1
|
Hou X, Wang G, Gaffney BL, Jones RA. Preparation of DNA and RNA Fragments Containing Guanine N 2 -Thioalkyl Tethers. Curr Protoc 2023; 3:e710. [PMID: 36943108 DOI: 10.1002/cpz1.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
This article describes procedures for preparation of deoxyguanosine and guanosine derivatives in which the guanine N2 contains a thiopropyl tether, protected as a tert-butyl disulfide. After incorporation into a DNA or RNA fragment, this tether allows site-specific cross-linking to a thiol of a protein or another nucleic acid. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of diisopropyl-1-(tert-butylthio)-1,2-hydrazinedicarboxylate (4) Basic Protocol 2: Preparation of the 2'-deoxyguanosine N2 -propyl-tert-butyl disulfide phosphoramidite (12) Basic Protocol 3: Preparation of the guanosine N2 -propyl-tert-butyl disulfide phosphoramidite (20) Basic Protocol 4: Preparation of DNA fragments containing N2 -propyl-tert-butyl disulfide guanine Alternate Protocol: Preparation of RNA fragments containing N2 -propyl-tert-butyl disulfide guanine Basic Protocol 5: Conversion of N2 -propyl-tert-butyl disulfide to the free thiol, disulfide 5-thio-2-nitrobenzoic acid disulfide, or ethylamine disulfide.
Collapse
Affiliation(s)
- Xiaorong Hou
- Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Gang Wang
- Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | | | - Roger A Jones
- Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
2
|
Stasińska AR, Putaj P, Chmielewski MK. Disulfide bridge as a linker in nucleic acids' bioconjugation. Part II: A summary of practical applications. Bioorg Chem 2019; 95:103518. [PMID: 31911308 DOI: 10.1016/j.bioorg.2019.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
Disulfide conjugation invariably remains a key tool in research on nucleic acids. This versatile and cost-effective method plays a crucial role in structural studies of DNA and RNA as well as their interactions with other macromolecules in a variety of biological systems. In this article we review applications of disulfide-bridged conjugates of oligonucleotides with other (bio)molecules such as peptides, proteins etc. and present key findings obtained with their help.
Collapse
Affiliation(s)
- Anna R Stasińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Piotr Putaj
- FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Marcin K Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland.
| |
Collapse
|
3
|
Hou X, Wang G, Gaffney BL, Jones RA. Preparation of DNA and RNA fragments containing guanine N(2)-thioalkyl tethers. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2010; Chapter 5:Unit-5.8. [PMID: 20517990 PMCID: PMC2967349 DOI: 10.1002/0471142700.nc0508s41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This unit describes procedures for preparation of deoxyguanosine and guanosine derivatives in which the guanine N(2) contains a thiopropyl tether, protected as a tert-butyl disulfide. After incorporation into a DNA or RNA fragment, this tether allows site-specific cross-linking to a thiol of a protein or another nucleic acid.
Collapse
Affiliation(s)
- Xiaorong Hou
- Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | | | | | | |
Collapse
|
4
|
Hou X, Wang G, Gaffney BL, Jones RA. Synthesis of guanosine and deoxyguanosine phosphoramidites with cross-linkable thioalkyl tethers for direct incorporation into RNA and DNA. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2009; 28:1076-94. [PMID: 20183575 PMCID: PMC2829721 DOI: 10.1080/15257770903368385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We describe the synthesis of protected phosphoramidites of deoxyriboguanosine and guanosine derivatives containing a thiopropyl tether at the guanine N2 (7a,b) for site-specific crosslinking from the minor groove of either DNA or RNA to a thiol of a protein or another nucleic acid. The thiol is initially protected as a tert-butyl disulfide that is stable during oligonucleotide synthesis. While the completed oligonucleotide is still attached to the support, or after purification, the tert-butyl thiol can readily be removed or replaced by thioethylamine or 5-thio-2-nitrobenzoic acid, which have more favorable crosslinking rates.
Collapse
Affiliation(s)
- Xiaorong Hou
- Department of Chemistry and Chemical Biology, 610 Taylor Road, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854
| | - Gang Wang
- Department of Chemistry and Chemical Biology, 610 Taylor Road, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854
| | - Barbara L. Gaffney
- Department of Chemistry and Chemical Biology, 610 Taylor Road, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854
| | - Roger A. Jones
- Department of Chemistry and Chemical Biology, 610 Taylor Road, Rutgers, The State University of New Jersey, Piscataway New Jersey 08854
| |
Collapse
|
5
|
Abstract
This protocol presents a simple and general means of modifying nucleic acids with disulfide cross-links. These cross-links serve as powerful tools to probe the structure, dynamics, thermodynamics, folding, and function of DNA and RNA, much in the way that cystine cross-links have been used to study proteins. The chemistry described has been used to synthesize disulfide-cross-linked hairpins and duplexes, higher-order structures such as triplexes, non-ground-state conformations, and tRNAs. since the cross-links form quantitatively by mild air oxidation and do not purturb either secondary or tertiary structure, this modification should prove quite useful for the study of nucleic acids.
Collapse
Affiliation(s)
- Gary D Glick
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Antsypovitch SI, Oretskaya TS. Double-helical nucleic acids with cross-linked strands: synthesis and applications in molecular biology. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc1998v067n03abeh000345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Tona R, Haner R. Crosslinking of diene-modified DNA with bis-maleimides. MOLECULAR BIOSYSTEMS 2005; 1:93-8. [PMID: 16880969 DOI: 10.1039/b418502a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemical crosslinking of modified nucleic acids via the Diels-Alder reaction is reported. For this purpose, 1,3-butadiene derived building blocks were incorporated into complementary oligodeoxynucleotides. Treatment of the obtained duplex with difunctional dienophiles results in the clean crosslinking of the two strands. Non-crosslinked adducts arising from a single Diels-Alder reaction of a maleimide to only one strand were not observed, indicating that the first reaction is the rate determining step of the overall process. Based on their thermal denaturation profiles, the crosslinked hybrids behave like two separate, hairpin-like structures, rather than like a single, continuous duplex.
Collapse
Affiliation(s)
- Rolf Tona
- Department of Chemistry, University of Bern, CH-3012 Bern, Switzerland
| | | |
Collapse
|
8
|
Gómez-Pinto I, Marchán V, Gago F, Grandas A, González C. Solution structure and stability of a disulfide cross-linked nucleopeptide duplex. Chem Commun (Camb) 2004:2558-9. [PMID: 14594279 DOI: 10.1039/b307300a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR methods are used to study the structure and stability of the duplex formed by the nucleopeptide [Ac-Cys-Gly-Ala-Hse(p3'dGCATGC)-Ala-OH]2[S-S], in which the oligonucleotide is self-complementary and the cysteine residues of the two peptide chains form a disulfide bridge; thermal transitions and NMR-derived structural calculations are consistent with a 3-D structure in which the oligonucleotide forms a standard B-DNA helix without significant distortions; the peptide chains are relatively disordered in solution and lie in the minor groove of the DNA helix; this nucleopeptide duplex exhibits a high melting temperature, indicating that peptide-oligonucleotide conjugates containing cysteines are suitable molecules to establish cross-links between DNA strands and stabilize the duplex.
Collapse
Affiliation(s)
- Irene Gómez-Pinto
- Instituto de Química Física Rocasolano, C/Serrano 119, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
9
|
Abstract
In this review I discuss straightforward and general methods to modify nucleic acid structure with disulfide cross-links. A motivating factor in developing this chemistry was the notion that disulfide bonds would be excellent tools to probe the structure, dynamics, thermodynamics, folding, and function of DNA and RNA, much in the way that cystine cross-links have been used to study proteins. The chemistry described has been used to synthesize disulfide cross-linked hairpins and duplexes, higher order structures like triplexes, nonground-state conformations, and tRNAs. Since the cross-links form quantitatively by mild air oxidation and do not perturb either secondary or tertiary structure, this modification should prove quite useful for the study of nucleic acids.
Collapse
Affiliation(s)
- G D Glick
- Department of Chemistry, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
10
|
Abstract
We have incorporated 5-fluorouridine into several sites within a 19-mer RNA modelled on the translational operator of the MS2 bacteriophage. The 19F NMR spectra demonstrate the different chemical shifts of helical and loop fluorouridines of the hairpin secondary structure. Addition of salt gives rise to a species in which the loop fluorouridine gains the chemical shift of its helical counterparts, due to the formation of the alternative bi-molecular duplex form. This is supported by UV thermal melting behaviour which becomes highly dependent on the RNA concentration. Distinct 19F NMR signals for duplex and hairpin forms allow the duplex-hairpin equilibrium constant to be determined under a range of conditions, enabling thermodynamic characterisation and its salt dependence to be determined. Mg2+ also promotes duplex formation, but more strongly than Na+, such that at 25 degrees C, 10 mM MgCl2 has a comparable duplex-promoting effect to 300 mM NaCl. A similar effect is observed with Sr2+, but not Ca2+ or Ba2+. Additional hairpin species are observed in the presence of Na+ as well as Mg2+, Ca2+, Sr2+ and Ba2+ ions. The overall, ensemble average, hairpin conformation is therefore salt-dependent. Electrostatic considerations are thus involved in the balance between different hairpin conformers as well as the duplex-hairpin equilibrium. The data presented here demonstrate that 19F NMR is a powerful tool for the study of conformational heterogeneity in RNA, which is particularly important for probing the effects of metal ions on RNA structure. The thermodynamic characterisation of duplex-hairpin equilibria will also be valuable in the development of theoretical models of nucleic acid structure.
Collapse
Affiliation(s)
- J R Arnold
- School of Biology, University of Leeds, UK.
| | | |
Collapse
|
11
|
Chemical ligation and recombination of DNA fragments through formation (exchange) of disulfide bonds located in the sugar-phosphate backbone. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2000. [DOI: 10.1007/bf02759167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Katz RA, Gravuer K, Skalka AM. A preferred target DNA structure for retroviral integrase in vitro. J Biol Chem 1998; 273:24190-5. [PMID: 9727042 DOI: 10.1074/jbc.273.37.24190] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The retroviral integrase protein catalyzes the insertion of linear viral DNA ends into the host cell DNA. Although integration in vivo is not site-specific, the detection of local and regional preferences within cellular DNA suggests that the integration reaction can be influenced by specific features of host DNA or chromatin. Here we describe highly preferred in vitro integration sites for avian sarcoma virus and human immunodeficiency virus-1 integrases within the stems of plasmid DNA cruciform structures. The preferred sites are adjacent to the loops in the cruciform and are strand-specific. We suggest that the observed preference is due to the end-like character of the stem loop structure that allows DNA unpairing. From these results we propose that such unpairing may enhance both the processing and the joining steps in the integration reaction, and perhaps other cellular recombination reactions as well.
Collapse
Affiliation(s)
- R A Katz
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | |
Collapse
|
13
|
Maglott EJ, Glick GD. Probing structural elements in RNA using engineered disulfide cross-links. Nucleic Acids Res 1998; 26:1301-8. [PMID: 9469841 PMCID: PMC147396 DOI: 10.1093/nar/26.5.1301] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Three analogs of unmodified yeast tRNAPhe, each possessing a single disulfide cross-link, have been designed and synthesized. One cross-link is between G1 and C72 in the amino acid acceptor stem, a second cross-link is in the central D region of yeast tRNAPhe between C11 and C25 and the third cross-link bridges U16 and C60 at the D loop/T loop interface. Air oxidation to form the cross-links is quantitative and analysis of the cross-linked products by native and denaturing PAGE, RNase T1 mapping, Pb(II) cleavage, UV cross-linking and thermal denaturation demonstrates that the disulfide bridges do not alter folding of the modified tRNAs relative to the parent sequence. The finding that cross-link formation between thiol-derivatized residues correlates with the position of these groups in the crystal structure of native yeast tRNAPhe and that the modifications do not significantly perturb native structure suggests that this methodology should be applicable to the study of RNA structure, conformational dynamics and folding pathways.
Collapse
MESH Headings
- Base Sequence
- Cross-Linking Reagents
- Disulfides/chemistry
- Hot Temperature
- Magnetic Resonance Spectroscopy
- Models, Molecular
- Molecular Sequence Data
- Molecular Structure
- Nucleic Acid Conformation
- Nucleic Acid Denaturation
- RNA, Fungal/chemical synthesis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Transfer, Phe/chemical synthesis
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- E J Maglott
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
14
|
Cain RJ, Glick GD. The effect of cross-links on the conformational dynamics of duplex DNA. Nucleic Acids Res 1997; 25:836-42. [PMID: 9016635 PMCID: PMC146506 DOI: 10.1093/nar/25.4.836] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The base pair lifetimes and apparent dissociation constants of a 21 base DNA hairpin and an analog possessing a disulfide cross-link bridging the 3'- and 5'-terminal bases were determined by measuring imino proton exchange rates as a function of exchange catalyst concentration and temperature. A comparison of the lifetimes and apparent dissociation constants for corresponding base pairs of the two hairpins indicates that the cross-link neither increases the number of base pairs involved in fraying nor alters the lifetime, dissociation constant, or the opened structure from which exchange occurs for the base pairs that are not frayed. The cross-link does, however, stabilize the frayed penultimate base pair of the stem duplex. Significantly, it appears that the disulfide cross-link is more effective at preventing fraying of the penultimate base pair than is the 5 base hairpin loop. Because this disulfide cross-link can be incorporated site specifically, and does not adversely affect static or dynamic properties of DNA, it should prove very useful in studies of nucleic acid structure and function.
Collapse
Affiliation(s)
- R J Cain
- University of Michigan, Department of Chemistry, Ann Arbor 48109-1055, USA
| | | |
Collapse
|
15
|
Abstract
Hairpin is a structural motif frequently observed in both RNA and DNA molecules. This motif is involved specifically in various biological functions (e.g., gene expression and regulation). To understand how these hairpin motifs perform their functions, it is important to study their structures. Compared to protein structural motifs, structures of nucleic acid hairpins are less known. Based on a set of reduced coordinates for describing nucleic acid structures and a sampling algorithm that equilibrates structures using Metropolis Monte Carlo simulation, we developed a method to model nucleic acid hairpin structures. This method was used to predict the structure of a DNA hairpin with a single-guanosine loop. The lowest energy structure from the ensemble of 200 sampled structures has a RMSD of < 1.5 A, from the structure determined using NMR. Additional constraints for the loop bases were introduced for modeling an RNA hairpin with two nucleotides in the loop. The modeled structure of this RNA hairpin has extensive base stacking and an extra hydrogen bond (between the CYT in the loop and a phosphate oxygen), as observed in the NMR structure.
Collapse
Affiliation(s)
- C S Tung
- Theoretical Division, Los Alamos National Laboratory, New Mexico 87545, USA.
| |
Collapse
|
16
|
Altmann S, Labhardt AM, Bur D, Lehmann C, Bannwarth W, Billeter M, Wüthrich K, Leupin W. NMR studies of DNA duplexes singly cross-linked by different synthetic linkers. Nucleic Acids Res 1995; 23:4827-35. [PMID: 8532525 PMCID: PMC307471 DOI: 10.1093/nar/23.23.4827] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Molecular modelling studies resulted in the design of a variety of non-nucleotidic covalent linkers to bridge the 3'-end of the (+)-strand and the 5'-end of the (-)-strand in DNA duplexes. Three of these linkers were synthesized and used to prepare singly cross-linked duplexes d(GTGGAATTC)-linker-d(GAATTCCAC). Linker I is an assembly of a propylene-, a phosphate- and a second propylene-group and is thought to mimic the backbone of two nucleotides. Linkers II and III consist of five and six ethyleneglycol units, respectively. The melting temperatures of the cross-linked duplexes are 65 degrees C for I and 73 degrees C for II and III, as compared with 36 degrees C for the corresponding non-linked nonadeoxynucleotide duplex. The three cross-linked duplexes were structurally characterized by nuclear magnetic resonance spectroscopy. The 1H and 31P resonance assignments in the DNA stem were obtained using standard methods. For the resonance assignment of the linker protons, two-dimensional 1H-31P heteronuclear COSY and two-quantum-experiments were used. Distance geometry calculations with NOE-derived distance constraints were performed and the resulting structures were energy-minimized. In duplex I, the nucleotides flanking the propylene-phosphate-propylene-linker do not form a Watson-Crick base pair, whereas in duplexes II and III the entire DNA stem is in a B-type double helix conformation.
Collapse
Affiliation(s)
- S Altmann
- F. Hoffmann-La Roche Ltd, Pharma Division, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|