1
|
Martín-Hernández R, Higes M, Sagastume S, Juarranz Á, Dias-Almeida J, Budge GE, Meana A, Boonham N. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis. PLoS One 2017; 12:e0170183. [PMID: 28152065 PMCID: PMC5289437 DOI: 10.1371/journal.pone.0170183] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell.
Collapse
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Albacete, Albacete, Spain
- * E-mail:
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Soledad Sagastume
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Ángeles Juarranz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joyce Dias-Almeida
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Giles E. Budge
- Fera, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aránzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Neil Boonham
- Fera, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
uvsF RFC1, the large subunit of replication factor C in Aspergillus nidulans, is essential for DNA replication, functions in UV repair and is upregulated in response to MMS-induced DNA damage. Fungal Genet Biol 2008; 45:1227-34. [PMID: 18655840 DOI: 10.1016/j.fgb.2008.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 11/22/2022]
Abstract
uvsF201 was the first highly UV-sensitive repair-defective mutation isolated in Aspergillus nidulans. It showed epistasis only with postreplication repair mutations, but caused lethal interactions with many other repair-defective strains. Unexpectedly, closest homology of uvsF was found to the large subunit of human DNA replication factor RFC that is essential for DNA replication. Sequencing of the uvsF201 region identified changes at two close base pairs and the corresponding amino acids in the 5'-region of uvsF(RFC1). This viable mutant represents a novel and possibly important type. Additional sequencing of the uvsF region confirmed a mitochondrial ribosomal protein gene, mrpA(L16), closely adjacent, head-to-head with a 0.2kb joint promoter region. MMS-induced transcription of both the genes, but especially uvsF(RFC1), providing evidence for a function in DNA damage response.
Collapse
|
3
|
Jacques C, Chevrollier A, Loiseau D, Lagoutte L, Savagner F, Malthièry Y, Reynier P. mtDNA controls expression of the Death Associated Protein 3. Exp Cell Res 2006; 312:737-45. [PMID: 16413536 DOI: 10.1016/j.yexcr.2005.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/13/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
The Death Associated Protein 3 (DAP3), a GTP-binding constituent of the small subunit of the mitochondrial ribosome, is implicated in the TNFalpha and IFNgamma apoptotic pathways of the cell and is involved in the maintenance of the mitochondrial network. We have investigated the mitochondrial role of DAP3 by analyzing its mRNA and protein expression in transformed and non-transformed cell lines presenting various levels of mtDNA. The 3 mtDNA-less (rho degrees ) cell lines showed a complete absence of DAP3, whereas the mRNA expression was conserved. In HepG2 cells treated with increasing doses of ddCTP, the depletion of mtDNA was accompanied by the reduced expression of DAP3. However, the expression of the corresponding mRNA was maintained, suggesting the existence of a post-transcriptional mechanism responsible for the depletion of the DAP3. Compared to the parental cells, the 3 rho degrees cell lines displayed partial resistance to staurosporin-induced cell death. The absence of pro-apoptotic DAP3 in these mtDNA-less cells could explain their reduced apoptotic capacity. Our results suggest that the mtDNA content plays a role in cell apoptosis by mediating the expression of DAP3.
Collapse
|
4
|
Dunn CD, Lee MS, Spencer FA, Jensen RE. A genomewide screen for petite-negative yeast strains yields a new subunit of the i-AAA protease complex. Mol Biol Cell 2005; 17:213-26. [PMID: 16267274 PMCID: PMC1345660 DOI: 10.1091/mbc.e05-06-0585] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Unlike many other organisms, the yeast Saccharomyces cerevisiae can tolerate the loss of mitochondrial DNA (mtDNA). Although a few proteins have been identified that are required for yeast cell viability without mtDNA, the mechanism of mtDNA-independent growth is not completely understood. To probe the relationship between the mitochondrial genome and cell viability, we conducted a microarray-based, genomewide screen for mitochondrial DNA-dependent yeast mutants. Among the several genes that we discovered is MGR1, which encodes a novel subunit of the i-AAA protease complex located in the mitochondrial inner membrane. mgr1Delta mutants retain some i-AAA protease activity, yet mitochondria lacking Mgr1p contain a misassembled i-AAA protease and are defective for turnover of mitochondrial inner membrane proteins. Our results highlight the importance of the i-AAA complex and proteolysis at the inner membrane in cells lacking mitochondrial DNA.
Collapse
Affiliation(s)
- Cory D Dunn
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
5
|
Datta K, Fuentes JL, Maddock JR. The yeast GTPase Mtg2p is required for mitochondrial translation and partially suppresses an rRNA methyltransferase mutant, mrm2. Mol Biol Cell 2004; 16:954-63. [PMID: 15591131 PMCID: PMC545925 DOI: 10.1091/mbc.e04-07-0622] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The assembly of ribosomes involves the coordinated processing and modification of rRNAs with the temporal association of ribosomal proteins. This process is regulated by assembly factors such as helicases, modifying enzymes, and GTPases. In contrast to the assembly of cytoplasmic ribosomes, there is a paucity of information concerning the role of assembly proteins in the biogenesis of mitochondrial ribosomes. In this study, we demonstrate that the Saccharomyces cerevisiae GTPase Mtg2p (Yhr168wp) is essential for mitochondrial ribosome function. Cells lacking MTG2 lose their mitochondrial DNA, giving rise to petite cells. In addition, cells expressing a temperature-sensitive mgt2-1 allele are defective in mitochondrial protein synthesis and contain lowered levels of mitochondrial ribosomal subunits. Significantly, elevated levels of Mtg2p partially suppress the thermosensitive loss of mitochondrial DNA in a 21S rRNA methyltransferase mutant, mrm2. We propose that Mtg2p is involved in mitochondrial ribosome biogenesis. Consistent with this role, we show that Mtg2p is peripherally localized to the mitochondrial inner membrane and associates with the 54S large ribosomal subunit in a salt-dependent manner.
Collapse
Affiliation(s)
- Kaustuv Datta
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
6
|
Traven A, Wong JM, Xu D, Sopta M, Ingles CJ. Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial dna mutant. J Biol Chem 2001; 276:4020-7. [PMID: 11054416 DOI: 10.1074/jbc.m006807200] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Communication between mitochondria and the nucleus is important for a variety of cellular processes such as carbohydrate and nitrogen metabolism, mating and sporulation, and cell growth and morphogenesis. It has long been known that the functional state of mitochondria can influence nuclear gene expression. For example, in yeast cells lacking the mitochondrial genome, the expression of several nuclear genes, such as CIT2 (citrate synthase), MRP13 (mitochondrial ribosomal protein), and DLD3 (d-lactate dehydrogenase) has been reported to be altered. Here we show by microarray analysis of the genome-wide transcription profile of Saccharomyces cerevisiae that yeast petite mutants lacking mitochondrial DNA induce genes coding for mitochondrial proteins, enzymes of the glycolytic pathway and of the citric acid cycle, cell wall components, membrane transporters, and genes normally induced by nutrient deprivation and a variety of stresses. Consistent with the observed induction of genes related to cell stress and those encoding membrane transporters, yeast petite cells showed increased resistance to severe heat shock and exhibited a pleiotropic drug resistance phenotype. The observed changes in nuclear gene expression in cells lacking mitochondrial DNA may have implications for the role of mitochondria in processes such as carcinogenesis and aging.
Collapse
Affiliation(s)
- A Traven
- Department of Molecular Genetics, Institute Rudjer Boskovic, Bijenicka 54, 10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
7
|
Abstract
Mitochondrial ribosomal proteins (MRPs) are the counterparts in that organelle of the cytoplasmic ribosomal proteins in the host. Although the MRPs fulfil similar functions in protein biosynthesis, they are distinct in number, features and primary structures from the latter. Most progress in the eludication of the properties of individual MRPs, and in the characterization of the corresponding genes, has been made in baker's yeast (Saccharomyces cerevisiae). To date, 50 different MRPs have been determined, although biochemical data and mutational analysis propose a total number which is substantially higher. Surprisingly, only a minority of the MRPs that have been characterized show significant sequence similarities to known ribosomal proteins from other sources, thus limiting the deduction of their functions by simple comparison of amino acid sequences. Further, individual MRPs have been characterized functionally by mutational studies, and the regulation of expression of MRP genes has been described. The interaction of the mitochondrial ribosomes with transcription factors specific for individual mitochondrial mRNAs, and the communication between mitochondria and the nucleus for the co-ordinated expression of ribosomal constituents, are other aspects of current MRP research. Although the mitochondrial translational system is still far from being described completely, the yeast MRP system serves as a model for other organisms, including that of humans.
Collapse
Affiliation(s)
- H R Graack
- Institut für Genetik, Freie Universität Berlin, Federal Republic of Germany
| | | |
Collapse
|
8
|
Kitakawa M, Graack HR, Grohmann L, Goldschmidt-Reisin S, Herfurth E, Wittmann-Liebold B, Nishimura T, Isono K. Identification and characterization of the genes for mitochondrial ribosomal proteins of Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:449-56. [PMID: 9151978 DOI: 10.1111/j.1432-1033.1997.t01-2-00449.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have purified 13 large subunit proteins of the mitochondrial ribosome of the yeast Saccharomyces cerevisiae and determined their partial amino acid sequences. To elucidate the structure and function of these proteins, we searched for their genes by comparing our sequence data with those deduced from the genomic nucleotide sequence data of S. cerevisiae and analyzed them. In addition, we searched for the genes encoding proteins whose N-terminal amino acid sequences we have reported previously [Grohmann, L., Graack, H.-R., Kruft, V., Choli, T., Goldschmidt-Reisin, S. & Kitakawa, M. (1991) FEBS Lett. 284, 51-56]. Thus, we were able to identify and characterize 12 new genes for large subunit proteins of the yeast mitochondrial ribosome. Furthermore, we determined the N-terminal amino acid sequences of seven small subunit proteins and subsequently identified the genes for five of them, three of which were found to be new.
Collapse
Affiliation(s)
- M Kitakawa
- Kobe University, Faculty of Science, Department of Biology, Rokkodai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The yeast nuclear gene RML2, identified through genomic sequencing of Saccharomyces cerevisiae chromosome V, was shown to encode a mitochondrial homologue of the bacterial ribosomal protein L2. Immunoblot analysis showed that the mature Rml2p is a 37-kDa polypeptide component of the mitochondrial 54 S large ribosomal subunit. Null mutants of RML2 are respiration-deficient and convert to [rho-] or [rho degrees ] cytoplasmic petites, indicating that Rml2p is essential for mitochondrial translation. RML2 is regulated transcriptionally in response to carbon source and the accumulation of Rml2p is dependent on the presence of the 21 S large rRNA. Site-directed mutagenesis showed that a highly conserved 7-amino acid sequence (Val336 to Asp342) of Rml2p is essential for function. Substitution of Gln for His-343, the most highly conserved histidine in the L2 protein family, caused cold-sensitive respiratory growth but did not affect the assembly of 54 S ribosomal subunits. Mitochondrial protein synthesis was normal in the His343 to Gln (H343Q) mutant grown at the permissive temperature (30 degrees C) and was severely impaired after growth at the nonpermissive temperature (18 degrees C). His343 corresponds to His229 in Escherichia coli L2, which has been implicated in a direct involvement in peptidyl transferase activity. The conditional phenotype of the H343Q mutant indicates that His343 is not essential for peptidyl transferase activity in yeast mitochondria.
Collapse
Affiliation(s)
- C Pan
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
10
|
Abstract
The ribosome is a large multifunctional complex composed of both RNA and proteins. Biophysical methods are yielding low-resolution structures of the overall architecture of ribosomes, and high-resolution structures of individual proteins and segments of rRNA. Accumulating evidence suggests that the ribosomal RNAs play central roles in the critical ribosomal functions of tRNA selection and binding, translocation, and peptidyl transferase. Biochemical and genetic approaches have identified specific functional interactions involving conserved nucleotides in 16S and 23S rRNA. The results obtained by these quite different approaches have begun to converge and promise to yield an unprecedented view of the mechanism of translation in the coming years.
Collapse
Affiliation(s)
- R Green
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
11
|
Mason TL, Pan C, Sanchirico ME, Sirum-Connolly K. Molecular genetics of the peptidyl transferase center and the unusual Var1 protein in yeast mitochondrial ribosomes. EXPERIENTIA 1996; 52:1148-57. [PMID: 8988258 DOI: 10.1007/bf01952114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitochondria possess their own ribosomes responsible for the synthesis of a small number of proteins encoded by the mitochondrial genome. In yeast, Saccharomyces cerevisiae, the two ribosomal RNAs and a single ribosomal protein, Var1, are products of mitochondrial genes, and the remaining approximately 80 ribosomal proteins are encoded in the nucleus. The mitochondrial translation system is dispensable in yeast, providing an excellent experimental model for the molecular genetic analysis of the fundamental properties of ribosomes in general as well as adaptations required for the specialized role of ribosomes in mitochondria. Recent studies of the peptidyl transferase center, one of the most highly conserved functional centers of the ribosome, and the Var1 protein, an unusual yet essential protein in the small ribosomal subunit, have provided new insight into conserved and divergent features of the mitochondrial ribosome.
Collapse
Affiliation(s)
- T L Mason
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst 01003, USA.
| | | | | | | |
Collapse
|