1
|
Webster CI, Packman LC, Gray JC. HMG-1 enhances HMG-I/Y binding to an A/T-rich enhancer element from the pea plastocyanin gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3154-62. [PMID: 11389716 DOI: 10.1046/j.1432-1327.2001.02191.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High-mobility-group proteins HMG-1 and HMG-I/Y bind at overlapping sites within the A/T-rich enhancer element of the pea plastocyanin gene. Competition binding experiments revealed that HMG-1 enhanced the binding of HMG-I/Y to a 31-bp region (P31) of the enhancer. Circularization assays showed that HMG-1, but not HMG-I/Y, was able to bend a linear 100-bp DNA containing P31 so that the ends could be ligated. HMG-1, but not HMG-I/Y, showed preferential binding to the circular 100-bp DNA compared with the equivalent linear DNA, indicating that alteration of the conformation of the DNA by HMG-1 was not responsible for enhanced binding of HMG-I/Y. Direct interaction of HMG-I/Y and HMG-1 in the absence of DNA was demonstrated by binding of 35S-labeled proteins to immobilized histidine-tagged proteins, and this was due to an interaction of the N-terminal HMG-box-containing region of HMG-1 and the C-terminal AT-hook region of HMG-I/Y. Kinetic analysis using the IAsys biosensor revealed that HMG-1 had an affinity for immobilized HMG-I/Y (Kd = 28 nM) similar to that for immobilized P31 DNA. HMG-1-enhanced binding of HMG-I/Y to the enhancer element appears to be mediated by the formation of an HMG-1-HMG-I/Y complex, which binds to DNA with the rapid loss of HMG-1.
Collapse
Affiliation(s)
- C I Webster
- Cambridge Centre for Molecular Recognition and Department of Plant Sciences, University of Cambridge, UK
| | | | | |
Collapse
|
2
|
Reeves R, Beckerbauer L. HMGI/Y proteins: flexible regulators of transcription and chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1519:13-29. [PMID: 11406267 DOI: 10.1016/s0167-4781(01)00215-9] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mammalian HMGI/Y (HMGA) non-histone proteins participate in a wide variety of cellular processes including regulation of inducible gene transcription, integration of retroviruses into chromosomes and the induction of neoplastic transformation and promotion of metastatic progression of cancer cells. Recent advances have contributed greatly to our understanding of how the HMGI/Y proteins participate in the molecular mechanisms underlying these biological events. All members of the HMGI/Y family of 'high mobility group' proteins are characterized by the presence of multiple copies of a conserved DNA-binding peptide motif called the 'AT hook' that preferentially binds to the narrow minor groove of stretches of AT-rich sequence. The mammalian HMGI/Y proteins have little, if any, secondary structure in solution but assume distinct conformations when bound to substrates such as DNA or other proteins. Their intrinsic flexibility allows the HMGI/Y proteins to participate in specific protein-DNA and protein-protein interactions that induce both structural changes in chromatin substrates and the formation of stereospecific complexes called 'enhanceosomes' on the promoter/enhancer regions of genes whose transcription they regulate. The formation of such regulatory complexes is characterized by reciprocal inductions of conformational changes in both the HMGI/Y proteins themselves and in their interacting substrates. It may well be that the inherent flexibility of the HMGI/Y proteins, combined with their ability to undergo reversible disordered-to-ordered structural transitions, has been a significant factor in the evolutionary selection of these proteins for their functional role(s) in cells.
Collapse
Affiliation(s)
- R Reeves
- Department of Biochemistry/Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA.
| | | |
Collapse
|
3
|
Forzani C, Loulergue C, Lobréaux S, Briat JF, Lebrun M. Nickel resistance and chromatin condensation in Saccharomyces cerevisiae expressing a maize high mobility group I/Y protein. J Biol Chem 2001; 276:16731-8. [PMID: 11278346 DOI: 10.1074/jbc.m007462200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of a maize cDNA encoding a high mobility group (HMG) I/Y protein enables growth of transformed yeast on a medium containing toxic nickel concentrations. No difference in the nickel content was measured between yeast cells expressing either the empty vector or the ZmHMG I/Y2 cDNA. The ZmHMG I/Y2 protein contains four AT hook motifs known to be involved in binding to the minor groove of AT-rich DNA regions. HMG I/Y proteins may act as architectural elements modifying chromatin structure. Indeed, a ZmHMG I/Y2-green fluorescent protein fusion protein was observed in yeast nuclei. Nickel toxicity has been suggested to occur through an epigenetic mechanism related to chromatin condensation and DNA methylation, leading to the silencing of neighboring genes. Therefore, the ZmHMG I/Y2 protein could prevent nickel toxicity by interfering with chromatin structure. Yeast cell growth in the presence of nickel and yeast cells expressing the ZmHMG I/Y2 cDNA increased telomeric URA3 gene silencing. Furthermore, ZmHMG I/Y2 restored a wild-type level of nickel sensitivity to the yeast (Delta)rpd3 mutant. Therefore, nickel resistance of yeast cells expressing the ZmHMG I/Y2 cDNA is likely achieved by chromatin structure modification, restricting nickel accessibility to DNA.
Collapse
Affiliation(s)
- C Forzani
- Biochimie et Physiologie Moléculaire des Plantes, CNRS Unité Mixte de Recherche 5004, Université Montpellier 2, Institut National de la Recherche Agronomique, Ecole Nationale Supérieure d'Agronomie, 2 place Viala, F-34060 Montpellier Cedex 1, France
| | | | | | | | | |
Collapse
|
4
|
Chua YL, Pwee KH, Kini RM. DNA binding mediated by the wheat HMGa protein: a novel instance of selectivity against alternating GC sequence. PLANT MOLECULAR BIOLOGY 2001; 46:193-204. [PMID: 11442059 DOI: 10.1023/a:1010696604330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The high-mobility-group (HMG) chromosomal protein wheat HMGa was purified to homogeneity and tested for its binding characteristics to double-stranded DNA. Wheat HMGa was able to bind to P268, an A/T-rich fragment derived from the pea plastocyanin gene promoter, producing a small mobility shift in gel retardation assays where the bound complex was sensitive to addition of proteinase K but resistant to heat treatment of the protein, consistent with the identity of wheat HMGa as a putative HMG-I/Y protein. Gel retardation assays and southwestern hybridization analysis revealed that wheat HMGa could selectively interact with the DNA polynucleotides poly(dA).poly(dT), poly(dAdT).poly(dAdT), and poly(dG).poly(dC), but not with poly(dGdC).poly(dGdC). Surface plasmon resonance analysis determined the kinetic and affinity constants of sensor chip-immobilized wheat HMGa for double-stranded DNA 10-mers, revealing a good affinity of the protein for various dinucleotide combinations, except that of alternating GC sequence. Thus contrary to prior reports of a selectivity of wheat HMGa for A/T-rich DNA, the protein appears to be able to interact with sequences containing guanine and cytosine residues as well, except where G/C residues alternate directly in the primary sequence.
Collapse
Affiliation(s)
- Y L Chua
- Plant Molecular Biology Laboratory, National University of Singapore, Republic of Singapore
| | | | | |
Collapse
|
5
|
Masek T, Smykal P, Janotova I, Honys D, Capkova V, Pechan PM. Isolation of a Brassica napus L. cDNA encoding a putative high-mobility-group HMG I/Y protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 159:197-204. [PMID: 11074272 DOI: 10.1016/s0168-9452(00)00329-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA encoding a high-mobility-group protein has been isolated from a microspore-specific library of Brassica napus. The 930 bp cDNA contains a 612 bp open reading frame encoding a protein of 203 amino acids residues exhibiting significant homology to HMG-I/Y protein from Arabidopsis thaliana (62%). The predicted protein contains four copies of the 'AT-hook' motif which is involved in binding A/T-rich DNA. Southern blotting indicates that the HMG-I/Y gene is a single-copy gene in B. napus. Transcription of the HMG-I/Y gene was detected in all tissues examined, with the highest expression in pollen-derived embryos. In situ localization studies of flower organs indicate the transcript to be preferentially located in petals and sepals. Subcellular localization analysis performed during pollen development showed that the transcript of the HMG-I/Y gene is predominantly associated with polysomes.
Collapse
Affiliation(s)
- T Masek
- Department of Plant Physiology, Faculty of Science, Charles University, Vinicna 5, CZ 128 44, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
6
|
Zhao J, Grafi G. The High Mobility Group I/Y Protein Is Hypophosphorylated in Endoreduplicating Maize Endosperm Cells and Is Involved in Alleviating Histone H1-mediated Transcriptional Repression. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61535-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Webster CI, Cooper MA, Packman LC, Williams DH, Gray JC. Kinetic analysis of high-mobility-group proteins HMG-1 and HMG-I/Y binding to cholesterol-tagged DNA on a supported lipid monolayer. Nucleic Acids Res 2000; 28:1618-24. [PMID: 10710428 PMCID: PMC102798 DOI: 10.1093/nar/28.7.1618] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/1999] [Revised: 02/16/2000] [Accepted: 02/16/2000] [Indexed: 01/18/2023] Open
Abstract
High-mobility-group proteins HMG-1 and HMG-I/Y bind to multiple sites within a 268 bp A/T-rich enhancer element of the pea plastocyanin gene ( PetE ). Within a 31 bp region of the enhancer, the binding site for HMG-1 overlaps with the binding site for HMG-I/Y. The kinetics of binding and the affinities of HMG-1 and HMG-I/Y for the 31 bp DNA were determined using surface plasmon resonance. Due to very high non-specific interactions of the HMG proteins with a carboxymethyl-dextran matrix, a novel method using a cholesterol tag to anchor the DNA in a supported lipid monolayer on a thin gold film was devised. The phosphatidylcholine monolayer produced a surface that reduced background interactions to a minimum and permitted the measurement of highly reproducible protein-DNA interactions. The association rate constant ( k (a)) of HMG-I/Y with the 31 bp DNA was approximately 5-fold higher than the rate constant for HMG-1, whereas the dissociation constant ( K (D)) for HMG-I/Y (3.1 nM) was approximately 7-fold lower than that for HMG-1 (20.1 nM). This suggests that HMG-I/Y should bind preferentially at the overlapping binding site within this region of the PetE enhancer.
Collapse
Affiliation(s)
- C I Webster
- Cambridge Centre for Molecular Recognition, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
8
|
Krech AB, Wulff D, Grasser KD, Feix G. Plant chromosomal HMGI/Y proteins and histone H1 exhibit a protein domain of common origin. Gene 1999; 230:1-5. [PMID: 10196467 DOI: 10.1016/s0378-1119(99)00067-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chromosomal high-mobility-group (HMG) proteins of the HMGI/Y family interact with A/T-rich stretches in duplex DNA, and are considered assistant factors in transcriptional regulation. A cDNA encoding an HMGI/Y protein of 190 amino acid residues was isolated from maize and characterized. Like other plant HMGI/Y proteins, the maize HMGI/Y protein contains four copies of the AT-hook DNA-binding motif and an amino-terminal 'histone H1-like region' with a similarity to the globular domain of H1. The maize hmgi/y gene that was isolated from a genomic DNA library contains a single intron that is localized in the region of sequence similarity to histone H1. Interestingly, the genes encoding plant H1 contain an intron at exactly the same relative position, indicating an evolutionary relationship of the plant genes encoding HMGI/Y and H1 proteins.
Collapse
Affiliation(s)
- A B Krech
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | | | | | | |
Collapse
|
9
|
Gupta R, Webster CI, Gray JC. Characterisation and promoter analysis of the Arabidopsis gene encoding high-mobility-group protein HMG-I/Y. PLANT MOLECULAR BIOLOGY 1998; 36:897-907. [PMID: 9520280 DOI: 10.1023/a:1005928219895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The single-copy gene encoding the Arabidopsis HMG-I/Y protein was isolated and characterised. The gene encodes a protein of 204 amino acid residues and contains a single intron of 73 bp. Primer extension analysis indicates that transcription starts 115 bp upstream of the translation start and the leader sequence contains a short open reading frame of 13 amino acid residues. The 5'-upstream region of 2117 bp and several 5' deletions were fused to the beta-glucuronidase (GUS) reporter gene and transferred to tobacco by Agrobacterium-mediated transformation. Analysis of transgenic tobacco plants containing HMG-I/Y promoter regions of -2117, -1468 and -707 from the translation start detected GUS activity in all organs examined, including roots, stems, leaves and floral organs. Deletion from -707 to -185 resulted in a 20-30-fold reduction in GUS activity in roots and stems, indicating the presence of important quantitative regulatory elements in this region.
Collapse
Affiliation(s)
- R Gupta
- Department of Plant Sciences and Cambridge Centre for Molecular Recognition, University of Cambridge, UK
| | | | | |
Collapse
|
10
|
Gupta R, Webster CI, Gray JC. The single-copy gene encoding high-mobility-group protein HMG-I/Y from pea contains a single intron and is expressed in all organs. PLANT MOLECULAR BIOLOGY 1997; 35:987-92. [PMID: 9426619 DOI: 10.1023/a:1005890012230] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The coding and 3'-downstream regions of the gene encoding the high mobility group protein HMG-I/Y from pea have been isolated, sequenced and characterised. A 795 bp pea genomic fragment containing the coding region of the pea HMG-I/Y gene with a single intron of 201 bp was isolated by PCR. The gene encodes a protein of 197 amino acid residues with four copies of the AT-hook DNA-binding motif encoded by exon 2. Southern blot analysis on genomic DNA revealed the presence of a single copy of the HMG-I/Y gene in the haploid genome. The pea HMG-I/Y gene is expressed in all organs of pea including roots, stems, leaves, flowers, tendrils and developing seeds, as determined by northern blot analysis.
Collapse
Affiliation(s)
- R Gupta
- Department of Plant Sciences, University of Cambridge, UK
| | | | | |
Collapse
|
11
|
Gupta R, Webster CI, Walker AR, Gray JC. Chromosomal location and expression of the single-copy gene encoding high-mobility-group protein HMG-I/Y in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 1997; 34:529-536. [PMID: 9225863 DOI: 10.1023/a:1005828430861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cDNA encoding the HMG-I/Y protein from Arabidopsis thaliana has been isolated and characterised by nucleotide sequencing. The 903 bp cDNA contains a 612 bp open reading frame encoding a protein of 204 amino acid residues showing homology to HMG-I/Y proteins from other plant species. The protein contains four copies of the 'AT-hook' motif which is involved in binding A/T-rich DNA. Southern blotting showed that the HMG-I/Y gene was present in a single copy in the Arabidopsis genome. The gene was localised to the top of chromosome 1 by RFLP analysis of F8 recombinant inbred lines. Northern blotting showed that the gene was expressed in all organs examined, with the highest expression in flowers and developing siliques.
Collapse
Affiliation(s)
- R Gupta
- Department of Plant Sciences, University of Cambridge, UK
| | | | | | | |
Collapse
|
12
|
Yamamoto S, Minamikawa T. Two genes for the high mobility group protein HMG-Y are present in the genome of Canavalia gladiata D.C. PLANT MOLECULAR BIOLOGY 1997; 33:537-544. [PMID: 9049273 DOI: 10.1023/a:1005791728975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two cDNAs encoding high-mobility-group (HMG) proteins that correspond to animal HMG-Y proteins were isolated from maturing seeds of Canavalia gladiata D.C. The deduced amino acid sequences of these cDNAs showed similarity to other plant HMG-I/Y proteins reported to date. The mRNAs for the HMG-Y proteins were detected in leaves, stems, roots, pods and seeds of C. gladiata. The level of the mRNA was high in the maturing seeds of 30 days after flowering and 2-day germinated seeds. Two genomic clones were isolated from DNA of C. gladiata and both were shown to represent single-copy genes consisting of two exons and one intron. This is the first report of the genomic sequences for HMG-I/Y protein in plants.
Collapse
Affiliation(s)
- S Yamamoto
- Department of Biology, Tokyo Metropolitan University, Japan
| | | |
Collapse
|
13
|
Nicolas FJ, Cayuela ML, Martínez-Argudo IM, Ruiz-Vazquez RM, Murillo FJ. High mobility group I(Y)-like DNA-binding domains on a bacterial transcription factor. Proc Natl Acad Sci U S A 1996; 93:6881-5. [PMID: 8692912 PMCID: PMC38902 DOI: 10.1073/pnas.93.14.6881] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The bacterium Myxococcus xanthus responds to blue light by producing carotenoids. It also responds to starvation conditions by developing fruiting bodies, where the cells differentiate into myxospores. Each response entails the transcriptional activation of a separate set of genes. However, a single gene, carD, is required for the activation of both light- and starvation-inducible genes. Gene carD has now been sequenced. Its predicted amino acid sequence includes four repeats of a DNA-binding domain present in mammalian high mobility group I(Y) proteins and other nuclear proteins from animals and plants. Other peptide stretches on CarD also resemble functional domains typical of eukaryotic transcription factors, including a very acidic region and a leucine zipper. High mobility group yI(Y) proteins are known to bind the minor groove of A+T-rich DNA. CarD binds in vitro an A+T-rich element that is required for the proper operation of a carD-dependent promoter in vivo.
Collapse
Affiliation(s)
- F J Nicolas
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
14
|
Ni M, Dehesh K, Tepperman JM, Quail PH. GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. THE PLANT CELL 1996; 8:1041-59. [PMID: 8672890 PMCID: PMC161160 DOI: 10.1105/tpc.8.6.1041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
GT-2 is a novel DNA binding protein that interacts with a triplet functionally defined, positively acting GT-box motifs (GT1-bx, GT2-bx, and GT3-bx) in the rice phytochrome A gene (PHYA) promoter. Data from a transient transfection assay used here show that recombinant GT-2 enhanced transcription from both homologous and heterologous GT-box-containing promoters, thereby indicating that this protein can function as a transcriptional activator in vivo. Previously, we have shown that GT-2 contains separate DNA binding determinants in its N- and C-terminal halves, with binding site preferences for the GT3-bx and GT2-bx promoter motifs, respectively. Here, we demonstrate that the minimal DNA binding domains reside within dual 90-amino acid polypeptide segments encompassing duplicated sequences, termed trihelix regions, in each half of the molecule, plus 15 additional immediately adjacent amino acids downstream. These minimal binding domains retained considerable target sequence selectivity for the different GT-box motifs, but this selectivity was enhanced by a separate polypeptide segment farther downstream on the C-terminal side of each trihelix region. Therefore, the data indicate that the twin DNA binding domains of GT-2 each consist of a general GT-box recognition core with intrinsic differential binding activity toward closely related target motifs and a modified sequence conferring higher resolution reciprocal selectivity between these motifs.
Collapse
Affiliation(s)
- M Ni
- Department of Plant Biology, University of California, Berkeley 94720, USA
| | | | | | | |
Collapse
|
15
|
Meijer AH, van Dijk EL, Hoge JH. Novel members of a family of AT hook-containing DNA-binding proteins from rice are identified through their in vitro interaction with consensus target sites of plant and animal homeodomain proteins. PLANT MOLECULAR BIOLOGY 1996; 31:607-18. [PMID: 8790293 DOI: 10.1007/bf00042233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The AT hook is an AT-rich DNA-binding domain that occurs three times in mammalian high-mobility-group I/Y chromosomal proteins and has recently also been identified in DNA-binding proteins from plants. We unexpectedly isolated three rice cDNA clones encoding AT hook-containing proteins in an attempt to isolate homeobox cDNA clones by south-western screening of an expression library with known binding sites for Arabidopsis and animal homeodomain proteins. One of these clones (Os-PF1) has previously been identified due to the binding of its encoded protein to PE1, a cis-acting element from the oat phytochrome promoter. The other two clones represent newly described cDNA clones, designated Os-AT1 and Os-AT2. The Os-AT1 and Os-AT2 proteins were found to have the same specificities as Os-PF1 with respect to in vitro binding of wild-type and mutant PE1 versions. However, all three proteins appeared to bind much stronger in south-western assays to two of the rather AT-rich sequences used in our screening than to the PE1 element. In none of the AT hook proteins clear homologies to transcriptional activation domains could be identified, but the N-terminal regions of Os-AT1 and Os-PF1 were found to show similarity to histone H1 chromosomal proteins. Given their structural characteristics it is conceivable that the rice AT hook proteins bind to gene promoter regions as accessory proteins that may alter the accessibility of chromatin to other nuclear factors. Their predominant expression in young and meristematic tissues suggests that the presence of the AT hook proteins may affect the expression of genes that determine the differentiation status of cells.
Collapse
Affiliation(s)
- A H Meijer
- Institute of Molecular Plant Sciences, Clusius Laboratory, Leiden University, The Netherlands
| | | | | |
Collapse
|
16
|
Bustin M, Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:35-100. [PMID: 8768072 DOI: 10.1016/s0079-6603(08)60360-8] [Citation(s) in RCA: 568] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Bustin
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|