1
|
Anderson RF, Shinde SS, Andrau L, Leung B, Skene C, White JM, Lobachevsky PN, Martin RF. Chemical Repair of Radical Damage to the GC Base Pair by DNA-Bound Bisbenzimidazoles. J Phys Chem B 2024. [PMID: 38686959 DOI: 10.1021/acs.jpcb.4c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The migration of an electron-loss center (hole) in calf thymus DNA to bisbenzimidazole ligands bound in the minor groove is followed by pulse radiolysis combined with time-resolved spectrophotometry. The initially observed absorption spectrum upon oxidation of DNA by the selenite radical is consistent with spin on cytosine (C), as the GC• pair neutral radical, followed by the spectra of oxidized ligands. The rate of oxidation of bound ligands increased with an increase in the ratio (r) ligands per base pair from 0.005 to 0.04. Both the rate of ligand oxidation and the estimated range of hole transfer (up to 30 DNA base pairs) decrease with the decrease in one-electron reduction potential between the GC• pair neutral radical of ca. 1.54 V and that of the ligand radicals (E0', 0.90-0.99 V). Linear plots of log of the rate of hole transfer versus r give a common intercept at r = 0 and a free energy change of 12.2 ± 0.3 kcal mol-1, ascribed to the GC• pair neutral radical undergoing a structural change, which is in competition to the observed hole transfer along DNA. The rate of hole transfer to the ligands at distance, R, from the GC• pair radical, k2, is described by the relationship k2 = k0 exp(constant/R), where k0 includes the rate constant for surmounting a small barrier.
Collapse
Affiliation(s)
- Robert F Anderson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Sujata S Shinde
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - Laura Andrau
- School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne 3052, Australia
| | - Brenda Leung
- School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne 3052, Australia
| | - Colin Skene
- School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne 3052, Australia
| | - Jonathan M White
- School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne 3052, Australia
| | - Pavel N Lobachevsky
- Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne 3052, Australia
| | - Roger F Martin
- School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
2
|
Lobachevsky P, Skene C, Munforte L, Smith A, White J, Martin RF. An approach to assessing the contribution of the high LET effect in strategies for Auger endoradiotherapy. Int J Radiat Biol 2023; 99:95-102. [PMID: 34519610 DOI: 10.1080/09553002.2021.1976862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose: The interest in exploiting Auger emitters in cancer therapy stems from their high linear energy transfer (LET)-type radiation damage to DNA. However, the design of Auger-emitter labeled vehicles that target the Auger cascade specifically to the DNA of tumour cells is challenging. Here we suggest a possible approach to evaluate tumour-targeting Auger-labeled conjugates by assessing the impact of a radioprotector known to be effective in protecting from low LET radiation, but not high LET radiation. Given some similarity between the energy spectrum of Auger electrons and that of secondary electrons from soft X-rays, we report the results of radioprotection experiments with 25 kVp X-rays. Materials and methods: Clonogenic survival curves for cultured human keratinocytes were established for three different irradiation conditions: 137Cs γ-rays, 25 kVp X-rays and 320 kVp X-rays, and the effect of including a new radioprotector, denoted "2PH", was investigated.Results: The extent of radioprotection by 2PH was comparable for all radiation conditions, although RBE was higher (about 1.7) for soft X-rays. Conclusions: Radioprotectors like 2PH will help to evaluate Auger endoradiotherapy strategies, by determining the relative contributions of the high-LET effects (not protected), compared to other components, such as Auger electrons not effectively targeted to DNA.
Collapse
Affiliation(s)
- Pavel Lobachevsky
- Peter MacCallum Cancer Centre, Parkville, Australia.,Advanced Analytical Technologies, Melbourne, Australia
| | - Colin Skene
- School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, Australia
| | | | - Andrea Smith
- Peter MacCallum Cancer Centre, Parkville, Australia
| | - Jonathan White
- School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Roger F Martin
- School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Beh RC, Pitsillou E, Liang JJ, Hung A, Karagiannis TC. In silico investigation of DNA minor groove binding bibenzimidazoles in the context of UV A phototherapy. Phys Chem Chem Phys 2021; 24:112-121. [PMID: 34889929 DOI: 10.1039/d1cp04841d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The versatility of DNA minor groove binding bibenzimidazoles extends to applications in cancer therapy, beyond their typical use as DNA stains. In the context of UVA phototherapy, a series of halogenated analogues designated ortho-, meta-, and para-iodoHoechst have been investigated. Phototoxicity involves dehalogenation of the ligands following exposure to UVA light, resulting in the formation of a carbon-centred radical. While the cytotoxic mechanisms have been well established, the nature and severity of DNA damage induced by the ortho-, meta-, and para-iodoHoechst isomers requires clarification. Our aims were to measure and compare the binding constants of iodoHoechst analogues, and to determine the proximity of the carbon-centred radicals formed following photodehalogenation to the C1', C4', and C5' DNA carbons. We performed molecular docking studies, as well as classical molecular dynamics simulations to investigate the interactions of Hoechst ligands with DNA including a well-defined B-DNA dodecamer containing the high affinity AATT minor groove binding site. Docking highlighted the binding of Hoechst analogues to AATT regions in oligonucleotides, nucleosomes, and origami DNA helical bundles. Further, MD simulations demonstrated the stability of Hoechst ligands in the AATT-containing minor groove over microsecond trajectories. Our findings reiterate that the efficiency of dehalogenation per se, rather than the proximity of the carbon-centred radicals to the DNA backbone, is responsible for the extreme phototoxicity of the ortho- isomer compared to the meta- and para-iodoHoechst isomers. More generally, our analyses are in line with the potential utility of ortho-iodoHoechst in DNA-targeted phototherapy, particularly if combined with a cell-specific delivery system.
Collapse
Affiliation(s)
- Raymond C Beh
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia. .,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia. .,School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia
| | - Julia J Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia. .,School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia
| | - Andrew Hung
- School of Science, College of Science, Engineering & Health, RMIT University, VIC 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia. .,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Gautam SD, Chen JK, Murray V. The DNA sequence specificity of bleomycin cleavage in a systematically altered DNA sequence. J Biol Inorg Chem 2017; 22:881-892. [PMID: 28509989 DOI: 10.1007/s00775-017-1466-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
Bleomycin is an anti-tumour agent that is clinically used to treat several types of cancers. Bleomycin cleaves DNA at specific DNA sequences and recent genome-wide DNA sequencing specificity data indicated that the sequence 5'-RTGT*AY (where T* is the site of bleomycin cleavage, R is G/A and Y is T/C) is preferentially cleaved by bleomycin in human cells. Based on this DNA sequence, we constructed a plasmid clone to explore this bleomycin cleavage preference. By systematic variation of single nucleotides in the 5'-RTGT*AY sequence, we were able to investigate the effect of nucleotide changes on bleomycin cleavage efficiency. We observed that the preferred consensus DNA sequence for bleomycin cleavage in the plasmid clone was 5'-YYGT*AW (where W is A/T). The most highly cleaved sequence was 5'-TCGT*AT and, in fact, the seven most highly cleaved sequences conformed to the consensus sequence 5'-YYGT*AW. A comparison with genome-wide results was also performed and while the core sequence was similar in both environments, the surrounding nucleotides were different.
Collapse
Affiliation(s)
- Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
5
|
Photosensitization by iodinated DNA minor groove binding ligands: Evaluation of DNA double-strand break induction and repair. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 103:145-52. [PMID: 21440453 DOI: 10.1016/j.jphotobiol.2011.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 01/09/2023]
Abstract
Iodinated DNA minor groove binding bibenzimidazoles represent a unique class of UVA photosensitizer and their extreme photopotency has been previously characterized. Earlier studies have included a comparison of three isomers, referred to as ortho-, meta- and para-iodoHoechst, which differ only in the location of the iodine substituent in the phenyl ring of the bibenzimidazole. DNA breakage and clonogenic survival studies in human erythroleukemic K562 cells have highlighted the higher photo-efficiency of the ortho-isomer (subsequently designated UV(A)Sens) compared to the meta- and para-isomers. In this study, the aim was to compare the induction and repair of DNA double-strand breaks induced by the three isomers in K562 cells. Further, we examined the effects of the prototypical broad-spectrum histone deacetylase inhibitor, Trichostatin A, on ortho-iodoHoechst/UVA-induced double-strand breaks in K562 cells. Using γH2AX as a molecular marker of the DNA lesions, our findings indicate a disparity in the induction and particularly, in the repair kinetics of double-strand breaks for the three isomers. The accumulation of γH2AX foci induced by the meta- and para-isomers returned to background levels within 24 and 48 h, respectively; the number of γH2AX foci induced by ortho-iodoHoechst remained elevated even after incubation for 96 h post-irradiation. These findings provide further evidence that the extreme photopotency of ortho-iodoHoechst is due to not only to the high quantum yield of dehalogenation, but also to the severity of the DNA lesions which are not readily repaired. Finally, our findings which indicate that Trichostatin A has a remarkable potentiating effect on ortho-iodoHoechst/UVA-induced DNA lesions are encouraging, particularly in the context of cutaneous T-cell lymphoma, for which a histone deacetylase inhibitor is already approved for therapy. This finding prompts further evaluation of the potential of combination therapies.
Collapse
|
6
|
Lobachevsky PN, Vasireddy RS, Broadhurst S, Sprung CN, Karagiannis TC, Smith AJ, Radford IR, McKay MJ, Martin RF. Protection by methylproamine of irradiated human keratinocytes correlates with reduction of DNA damage. Int J Radiat Biol 2010; 87:274-83. [PMID: 21087168 DOI: 10.3109/09553002.2011.530333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The therapeutic ratio for ionising radiation treatment of tumour is a trade-off between normal tissue side-effects and tumour control. Application of a radioprotector to normal tissue can reduce side-effects. Here we study the effects of a new radioprotector on the cellular response to radiation. Methylproamine is a DNA-binding radioprotector which, on the basis of published pulse radiolysis studies, acts by repair of transient radiation-induced oxidative species on DNA. To substantiate this hypothesis, we studied protection by methylproamine at both clonogenic survival and radiation-induced DNA damage, assessed by γH2AX (histone 2AX phosphorylation at serine 139) focus formation endpoints. MATERIALS AND METHODS The human keratinocyte cell line FEP1811 was used to study clonogenic survival and yield of γH2AX foci following irradiation (¹³⁷Cs γ-rays) of cells exposed to various concentrations of methylproamine. Uptake of methylproamine into cell nuclei was measured in parallel. RESULTS The extent of radioprotection at the clonogenic survival endpoint increased with methylproamine concentration up to a maximum dose modification factor (DMF) of 2.0 at 10 μM. At least 0.1 fmole/nucleus of methylproamine is required to achieve a substantial level of radioprotection (DMF of 1.3) with maximum protection (DMF of 2.0) achieved at 0.23 fmole/nucleus. The γH2AX focus yield per cell nucleus 45 min after irradiation decreased with drug concentration with a DMF of 2.5 at 10 μM. CONCLUSIONS These results are consistent with the hypothesis that radioprotection by methylproamine is mediated by attenuation of the extent of initial DNA damage.
Collapse
Affiliation(s)
- Pavel N Lobachevsky
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Victoria 3002, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Karagiannis TC, Lobachevsky PN, Martin RF. DNA targeted UVA photosensitization: characterization of an extremely photopotent iodinated minor groove binding DNA ligand. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 83:195-204. [PMID: 16488619 DOI: 10.1016/j.jphotobiol.2005.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/15/2005] [Accepted: 12/15/2005] [Indexed: 11/29/2022]
Abstract
Previous studies have described UVA-induced DNA strand breakage at the binding sites of iodinated DNA minor groove binding bisbenzimidazoles. The DNA breakage, presumably mediated by the carbon-centred ligand radical produced by photodehalogenation, was also shown to be cytotoxic. The earlier studies included a comparison of three ligand isomers, designated ortho-, meta- and para-iodoHoechst, and the efficiency of photo-induction of strand breaks in plasmid DNA proved to be much higher for the ortho-isomer. We have now extended the comparison of the three isomers with respect to photo-induced cytotoxicity in K562 cells. Although the relationship between the extent of nuclear uptake and the concentration of the ligand in the medium was similar for the three isomers, assay of in situ dehalogenation in drug-treated cells indicated that the apparent cross-section for dehalogenation of the ortho-isomer was greater than 5-fold higher than that for the meta- and para-isomers. Also, analysis of clonogenic survival data showed that the dehalogenation event associated with ortho-iodoHoechst was a more efficient mediator of UVA-induced cytotoxicity in K562 cells than that for meta- or para-iodoHoechst. The number of dehalogenation events associated with 50% cell-kill for ortho-iodoHoechst (1.23+/-0.04 x 10(4)) was less than that for the para- (3.92+/-0.29 x 10(4)) and meta- (11.6+/-0.90 x 10(4)) isomers. Thus it is concluded that the photopotency of ortho-iodoHoechst, which is an important feature in the context of its potential use in clinical phototherapy, is due not only to more efficient UVA-mediated dehalogenation of the ligand, but also to greater cytotoxic potency per dehalogenation event.
Collapse
Affiliation(s)
- Tom C Karagiannis
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Molecular Radiation Biology Laboratory, Locked Bag No. 1, A'Beckett Street, Melbourne, Vic. 8086, Australia
| | | | | |
Collapse
|
8
|
Lobachevsky PN, Martin RF. DNA Breakage by Decay of Auger Electron Emitters: Experiments with123I-iodoHoechst 33258 and Plasmid DNA. Radiat Res 2005; 164:766-73. [PMID: 16296882 DOI: 10.1667/rr3469.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Auger electron-emitting isotope 123I is of interest in the context of potential exploitation of Auger electron emitters in radioimmunotherapy. The efficiency of induction of cytotoxic lesions by decay of DNA-associated 125I, the prototype Auger electron emitter, is well established, but its long half-life (60 days) is a limitation. However, the advantage of the much shorter half-life of 123I (13.2 h) might be outweighed by its "weaker" Auger electron cascade with an average of 8-11 Auger electrons, compared to about 15-21 electrons for 125I. Accordingly, the efficiency of DNA breakage for DNA-associated 123I was investigated by incubation of 123I-iodoHoechst 33258 with plasmid DNA. The efficiency of double-strand break induction by decay of 123I was 0.62 compared to 0.82 per decay of 125I in the same experimental system. In the presence of dimethylsulfoxide, the values were 0.54 and 0.65 for decay of 123I and 125I, respectively. The results also showed that at a very low ligand/plasmid molar ratio (<1), the majority of cleavage seemed to occur at a particular site on the plasmid molecule, indicating preferential binding of the 123I-ligand to a unique site or a cluster of neighboring sites.
Collapse
Affiliation(s)
- Pavel N Lobachevsky
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
| | | |
Collapse
|
9
|
Holder AA, Swavey S, Brewer KJ. Design Aspects for the Development of Mixed-Metal Supramolecular Complexes Capable of Visible Light Induced Photocleavage of DNA. Inorg Chem 2003; 43:303-8. [PMID: 14704081 DOI: 10.1021/ic035029t] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mixed-metal supramolecular complexes that couple ruthenium or osmium based light absorbers to a central rhodium(III) core have been designed which photocleave DNA upon irradiation with visible light. The complexes [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5), [[(bpy)(2)Os(dpp)](2)RhCl(2)](PF(6))(5), and [[(tpy)RuCl(dpp)](2)RhCl(2)](PF(6))(3), where bpy = 2,2'-bipyridine, tpy = 2,2':6',2' '-terpyridine, and dpp = 2,3-bis(2-pyridyl)pyrazine, all exhibit intense metal to ligand charge transfer (MLCT) based transitions in the visible but possess lower lying metal to metal charge transfer (MMCT) excited states. These supramolecular complexes with low lying MMCT states photocleave DNA when excited into their intense MLCT transitions. Structurally similar complexes without this low lying MMCT state do not exhibit DNA photocleavage, establishing the role of this MMCT state in the DNA photocleavage event. Design considerations necessary to produce functional DNA photocleavage agents are presented herein.
Collapse
Affiliation(s)
- Alvin A Holder
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
10
|
Swavey S, Brewer KJ. Visible light induced photocleavage of DNA by a mixed-metal supramolecular complex: [[(bpy)(2)Ru(dpp)](2)RhCl2]5+. Inorg Chem 2002; 41:6196-8. [PMID: 12444759 DOI: 10.1021/ic0257726] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mixed-metal supramolecular complex, [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) coupling two ruthenium light absorbers (LAs) to a central rhodium, has been shown to photocleave DNA. This system possesses a lowest lying metal to metal charge transfer (MMCT) excited state in contrast to the metal to ligand charge transfer states (MLCT) of the bpm and Ir analogues. The systems with an MLCT excited state do not photocleavage DNA. [[(bpy)(2)Ru(dpp)](2)RhCl(2)](PF(6))(5) is the first supramolecular system shown to cleave DNA. It functions through an excited state previously unexplored for this reactivity, a Ru --> Rh MMCT excited state. This system functions when irradiated with low energy visible light with or without molecular oxygen.
Collapse
Affiliation(s)
- Shawn Swavey
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
11
|
Rao JY, Jin YS, Zheng Q, Cheng J, Tai J, Hemstreet GP. Alterations of the actin polymerization status as an apoptotic morphological effector in HL-60 cells. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19991215)75:4<686::aid-jcb14>3.0.co;2-f] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Murray V. A survey of the sequence-specific interaction of damaging agents with DNA: emphasis on antitumor agents. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:367-415. [PMID: 10506836 DOI: 10.1016/s0079-6603(08)60727-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This article reviews the literature concerning the sequence specificity of DNA-damaging agents. DNA-damaging agents are widely used in cancer chemotherapy. It is important to understand fully the determinants of DNA sequence specificity so that more effective DNA-damaging agents can be developed as antitumor drugs. There are five main methods of DNA sequence specificity analysis: cleavage of end-labeled fragments, linear amplification with Taq DNA polymerase, ligation-mediated polymerase chain reaction (PCR), single-strand ligation PCR, and footprinting. The DNA sequence specificity in purified DNA and in intact mammalian cells is reviewed for several classes of DNA-damaging agent. These include agents that form covalent adducts with DNA, free radical generators, topoisomerase inhibitors, intercalators and minor groove binders, enzymes, and electromagnetic radiation. The main sites of adduct formation are at the N-7 of guanine in the major groove of DNA and the N-3 of adenine in the minor groove, whereas free radical generators abstract hydrogen from the deoxyribose sugar and topoisomerase inhibitors cause enzyme-DNA cross-links to form. Several issues involved in the determination of the DNA sequence specificity are discussed. The future directions of the field, with respect to cancer chemotherapy, are also examined.
Collapse
Affiliation(s)
- V Murray
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Topoisomerase I-targeting drugs. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1067-568x(98)80005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Abstract
We have used quantitative DNase I footprinting to examine the ability of distamycin and Hoechst 33258 to discriminate between different arrangements of AT residues, using synthetic DNA fragments containing multiple blocks of (A/T)6or (A/T)10in identical sequence environments. Previous studies have shown that these ligands bind less well to (A/T)4sites containing TpA steps. We find that in (A/T)6tracts distamycin shows little discrimination between the various sites, binding approximately 2-fold stronger to TAATTA than (TA)3, T3A3and GAATTC. In contrast, Hoechst 33258 binds approximately 20-fold more tightly to GAATTC and TAATTA than T3A3and (TA)3. Hydroxyl radical footprinting reveals that both ligands bind in similar locations at the centre of each AT tract. At (A/T)10sites distamycin binds with similar affinity to T5A5, (TA)5and AATT, though bands in the centre of (TA)5are protected at approximately 50-fold lower concentration than those towards the edges. Hoechst 33258 shows a similar pattern of preference, with strong binding to AATT, T5A5and the centre of (TA)5. Hydroxyl radical footprinting reveals that at low concentrations both ligands bind at the centre of (TA)5and A5T5, while at higher concentrations ligand molecules bind to each end of the (A/T)10tracts. At T5A5two ligand molecules bind at either end of the site, even at the lowest ligand concentration, consistent with the suggestion that these compounds avoid the TpA step. Similar DNase I footprinting experiments with a DNA fragment containing T n (n = 3-6) tracts reveals that both ligands bind in the order T3< T4 << T5 = T6.
Collapse
Affiliation(s)
- A Abu-Daya
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | |
Collapse
|
15
|
Hexamminecobalt(III) chloride assisted, visible light induced, sequence dependent cleavage of DNA. J Inorg Biochem 1997. [DOI: 10.1016/s0162-0134(97)00089-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Abstract
This review summarises mutagenesis-related research on the major classes of DNA minor groove binding ligands. These compounds can bind to DNA covalently or non-covalently, and span a range of DNA sequence selectivities. Many of the non-covalent binders show effects on topoisomerase enzymes in mammalian cells, with the bisbenzimidazoles being the most active. Mutagenic effects consistent with topoisomerase inhibition are observed in vitro. Many of these compounds induce aneuploidy and polyploidy, properties which may also contribute to carcinogenic processes. Similarly, uvrA trapping by some minor groove binders may alter mutagenetic processes by inhibiting efficient repair. Distamycin has been shown to enhance the mutagenicity of ethidium bromide in bacteria by an undetermined mechanism. However, the inhibitory effects of minor groove binders on human DNA repair systems have not yet been reported. Hoechst 33258 and distamycin cause chromosome decondensation in both mouse and human cells particularly at heterochromatic regions which are rich in AT content. Various minor groove binders have been shown to induce fragile sites in cultured lymphocytes from susceptible individuals, which may have a propensity to develop particular cancers. Investigation of the relationship between fragile site inducing drugs and chromosomal rearrangements in fragile site carriers has not been investigated but may yield interesting results. Some DNA alkylating minor groove binders can generate lesions extremely toxic to mammalian cells (e.g., CC-1065 and analogues), and induce a range of DNA sequence changes in vivo, both at the site of covalent bonding as well as at surrounding sequences. This may be typical of alkylating minor groove binders which have a binding site size of several base pairs, and which stabilise helical structure. Minor groove binders have effects on gene expression in vitro by inhibiting the sequence selective binding of various transcription factors to DNA. These effects may result in expression or repression of downstream genes also. This class of ligand thus offers the possibility of mutations targeted to specific genes or genomic regions. It will be interesting to determine whether such examples of targeted mutagenesis, as has already been observed with CC-1065 and adozelesin, will result in an enhanced or in a lowered capacity to promote neoplastic disease. However it should be noted that pentamidine, a minor groove binder used in the treatment of AIDS-related PCP, has thus far shown no mutagenic effects in nuclear DNA and only a weak effect in mitochondrial DNA of yeast. These results suggest that minor groove binding does not necessarily lead to mutagenesis.
Collapse
Affiliation(s)
- P R Turner
- Cancer Research Laboratory, University of Auckland, New Zealand
| | | |
Collapse
|
17
|
Martin RF, Kelly DP, Roberts M, Nel P, Tursi J, Denison L, Rose M, Reum M, Pardee M. Comparative studies of UV-induced DNA cleavage by analogues of iodoHoechst 33258. Int J Radiat Biol 1994; 66:517-21. [PMID: 7527071 DOI: 10.1080/09553009414551551] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Following the earlier demonstration that iodo-Hoechst 33258 sensitizes DNA and cells to UVA, presumably mediated by formation of a carbon-centred radical on the ligand upon dehalogenation, three isomeric analogues of iodo-Hoechst 33258 have now been studied. The isomers differ in the location of the iodine atom in the phenyl ring of the ligand, relative to the site of attachment of the bibenzimidazole moiety, and are accordingly denoted ortho-, meta- and para-iodoHoechst. Comparison of the ligands with respect to induction of DNA ssb in pBR322 DNA revealed a wide range of activity; (D37's vary by a factor of 37), decreasing in the order: ortho- > meta- and para- > iodoHoechst 33258. Preliminary dehalogenation studies suggest that the higher activity of the ortho isomer results more from increased cross-section for dehalogenation than from increased efficiency of strand breakage per dehalogenation event. However, the chemistry of strand breakage by the ortho-isomer is distinctive, and tentatively assigned to initial attack at the 1'-deoxyribosyl carbon; the other two isomers, like iodo-Hoechst 33258, attack the 5'-carbon. The results are discussed in terms of the spectrum of DNA strand breakage chemistry associated with ionizing radiation, and the potential of DNA strand breaking agents such as the iodoHoechst compounds to study the chemical and biological consequences of the different subclasses of initial DNA damage.
Collapse
Affiliation(s)
- R F Martin
- Molecular Sciences Group, Peter MacCallum Cancer Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|