A-site and E-site occupation, and (2) simultaneous codon-anticodon interactions of both tRNAs present at the elongating ribosome. However, structural studies do not support the three operationally defined sites in a simple fashion as three topographically fixed entities, thus leading to new concepts of tRNA binding and movement: (1) the hybrid-site model describes the tRNAs' movement through the ribosome in terms of changing binding sites on the 30S and 50S subunits in an alternating fashion. The tRNAs thereby pass through hybrid binding states. (2) The alpha-epsilon model introduces the concept of a movable tRNA-binding domain comprising two binding sites, termed alpha and epsilon. The translocation movement is seen as a result of a conformational change of the ribosome rather than as a diffusion process between fixed binding sites. The alpha-epsilon model reconciles most of the experimental data currently available.
Collapse
MESH Headings
- Allosteric Site/genetics
- Animals
- Base Sequence
- Escherichia coli
- Humans
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Peptide Chain Elongation, Translational/genetics
- Protein Biosynthesis
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- N Burkhardt
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | |
Collapse
|
24
|
Tanaka I, Nakagawa A, Hosaka H, Wakatsuki S, Mueller F, Brimacombe R. Matching the crystallographic structure of ribosomal protein S7 to a three-dimensional model of the 16S ribosomal RNA. RNA (NEW YORK, N.Y.) 1998; 4:542-550. [PMID: 9582096 PMCID: PMC1369638 DOI: 10.1017/s1355838298972004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two recently published but independently derived structures, namely the X-ray crystallographic structure of ribosomal protein S7 and the "binding pocket" for this protein in a three-dimensional model of the 16S rRNA, have been correlated with one another. The known rRNA-protein interactions for S7 include a minimum binding site, a number of footprint sites, and two RNA-protein crosslink sites on the 16S rRNA, all of which form a compact group in the published 16S rRNA model (despite the fact that these interactions were not used as primary modeling constraints in building that model). The amino acids in protein S7 that are involved in the two crosslinks to 16S rRNA have also been determined in previous studies, and here we have used these sites to orient the crystallographic structure of S7 relative to its rRNA binding pocket. Some minor alterations were made to the rRNA model to improve the fit. In the resulting structure, the principal positively charged surface of the protein is in contact with the 16S rRNA, and all of the RNA-protein interaction data are satisfied. The quality of the fit gives added confidence as to the validity of the 16S rRNA model. Protein S7 is furthermore known to be crosslinked both to P site-bound tRNA and to mRNA at positions upstream of the P site codon; the matched S7-16S rRNA structure makes a prediction as to the location of this crosslink site within the protein molecule.
Collapse
Affiliation(s)
- I Tanaka
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Matassova NB, Venjaminova AG, Karpova GG. Nucleotides of 18S rRNA surrounding mRNA at the decoding site of translating human ribosome as revealed from the cross-linking data. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1397:231-9. [PMID: 9565692 DOI: 10.1016/s0167-4781(98)00015-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
mRNA analogs, 4-(N-2-chloroethyl-N-methylamino)benzylmethyl-[5'-32P]-phosphamide derivatives of oligoribonucleotides pAUGUn (n=0, 3 or 6), were used for affinity labelling of human 80S ribosomes in complexes with codon-anticodon interaction at the P-site. These complexes were obtained in the presence of fractionated lysate from rabbit reticulocytes deprived of endogenous ribosomes and mRNAs. In all cases, 40S subunits were labelled preferentially. Within the subunits, both ribosomal proteins and 18S rRNA were modified. Ribosomal proteins cross-linked to pAUGUn derivatives were identified earlier. In this paper, nucleotides G-1010, G-1029, G-1033, G-1051, G-1054 and G-1059 of 18S rRNA cross-linked to both pAUG and pAUGU3 derivatives were identified by reverse transcription analysis.
Collapse
Affiliation(s)
- N B Matassova
- Laboratory of Ribosomal Structure and Functions, Novosibirsk Institute of Bioorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentieva, 8, 630090, Novosibirsk, Russian Federation
| | | | | |
Collapse
|
26
|
Favre A, Saintomé C, Fourrey JL, Clivio P, Laugâa P. Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1998; 42:109-24. [PMID: 9540218 DOI: 10.1016/s1011-1344(97)00116-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past few years thionucleobases have been extensively used as intrinsic photolabels to probe the structure in solution of folded RNA molecules and to identify contacts within nucleic acids and/or between nucleic acids and proteins, in complex nucleoprotein assemblies. These thio residues such as 4-thiouracil found in E. coli tRNA and its non-natural congeners 4-thiothymine, 6-thioguanine and 6-mercaptopurine absorb light at wavelengths longer than 320 nm and, thus, can be selectively photoactivated. Synthetic or enzymatic procedures have been established, allowing the random or site-specific incorporation of thionucleotide(s) within a RNA (DNA) chain which, in most cases, retains unaltered structural and biological properties. Owing to the high photoreactivity of their triplet state (intersystem yield close to unity), 4-thiouracil and 4-thiothymine derivatives exhibit a high photocrosslinking ability towards pyrimidines (particularly thymine) but also purines. From the nature of the photoproducts obtained in base or nucleotide mixtures and in dinucleotides, the main photochemical pathway was identified as a (2 + 2) photoaddition of the excited C-S bond onto the 5, 6 double bond of pyrimidines yielding thietane intermediates whose structure could be characterized. Depending on the mutual orientation of these bonds in the thietanes, their subsequent dark rearrangement yielded, respectively, either the 5-4 or 6-4 bipyrimidine photoadduct. A similar mechanism appears to be involved in the formation of the unique photoadduct formed between 4-thiothymidine and adenosine. The higher reactivity of thymine derived acceptors can be explained by an additional pathway which involves hydrogen abstraction from the thymine methyl group, followed by radical recombination, leading to methylene linked bipyrimidines. The high photocrosslinking potential of thionucleosides inserted in nucleic acid chains has been used to probe RNA-RNA contacts within the ribosome permitting, in particular, the elucidation of the path of mRNA throughout the small ribosomal subunit. Functional interactions between the mRNA spliced sites and U RNAs could be detected within the spliceosome. Analysis of the photocrosslinks obtained within small endonucleolytic ribozymes in solution led to a tertiary folded pseudo-knot structure for the HDV ribozyme and allowed the construction of a Y form of a hammerhead ribozyme, which revealed to be in close agreement with the structure observed in crystals. Thionucleosides incorporated in nucleic acids crosslink efficiently amino-acid residues of proteins in contact with them. Despite the fact that little is known about the nature of the photoadducts formed, this approach has been extensively used to identify protein components interacting at a defined nucleic acid site and applied to various systems (replisome, spliceosome, transcription complexes and ribosomes).
Collapse
Affiliation(s)
- A Favre
- Institut Jacques Monod, CNRS-Université Paris VII, France
| | | | | | | | | |
Collapse
|
27
|
Mueller F, Stark H, van Heel M, Rinke-Appel J, Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre. J Mol Biol 1997; 271:566-87. [PMID: 9281426 DOI: 10.1006/jmbi.1997.1212] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We describe the locations of sites within the 3D model for the 16 S rRNA (described in two accompanying papers) that are implicated in ribosomal function. The relevant experimental data originate from many laboratories and include sites of foot-printing, cross-linking or mutagenesis for various functional ligands. A number of the sites were themselves used as constraints in building the 16 S model. (1) The foot-print sites for A site tRNA are all clustered around the anticodon stem-loop of the tRNA; there is no "allosteric" site. (2) The foot-print sites for P site tRNA that are essential for P site binding are similarly clustered around the P site anticodon stem-loop. The foot-print sites in 16 S rRNA helices 23 and 24 are, however, remote from the P site tRNA. (3) Cross-link sites from specific nucleotides within the anticodon loops of A or P site-bound tRNA are mostly in agreement with the model, whereas those from nucleotides in the elbow region of the tRNA (which also exhibit extensive cross-linking to the 50 S subunit) are more widely spread. Again, cross-links to helix 23 are remote from the tRNAs. (4) The corresponding cross-links from E site tRNA are predominantly in helix 23, and these agree with the model. Electron microscopy data are presented, suggestive of substantial conformational changes in this region of the ribosome. (5) Foot-prints for IF-3 in helices 23 and 24 are at a position with close contact to the 50 S subunit. (6) Foot-prints from IF-1 form a cluster around the anticodon stem-loop of A site tRNA, as do also the sites on 16 S rRNA that have been implicated in termination. (7) Foot-print sites and mutations relating to streptomycin form a compact group on one side of the A site anticodon loop, with the corresponding sites for spectinomycin on the other side. (8) Site-specific cross-links from mRNA (which were instrumental in constructing the 16 S model) fit well both in the upstream and downstream regions of the mRNA, and indicate that the incoming mRNA passes through the well-defined "hole" at the head-body junction of the 30 S subunit.
Collapse
Affiliation(s)
- F Mueller
- AG-Ribosomen, Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | | | | | | | |
Collapse
|
28
|
Kaloyanova D, Xu J, Ivanov IG, Abouhaidar MG. Gene expression evidence indicates that nucleotides 507-513 and 1434-1440 in 16S rRNA are organized in close proximity on the Escherichia coli 30S ribosomal subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:10-4. [PMID: 9310353 DOI: 10.1111/j.1432-1033.1997.00010.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A non-Shine-Dalgamo translational initiator is identified in Escherichia coli. The nucleotide sequence ACCUACUCGAGUUAG, designated as PL, is capable of initiating translation of pokeweed antiviral protein (PAP) and human calcitonin (hCT) mRNAs in E. coli cells. The yield of recombinant protein was double that obtained with the consensus Shine-Dalgarno-sequence-(SD)-driven translation. The PL sequence is composed of two heptanucleotides (ACCUACU, box I and GAGUUAG, box II) which are complementary to nucleotides 1434-1440 and 507-513, respectively, in 16S rRNA. Mutational analysis shows that the translation initiation efficiency with either box alone is much lower than that obtained with the entire PL sequence, indicating that the boxes interact simultaneously with both complementary regions in 16S rRNA during the translation initiation step. Based on these results, we propose that the two widely separated regions 507-513 (part of helical domain 18) and 1434-1440 (belonging to helical domain 44) are organized in close proximity to each other and to the ribosome decoding center on the surface of the E. coli 30S ribosomal subunit.
Collapse
MESH Headings
- Base Sequence
- Calcitonin/biosynthesis
- Calcitonin/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genes, Reporter
- Genetic Vectors
- Humans
- Molecular Sequence Data
- N-Glycosyl Hydrolases
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Ribosome Inactivating Proteins, Type 1
- Ribosomes/chemistry
- Ribosomes/genetics
Collapse
Affiliation(s)
- D Kaloyanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia
| | | | | | | |
Collapse
|
29
|
Bucklin DJ, van Waes MA, Bullard JM, Hill WE. Cleavage of 16S rRNA within the ribosome by mRNA modified in the A-site codon with phenanthroline-Cu(II). Biochemistry 1997; 36:7951-7. [PMID: 9201941 DOI: 10.1021/bi9624954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cleavage of 16S rRNA was obtained through mRNA modified at position +5 with the chemical cleavage agent 1,10-o-phenanthroline. In the presence of Cu2+, and after addition of reducing agent to the modified mRNA-70S complex, cleavage of proximal nucleotides within the 16S rRNA occurred. Primer extension analysis of 16S rRNA fragments revealed that nucleotides 528-532, 1196, and 1396-1397 were cleaved. Nucleotides 1053-1055 were also cleaved but did not show the same level of specificity as the former. These results provide evidence that at some point in the translation process these regions are all within 15 A of position +5, the A-site codon, on the mRNA.
Collapse
Affiliation(s)
- D J Bucklin
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The ribosome is a large multifunctional complex composed of both RNA and proteins. Biophysical methods are yielding low-resolution structures of the overall architecture of ribosomes, and high-resolution structures of individual proteins and segments of rRNA. Accumulating evidence suggests that the ribosomal RNAs play central roles in the critical ribosomal functions of tRNA selection and binding, translocation, and peptidyl transferase. Biochemical and genetic approaches have identified specific functional interactions involving conserved nucleotides in 16S and 23S rRNA. The results obtained by these quite different approaches have begun to converge and promise to yield an unprecedented view of the mechanism of translation in the coming years.
Collapse
Affiliation(s)
- R Green
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
31
|
Saintomé C, Clivio P, Favre A, Fourrey JL, Riche C. RNA Photolabeling Mechanistic Studies: X-ray Crystal Structure of the Photoproduct Formed between 4-Thiothymidine and Adenosine upon Near UV Irradiation. J Am Chem Soc 1996. [DOI: 10.1021/ja961329g] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carole Saintomé
- Institut de Chimie des Substances Naturelles CNRS, 91198 Gif-sur-Yvette Cedex, France Institut Jacques Monod, CNRS-Université Paris VII 2 Place Jussieu, 75251 Paris Cedex O5, France
| | - Pascale Clivio
- Institut de Chimie des Substances Naturelles CNRS, 91198 Gif-sur-Yvette Cedex, France Institut Jacques Monod, CNRS-Université Paris VII 2 Place Jussieu, 75251 Paris Cedex O5, France
| | - Alain Favre
- Institut de Chimie des Substances Naturelles CNRS, 91198 Gif-sur-Yvette Cedex, France Institut Jacques Monod, CNRS-Université Paris VII 2 Place Jussieu, 75251 Paris Cedex O5, France
| | - Jean-Louis Fourrey
- Institut de Chimie des Substances Naturelles CNRS, 91198 Gif-sur-Yvette Cedex, France Institut Jacques Monod, CNRS-Université Paris VII 2 Place Jussieu, 75251 Paris Cedex O5, France
| | - Claude Riche
- Institut de Chimie des Substances Naturelles CNRS, 91198 Gif-sur-Yvette Cedex, France Institut Jacques Monod, CNRS-Université Paris VII 2 Place Jussieu, 75251 Paris Cedex O5, France
| |
Collapse
|
32
|
Alexeeva EV, Shpanchenko OV, Dontsova OA, Bogdanov AA, Nierhaus KH. Interaction of mRNA with the Escherichia coli ribosome: accessibility of phosphorothioate-containing mRNA bound to ribosomes for iodine cleavage. Nucleic Acids Res 1996; 24:2228-35. [PMID: 8710490 PMCID: PMC145942 DOI: 10.1093/nar/24.12.2228] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The contacts of phosphate groups in mRNAs with ribosomes were studied. Two mRNAs were used: one mRNA contained in the middle two defined codons to construct the pre- and the post-translocational states, the other was a sequence around the initiation site of the natural cro-mRNA. Phosphorothioate nucleotides were randomly incorporated at a few A, G, U or C positions during in vitro transcription. Iodine can cleave the thioated positions if they are not shielded by ribosomal components. Only a few minor differences in iodine cleavage of ribosome bound and non-bound mRNA were observed: the nucleotide two positions upstream of the decoding codons (i.e. those codons involved in codon-anticodon interactions) showed a reduced accessibility for iodine and the nucleotide immediately following the decoding codons an enhanced accessibility in both elongating states. In initiating ribosomes where the mRNA contained a strong Shine-Dalgarno sequence, at least five phosphates were additionally slightly protected covering the Shine-Dalgarno sequence and nucleotides downstream including the initiator AUG in the P site (Al, G3, G-2, G-5 and A-7). The low contact levels of the phosphates in the mRNA with the elongating ribosome strikingly contrast with the pronounced contact patterns previously described for tRNAs. The data obtained in this study, as well as results of previous studies, suggest that mRNA regions downstream and upstream of decoding codons form only weak contacts with ribosomal components and that the mRNA thus is mainly fixed by codon-anticodon interaction on the elongating ribosome.
Collapse
Affiliation(s)
- E V Alexeeva
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | | | |
Collapse
|
33
|
Firpo MA, Connelly MB, Goss DJ, Dahlberg AE. Mutations at two invariant nucleotides in the 3'-minor domain of Escherichia coli 16 S rRNA affecting translational initiation and initiation factor 3 function. J Biol Chem 1996; 271:4693-8. [PMID: 8617734 DOI: 10.1074/jbc.271.9.4693] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have investigated the highly conserved GAUCA sequence of small subunit ribosomal RNA. Within this region, the invariant nucleotides G1530 and A1531 of Escherichia coli 16 S rRNA were mutagenized to A1530/G1531. These base changes caused a lethal phenotype when expressed from a high copy number plasmid. In low copy number plasmids, the mutant ribosomes had limited effects when expressed in vivo but caused significant deficiencies in translation in vitro, affecting enzymatic tRNA binding, non-enzymatic tRNA binding, subunit association, and initiation factor 3 (IF3) binding. Mutant 30 S ribosomal subunits showed a 10-fold decrease in affinity for IF3 as compared to wild-type subunits but showed an increased affinity for IF3 when in 70 S ribosomes. Additionally, IF3 did not promote dissociation of 70 S ribosomes, which had mutated subunits as monitored by light-scattering experiments. However, extension inhibition experiments (toeprinting) showed that IF3 retained its ability to discriminate between initiator and elongator tRNAs on mutated subunits. The results indicate that the two functions of IF3, tRNA discrimination and subunit dissociation, are separable and that the invariant nucleotides are important for correct subunit function during initiation.
Collapse
Affiliation(s)
- M A Firpo
- Section of Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
34
|
Dokudovskaya S, Dontsova O, Shpanchenko O, Bogdanov A, Brimacombe R. Loop IV of 5S ribosomal RNA has contacts both to domain II and to domain V of the 23S RNA. RNA (NEW YORK, N.Y.) 1996; 2:146-152. [PMID: 8601281 PMCID: PMC1369359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An analogue of 5S rRNA, containing a random distribution of thiouridine residues in place of normal uridine, was prepared by T7 transcription from a suitable DNA template. The modified RNA molecule was reconstituted into 50S or 70S ribosomes, and the thiouridine residues were activated by irradiation at 350 nm. Crosslinks generated between the 5S and 23S RNA were analyzed by our standard procedures. Two crosslink sites were identified, one to residue A-960 at the loop-end of helix 39 in Domain II, and the other to C-2475 at the loop-end of helix 89 in Domain V of the 23S RNA. Both crosslinks involved residue U-89 of the 5S RNA, that in Domain V corresponding to the principal crosslink found in a previously published series of experiments. The relative intensities of the two crosslink sites were found to be highly dependent on individual preparations of 50S ribosomal proteins and 23S RNA. The results are discussed in terms of the three-dimensional folding and dynamics of the 23S RNA within the 50S subunit.
Collapse
Affiliation(s)
- S Dokudovskaya
- Department of Chemistry, Moscow State University, Russia
| | | | | | | | | |
Collapse
|
35
|
Bogdanov AA, Dontsova OA, Dokudovskaya SS, Lavrik IN. Structure and function of 5S rRNA in the ribosome. Biochem Cell Biol 1995; 73:869-76. [PMID: 8722002 DOI: 10.1139/o95-094] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
5S rRNA is a small RNA molecule that is a component of a ribosome from almost all living organisms. In this review, we discuss the biogenesis of 5S rRNA and its properties as an independent structural domain of a ribosome as well as the current concepts concerning the higher order structure of 5S rRNA in free state and in its complexes with ribosomal proteins and its folding in the ribosome. Special attention is paid to recent experimental approaches that have been useful in 5S rRNA studies. Our own data on topography of 5S rRNA in the ribosomes are discussed in detail. The hypothesis describing the possible functional role of 5S rRNA for ribosome functioning is discussed.
Collapse
Affiliation(s)
- A A Bogdanov
- Department of Chemistry of Natural Compounds, School of Chemistry, Moscow State University, Russia
| | | | | | | |
Collapse
|
36
|
Abstract
Considering the size and complexity of the ribosome and the growing body of data from a wide range of experiments on ribosomal structure, it is becoming increasingly important to develop tools that facilitate the development of reliable models for the ribosome. We use a combination of manual and computer-based approaches for building and refining models of the ribosome and other RNA-protein complexes. Our methods are aimed at determining the range of models compatible with the data, making quantitative statements about the positional uncertainties (resolution) of different regions, identifying conflicts in the data, establishing which regions of the ribosome need further experimental exploration, and, where possible, predicting the outcome of future experiments. Our previous low-resolution model for the small subunit of the Escherichia coli ribosome is briefly reviewed, along with progress on atomic resolution modeling of the mRNA-tRNA complex and its interaction with the decoding site of the 16S RNA.
Collapse
Affiliation(s)
- T R Easterwood
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham 35294, USA
| | | |
Collapse
|
37
|
Mueller F, Döring T, Erdemir T, Greuer B, Jünke N, Osswald M, Rinke-Appel J, Stade K, Thamm S, Brimacombe R. Getting closer to an understanding of the three-dimensional structure of ribosomal RNA. Biochem Cell Biol 1995; 73:767-73. [PMID: 8721993 DOI: 10.1139/o95-085] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two experimentally unrelated approaches are converging to give a first low-resolution solution to the question of the three-dimensional organization of the ribosomal RNA from Escherichia coli. The first of these is the continued use of biochemical techniques, such as cross-linking, that provide information on the relative locations of different regions of the RNA. In particular, recent data identifying RNA regions that are juxtaposed to functional ligands such as mRNA or tRNA have been used to construct improved topographical models for the 16S and 23S RNA. The second approach is the application of high-resolution reconstruction techniques from electron micrographs of ribosomes in vitreous ice. These methods have reached a level of resolution at which individual helical elements of the ribosomal RNA begin to be discernible. The electron microscopic data are currently being used in our laboratory to refine the biochemically derived topographical RNA models.
Collapse
Affiliation(s)
- F Mueller
- Max-Planck-Institut für Molekuiare Genetik, AG Ribosomen, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|