1
|
Novikova D, Sagaidak A, Vorona S, Tribulovich V. A Visual Compendium of Principal Modifications within the Nucleic Acid Sugar Phosphate Backbone. Molecules 2024; 29:3025. [PMID: 38998973 PMCID: PMC11243533 DOI: 10.3390/molecules29133025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Nucleic acid chemistry is a huge research area that has received new impetus due to the recent explosive success of oligonucleotide therapy. In order for an oligonucleotide to become clinically effective, its monomeric parts are subjected to modifications. Although a large number of redesigned natural nucleic acids have been proposed in recent years, the vast majority of them are combinations of simple modifications proposed over the past 50 years. This review is devoted to the main modifications of the sugar phosphate backbone of natural nucleic acids known to date. Here, we propose a systematization of existing knowledge about modifications of nucleic acid monomers and an acceptable classification from the point of view of chemical logic. The visual representation is intended to inspire researchers to create a new type of modification or an original combination of known modifications that will produce unique oligonucleotides with valuable characteristics.
Collapse
Affiliation(s)
- Daria Novikova
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Aleksandra Sagaidak
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Svetlana Vorona
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| | - Vyacheslav Tribulovich
- Laboratory of Molecular Pharmacology, St. Petersburg State Institute of Technology, St. Petersburg 190013, Russia
| |
Collapse
|
2
|
Roignant M, Zhang J, Brioche J, Piettre SR. Second Generation Synthesis of Modified Dinucleotide Analogues Featuring a Difluorophosphin(othio)yl Linkage. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthieu Roignant
- Department of Chemistry University of Rouen COBRA-UMR 6014 CNRS F-76131 Mont Saint Aignan cedex France
| | - Jun Zhang
- Department of Chemistry University of Rouen COBRA-UMR 6014 CNRS F-76131 Mont Saint Aignan cedex France
| | - Julien Brioche
- Department of Chemistry University of Rouen COBRA-UMR 6014 CNRS F-76131 Mont Saint Aignan cedex France
| | - Serge R. Piettre
- Department of Chemistry University of Rouen COBRA-UMR 6014 CNRS F-76131 Mont Saint Aignan cedex France
| |
Collapse
|
3
|
Recent advances in the synthesis of 4′-truncated nucleoside phosphonic acid analogues. Carbohydr Res 2022; 513:108517. [DOI: 10.1016/j.carres.2022.108517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 12/30/2022]
|
4
|
Clavé G, Reverte M, Vasseur JJ, Smietana M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem Biol 2021; 2:94-150. [PMID: 34458777 PMCID: PMC8341215 DOI: 10.1039/d0cb00136h] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, several drugs derived from nucleic acids have been approved for commercialization and many more are in clinical trials. The sensitivity of these molecules to nuclease digestion in vivo implies the need to exploit resistant non-natural nucleotides. Among all the possible modifications, the one concerning the internucleoside linkage is of particular interest. Indeed minor changes to the natural phosphodiester may result in major modifications of the physico-chemical properties of nucleic acids. As this linkage is a key element of nucleic acids' chemical structures, its alteration can strongly modulate the plasma stability, binding properties, solubility, cell penetration and ultimately biological activity of nucleic acids. Over the past few decades, many research groups have provided knowledge about non-natural internucleoside linkage properties and participated in building biologically active nucleic acid derivatives. The recent renewing interest in nucleic acids as drugs, demonstrated by the emergence of new antisense, siRNA, aptamer and cyclic dinucleotide molecules, justifies the review of all these studies in order to provide new perspectives in this field. Thus, in this review we aim at providing the reader insights into modified internucleoside linkages that have been described over the years whose impact on annealing properties and resistance to nucleases have been evaluated in order to assess their potential for biological applications. The syntheses of modified nucleotides as well as the protocols developed for their incorporation within oligonucleotides are described. Given the intended biological applications, the modifications described in the literature that have not been tested for their resistance to nucleases are not reported.
Collapse
Affiliation(s)
| | - Maeva Reverte
- IBMM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | |
Collapse
|
5
|
Gołębiewska J, Rachwalak M, Jakubowski T, Romanowska J, Stawinski J. Reaction of Boranephosphonate Diesters with Amines in the Presence of Iodine: The Case for the Intermediacy of H-Phosphonate Derivatives. J Org Chem 2018; 83:5496-5505. [DOI: 10.1021/acs.joc.8b00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justyna Gołębiewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Marta Rachwalak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Tomasz Jakubowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Joanna Romanowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
6
|
Páv O, Košiová I, Barvík I, Pohl R, Buděšínský M, Rosenberg I. Synthesis of oligoribonucleotides with phosphonate-modified linkages. Org Biomol Chem 2011; 9:6120-6. [PMID: 21769370 DOI: 10.1039/c1ob05488k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid phase synthesis of phosphonate-modified oligoribonucleotides using 2'-O-benzoyloxymethoxymethyl protected monomers is presented in both 3'→5' and 5'→3' directions. Hybridisation properties and enzymatic stability of oligoribonucleotides modified by regioisomeric 3'- and 5'-phosphonate linkages are evaluated. The introduction of the 5'-phosphonate units resulted in moderate destabilisation of the RNA/RNA duplexes (ΔT(m)-1.8 °C/mod.), whereas the introduction of the 3'-phosphonate units resulted in considerable destabilisation of the duplexes (ΔT(m)-5.7 °C/mod.). Molecular dynamics simulations have been used to explain this behaviour. Both types of phosphonate linkages exhibited remarkable resistance in the presence of ribonuclease A, phosphodiesterase I and phosphodiesterase II.
Collapse
Affiliation(s)
- Ondřej Páv
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2, 16610, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
7
|
Kóšiová I, Točík Z, Buděšínský M, Šimák O, Liboska R, Rejman D, Pačes O, Rosenberg I. Methyl 4-toluenesulfonyloxymethylphosphonate, a new and versatile reagent for the convenient synthesis of phosphonate-containing compounds. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.09.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Tocík Z, Budesínský M, Barvík I, Rosenberg I. Conformational evaluation of labeled C3'-O-P-(13)CH(2)-O-C4'' phosphonate internucleotide linkage, a phosphodiester isostere. Biopolymers 2009; 91:514-29. [PMID: 19213047 DOI: 10.1002/bip.21162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Modified internucleotide linkage featuring the C3'-O-P-CH(2)-O-C4'' phosphonate grouping as an isosteric alternative to the phosphodiester C3'-O-P-O-CH(2)-C4'' bond was studied in order to learn more on its stereochemical arrangement, which we showed earlier to be of prime importance for the properties of the respective oligonucleotide analogues. Two approaches were pursued: First, the attempt to prepare the model dinucleoside phosphonate with (13)C-labeled CH(2) group present in the modified internucleotide linkage that would allow for a more detailed evaluation of the linkage conformation by NMR spectroscopy. Second, the use of ab initio calculations along with molecular dynamics (MD) simulations in order to observe the most populated conformations and specify main structural elements governing the conformational preferences. To deal with the former aim, a novel synthesis of key labeled reagent (CH(3)O)(2)P(O)(13)CH(2)OH for dimer preparation had to be elaborated using aqueous (13)C-formaldehyde. The results from both approaches were compared and found consistent.
Collapse
Affiliation(s)
- Zdenek Tocík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 16610 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
9
|
Snásel J, Rosenberg I, Paces O, Pichová I. Mapping of HIV-1 integrase preferences for target site selection with various oligonucleotides. Arch Biochem Biophys 2009; 488:153-62. [PMID: 19549503 DOI: 10.1016/j.abb.2009.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
HIV integrase (IN) catalyzes the insertion of proviral DNA into the host cell chromosome. While IN has strict sequence requirements for the viral cDNA ends, the integration site preference has been shown to be very diverse. Here, we mapped the HIV IN strand transfer reaction requirements using various short oligonucleotides (ON) that mimic the target DNA. Most double stranded DNA dodecamers served as excellent IN targets with variable integration efficiency depending mostly on the ON sequences. The preferred integration was lost with any changes in the geometry of the DNA double helical structures. Various hairpin-loop-forming ONs also served as efficient integration targets. Similar integration preferences were also observed for ONs, in which the nucleotide hairpin loop was replaced with a flexible aliphatic linker. The integration biases with all target DNA structures tested were significantly influenced by changes in the resulting secondary ON structures.
Collapse
Affiliation(s)
- Jan Snásel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
10
|
Rejman D, Kočalka P, Pohl R, Točík Z, Rosenberg I. Synthesis and hybridization of oligonucleotides modified at AMP sites with adenine pyrrolidine phosphonate nucleotides. ACTA ACUST UNITED AC 2009. [DOI: 10.1135/cccc2009022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Three structurally diverse types of the protected pyrrolidine nucleoside phosphonates were prepared as the monomers for the introduction of pyrrolidine nucleotide units into modified oligonucleotides on the solid phase. Two different chemistries were used for incorporation of modified and natural units: the phosphotriester method for the former, i.e., monomers containing N-phosphonoalkyl and N-phosphonoacyl moieties attached to the pyrrolidine ring nitrogen atom, and phosphoramidite chemistry for the latter. Since the synthesized pyrrolidine nucleoside phosphonic acids are close mimics of the 3′-deoxynucleoside 5′-phosphates, the incorporation of one modified unit into oligonucleotides gives rise to one 2′,5′ internucleotide linkage. A series of nonamers containing two or three modified units, as well as the fully modified adenine 15-mer, were synthesized in reverse order, i.e., from the 5′ to the 3′ end of the strand. The measurement of thermal characteristics of the complexes of modified nonamers with the complementary strand revealed a destabilizing effect of the introduced modification. The modified adenine homooligonucleotide, was found to form the most stable complex with oligothymidylate of all the tested modified oligonucleotides in terms of ΔTm per modification.
Collapse
|
11
|
Snásel J, Rosenberg I, Paces O, Pichová I. The strand transfer oligonucleotide inhibitors of HIV-integrase. J Enzyme Inhib Med Chem 2009; 24:241-6. [PMID: 18608742 DOI: 10.1080/14756360802051578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Retroviral integrase participates in two catalytic reactions, which require interactions with the two ends of the viral DNA in the 3'processing reaction, and with a targeted host DNA in the strand transfer reaction. The 3'-hydroxyl group of 2'-deoxyadenosine resulting from the specific removing of GT dinucleotide from the viral DNA in the processing reaction provides the attachment site for the host DNA in a transesterification reaction. We synthesized oligonucleotides (ONs) of various lengths that mimic the processed HIV-1 U5 terminus of the proviral long terminal repeat (LTR) and are ended by 2'-deoxyadenosine containing a 3'-O-phosphonomethyl group. The duplex stability of phosphonomethyl ONs was increased by covalent linkage of the modified strand with its complementary strand by a triethylene glycol loop (TEG). Modified ONs containing up to 10 bases inhibited in vitro the strand transfer reaction catalyzed by HIV-1 integrase at nanomolar concentrations.
Collapse
Affiliation(s)
- Jan Snásel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | | | | | | |
Collapse
|
12
|
Tocík Z, Barvík I, Budesínský M, Rosenberg I. Novel isosteric, isopolar phosphonate analogs of oligonucleotides: preparation and properties. Biopolymers 2006; 83:400-13. [PMID: 16845669 DOI: 10.1002/bip.20571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A synthetic approach leading to novel-type modified oligothymidylates containing an isosteric, isopolar, enzyme-stable C3'-O-P-CH(2)-O-C4'' phosphonate alternative to phosphodiester internucleotide bond was elaborated. The suitable monomers were prepared from 4'-phosphonomethoxy derivatives of alpha-L-threo and beta-D-erythro-2',5'-dideoxythymidine, which were considered interesting as structurally related to nucleoside 5'-monophosphates. The phosphotriester method was applied to the automated synthesis of both homooligomeric phosphonate 15-mer chains and alternating phosphonate-phosphate constructs. The fully modified homooligomers did not hybridize while homooligomers with alternating sequences containing alpha-L-threo-configured units (but not beta-D-erythro-) showed a significant decrease in T(m) values in comparison with natural dT(15). For a comparative study, phosphodiester 4'-CH(3)-substituted oligothymidylate was synthesized and physical studies (NMR, CD, MDS modeling) were undertaken to shed more light on the changes in conformational behavior arising from the chosen structural alterations.
Collapse
Affiliation(s)
- Zdenek Tocík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 16610 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
13
|
Efimov VA, Choob MV, Buryakova AA, Chakhmakhcheva OG. Synthesis And Binding Study Of Phosphonate Analogues Of Pnas And Their Hybrids With Pnas. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319808004700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vladimir A. Efimov
- a Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry , ul. Miklukho-Maklaya 16/10, Moscow , 117871 , Russia
| | - Michael V. Choob
- a Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry , ul. Miklukho-Maklaya 16/10, Moscow , 117871 , Russia
| | - Alla A. Buryakova
- a Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry , ul. Miklukho-Maklaya 16/10, Moscow , 117871 , Russia
| | - Oksana G. Chakhmakhcheva
- a Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry , ul. Miklukho-Maklaya 16/10, Moscow , 117871 , Russia
| |
Collapse
|
14
|
Kers A, Kers I, Kraszewski A, Sobkowski M, Szabó T, Thelin M, Zain R, Stawinski J. Nucleoside Phosphonates. Development of Synthetic Methods and Reagents. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319608002390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Annika Kers
- a Department of Organic Chemistry , Arrhenius Laboratory, Stockholm University , S-106 91, Stockholm , Sweden
| | - Inger Kers
- a Department of Organic Chemistry , Arrhenius Laboratory, Stockholm University , S-106 91, Stockholm , Sweden
| | - Adam Kraszewski
- b Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14, 61-704 , Poznań , Poland
| | - Michal Sobkowski
- b Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14, 61-704 , Poznań , Poland
| | - Tomas Szabó
- a Department of Organic Chemistry , Arrhenius Laboratory, Stockholm University , S-106 91, Stockholm , Sweden
| | - Mats Thelin
- a Department of Organic Chemistry , Arrhenius Laboratory, Stockholm University , S-106 91, Stockholm , Sweden
| | - Rula Zain
- a Department of Organic Chemistry , Arrhenius Laboratory, Stockholm University , S-106 91, Stockholm , Sweden
| | - Jacek Stawinski
- a Department of Organic Chemistry , Arrhenius Laboratory, Stockholm University , S-106 91, Stockholm , Sweden
| |
Collapse
|
15
|
|
16
|
Rejman D, Masojídková M, Rosenberg I. Nucleosidyl-O-Methylphosphonates: a pool of monomers for modified oligonucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:1683-705. [PMID: 15598072 DOI: 10.1081/ncn-200033912] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An unique set of 5'-O- and 3'-O-phosphonomethyl derivatives of four natural 2'-deoxyribonucleosides, 1-(2-deoxy-beta-D-threo-pentofuranosyl)thymine, 5'-O- and 2'-O-phosphonomethyl derivatives of 1-(3-deoxy-beta-D-erythro-pentofuranosyl)thymine, and 1-(3-deoxy-beta-D-threo-pentofuranosyl)thymine, has been synthesized as a pool of monomers for the synthesis of modified oligonucleotides. The phosphonate moiety was protected with 4-methoxy-1-oxido-2-pyridylmethyl ester group, serving also as an intramolecular catalyst in the coupling step.
Collapse
Affiliation(s)
- Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic
| | | | | |
Collapse
|
17
|
Almer H, Szabo T, Stawinski J. A new approach to stereospecific synthesis of P-chiral phosphorothioates. Preparation of diastereomeric dithymidyl-(3'-5') phosphorothioates. Chem Commun (Camb) 2003:290-1. [PMID: 14740042 DOI: 10.1039/b311912b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method for stereospecific synthesis of P-chiral phosphorothioates based on intramolecular nucleophile catalysis was developed.
Collapse
Affiliation(s)
- Helena Almer
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
18
|
Králíková S, Masojídková M, Budĕsínský M, Rosenberg I. Study on reactivity and protection of the alpha-hydroxyphosphonate moiety in 5'-nucleotide analogues: formation of the 3'-O-P-C(OH)-C4' internucleotide linkage. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:329-47. [PMID: 12816391 DOI: 10.1081/ncn-120021432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The recently described epimeric nucleosidyl-5'-C-phosphonates (alpha-hydroxyphosphonates) represent novel nucleotide analogues that can be incorporated into chimeric oligonucleotides by the phosphotriester condensation method. In order to prepare suitable protected monomer(s) we have studied condensation reaction between protected 2'-deoxythymidine and 2'-deoxythymidinyl-5'-C-phosphonate, both as model compounds, in dependence on the nature of the 5'-hydroxyl protecting group. We have found that the O-acetyl group is unstable in the presence of TPSCl or MSNT used as condensing agents for activation of the phosphorus moiety. This instability negatively influences the scope of the condensation process. On the other hand, introduction of the O-methoxycarbonyl group gave excellent results. The O-methoxycarbonyl group does not participate in the condensation process, and its quantitative introduction into the nucleotide analo gues is accomplished using a novel acylating agent, methoxycarbonyl tetrazole.
Collapse
Affiliation(s)
- Sárka Králíková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| | | | | | | |
Collapse
|
19
|
An H, Wang T, Maier MA, Manoharan M, Ross BS, Cook PD. Synthesis of novel 3'-C-methylene thymidine and 5-methyluridine/cytidine H-phosphonates and phosphonamidites for new backbone modification of oligonucleotides. J Org Chem 2001; 66:2789-801. [PMID: 11304203 DOI: 10.1021/jo001699u] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel 5'-O-DMT- and MMT-protected 3'-C-methylene-modified thymidine, 5-methyluridine, and 5-methylcytidine H-phosphonates 1-7 with O-methyl, fluoro, hydrogen, and O-(2-methoxyethyl) substituents at the 2'-position have been synthesized by a new effective strategy from the corresponding key intermediates 3'-C-iodomethyl nucleosides and intermediate BTSP, prepared in situ through the Arbuzov reaction. The modified reaction conditions for the Arbuzov reaction prevented the loss of DMT- and MMT-protecting groups, and directly provided the desired 5'-O-DMT- and/or MMT-protected 3'-C-methylene-modified H-phosphonates 1-6 although some of them were also prepared through the manipulation of protecting groups after the P-C bond formation. The modified Arbuzov reaction of 3'-C-iodomethyl-5-methylcytidine 53, prepared from its 5-methyluridine derivative 42, with BTSP provided the 5-methylcytidine H-phosphonate 54, which was further transferred to the corresponding 4-N-(N-methylpyrrolidin-2-ylidene)-protected H-phosphonate monomer 7. 5'-O-MMT-protected 3'-C-methylene-modified H-phosphonates 5, 3, and 7 were converted to the corresponding cyanoethyl H-phosphonates 50, 51, and 56 using DCC as a coupling reagent. One-pot three-step reactions of 50, 51, and 56 provided the desired 3'-C-methylene-modified phosphonamidite monomers 8-10. Some of these new 3'-methylene-modified monomers 1-10 have been successfully utilized for the synthesis of 3'-methylene-modified oligonucleotides, which have shown superior antisense properties including nuclease resistance and binding affinity to the target RNA.
Collapse
Affiliation(s)
- H An
- Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, CA 92008, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Mikhailopulo IA, Kulak TI, Tkachenko OV, Sentyureva SL, Victorova LS, Rosemeyer H, Seela F. Pyrophosphoryl derivatives of 1-(2-deoxy-3-O-phosphono-methyl-beta- and -alpha-D-erythro-pentofuranosyl)thymine: synthesis and substrate properties towards some DNA polymerases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:1885-909. [PMID: 11200280 DOI: 10.1080/15257770008045467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The synthesis of 1-(2-deoxy-3-O-phosphonomethyl-beta-D-erythropentofuranosyl)thymine (17) and its alpha-anomer 18 is described. Attempts to prepare 1-[2-deoxy-3-O-(pyrophosphoryl)phosphonomethyl-beta-D-erythro-pentofuranosyl]thymine (19) by an activation of the respective phosphonate 17 with 1,1'-carbonyldiimidazole (Im2CO) resulted in the quantitative formation of the corresponding pyrophosphonate derivative 21 (Scheme 2). Activation of inorganic pyrophosphate with Im2CO followed by the condensation with the phosphonates 17 and 18 afforded the desired analogues of nucleoside triphosphate 19 (35%) and its alpha-anomer 20 (27%) along with the respective pyrophosphonate derivatives 21 (37%) and 24 (38%) (Scheme 3). It was found that compounds 19 and 20 display (i) no substrate properties toward calf thymus terminal deoxynucleotidyl transferase (TDT) and AMV reverse transcriptase, and (ii) moderate substrate activity with E. coli DNA polymerase I (Klenow fragment).
Collapse
Affiliation(s)
- I A Mikhailopulo
- Institute of Bioorganic Chemistry, National Academy of Sciences, Minsk, Belarus
| | | | | | | | | | | | | |
Collapse
|
21
|
Rejman D, Erbs J, Rosenberg I. Large-Scale Synthesis of a Key Catalytic Reagent for Phosphorus Protection in Building Blocks for Isopolar Phosphonate Oligonucleotide Preparation. Org Process Res Dev 2000. [DOI: 10.1021/op000056d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Jiří Erbs
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Ivan Rosenberg
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| |
Collapse
|
22
|
Aryl H-phosphonates. 10. Synthesis of nucleoside phosphoramidate and nucleoside phosphoramidothioate analogues via H-phosphonamidate intermediates. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(99)00656-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Efimov VA, Buryakova AA, Chakhmakhcheva OG. Synthesis of DNA analogues with novel carboxamidomethyl phosphonamide and glycinamide internucleoside linkages. Bioorg Med Chem Lett 1998; 8:1013-8. [PMID: 9871699 DOI: 10.1016/s0960-894x(98)00153-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Thymidine oligonucleotide analogues with phosphodiester bonds fully substituted by carboxamidomethyl phosphonamide, or glycinamide linkages were synthesized on a solid support, and their hybridization properties toward DNA and RNA targets were determined by Tm analysis.
Collapse
Affiliation(s)
- V A Efimov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
24
|
Efimov VA, Choob MV, Buryakova AA, Kalinkina AL, Chakhmakhcheva OG. Synthesis and evaluation of some properties of chimeric oligomers containing PNA and phosphono-PNA residues. Nucleic Acids Res 1998; 26:566-75. [PMID: 9421517 PMCID: PMC147292 DOI: 10.1093/nar/26.2.566] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In an attempt to improve physico-chemical and biological properties of peptide nucleic acids (PNAs), particularly water solubility and cellular uptake, the synthesis of chimeric oligomers consisted of PNA and phosphono-PNA analogues (pPNAs) bearing the four natural nucleobases has been accomplished. To produce these chimeras, pPNA monomers of two types containing N-(2-hydroxyethyl)phosphonoglycine, or N-(2-aminoethyl)phosphonoglycine backbone, were used in conjunction with PNA monomers representing derivatives of N-(2-aminoethyl)glycine, or N-(2-hydroxyethyl)glycine. The oligomers obtained were composed of either PNA and pPNA stretches or alternating PNA and pPNA monomers. The examination of hybridization properties of PNA-pPNA chimeras to DNA and RNA complementary strands in comparison with pure PNAs, and pPNAs as well as DNA-pPNA hybrids and DNA fragments confirmed that these chimeras form stable complexes with complementary DNA and RNA fragments. They were found to be resistant to degradation by nucleases. All these properties together with good solubility in water make PNA-pPNA hybrids promising for further evaluation as potential therapeutic agents.
Collapse
Affiliation(s)
- V A Efimov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, Moscow 117871, Russia.
| | | | | | | | | |
Collapse
|
25
|
Efimov VA, Choob MV, Kalinkina AL, Chakhmakkcheva OG. Synthesis of Novel DNA Analoues Containing Aminomethylphosphonate Internucleoside Linkages. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708006210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Kehler J, Püschl A, Dahl O. Solution Phase Synthesis of Dithymidine Phosphorodithioate Using New S-Protecting Groups in Combination with a Chemoselective Coupling Reagent (PyNOP). ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708002518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Püschl A, Kehler J, Dahl O. Solution Phase Synthesis of Dithymidine Phosphorothioate by a Phosphotriester Method Using NewS-Protecting Groups. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708002529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
van der Laan AC, Strömberg R, van Boom JH, Kuyl-Yeheskiely E, Efimov VA, Chakhmakhcheva OG. An approach towards the synthesis of oligomers containing a N-2-hydroxyethyl-aminomethylphosphonate backbone: A novel PNA analogue. Tetrahedron Lett 1996. [DOI: 10.1016/0040-4039(96)01750-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|