1
|
Jüttner M, Ferreira-Cerca S. A Comparative Perspective on Ribosome Biogenesis: Unity and Diversity Across the Tree of Life. Methods Mol Biol 2022; 2533:3-22. [PMID: 35796979 PMCID: PMC9761495 DOI: 10.1007/978-1-0716-2501-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Ribosomes are universally conserved ribonucleoprotein complexes involved in the decoding of the genetic information contained in messenger RNAs into proteins. Accordingly, ribosome biogenesis is a fundamental cellular process required for functional ribosome homeostasis and to preserve satisfactory gene expression capability.Although the ribosome is universally conserved, its biogenesis shows an intriguing degree of variability across the tree of life . These differences also raise yet unresolved questions. Among them are (a) what are, if existing, the remaining ancestral common principles of ribosome biogenesis ; (b) what are the molecular impacts of the evolution history and how did they contribute to (re)shape the ribosome biogenesis pathway across the tree of life ; (c) what is the extent of functional divergence and/or convergence (functional mimicry), and in the latter case (if existing) what is the molecular basis; (d) considering the universal ribosome conservation, what is the capability of functional plasticity and cellular adaptation of the ribosome biogenesis pathway?In this review, we provide a brief overview of ribosome biogenesis across the tree of life and try to illustrate some potential and/or emerging answers to these unresolved questions.
Collapse
Affiliation(s)
- Michael Jüttner
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Abstract
Protein synthesis involves nearly a third of the total molecules in a typical bacterial cell. Within the cell, protein synthesis is performed by the ribosomes, and research over several decades has investigated ribosomal formation, structure, and function. This review provides an overview of the current understanding of the assembly of the Escherichia coli 30S ribosomal subunit. The E. coli 30S subunit contains one rRNA molecule (16S) and 21 ribosomal proteins (r-proteins; S1 to S21). The formation of functional subunits can occur as a self-assembly process in vitro; i.e., all the information required for the formation of active ribosomes resides in the primary sequences of the r-proteins and rRNAs. In vitro reconstitution of functional 30S subunits is carried out by using a mixture of TP30, individually purified natural or recombinant r-proteins, and natural 16S rRNA. Chemical probing and primer extension analysis have been used extensively to monitor changes in the reactivities of nucleotides in 16S rRNA during the in vitro reconstitution of 30S subunits. The potential roles for r-proteins in 30S subunit assembly were determined by omitting single proteins in reconstitution experiments. The RNPs resulting from single protein omissions were examined in terms of their composition and function to determine the roles of the absent proteins. Recent developments in understanding the structure of the 30S subunit have led to speculation about roles for some of the r-proteins in assembly. The crystal structures of the 30S subunit (1, 2) and the 70S ribosome (3) reveal details of the r-protein and rRNA interactions.
Collapse
|
3
|
The Escherichia coli translation-associated heat shock protein YbeY is involved in rRNA transcription antitermination. PLoS One 2013; 8:e62297. [PMID: 23638028 PMCID: PMC3639268 DOI: 10.1371/journal.pone.0062297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/19/2013] [Indexed: 11/29/2022] Open
Abstract
A new group of translation-associated heat shock genes has been recently identified. One of these novel genes is ybeY which is highly conserved in bacteria. In Escherichia coli the YbeY protein is important for efficient translation at all temperatures and is essential at high temperatures. Deletion mutants of ybeY are defective in protein translation, due to impaired 30 S ribosomal subunits. Here we provide evidence which tie YbeY to the transcription antitermination process. Thus, in ybeY deletion mutants transcription is significantly inhibited when the “nut like” sequences required for transcriptional antitermination are present, while if these sequences are removed transcription is not affected by the mutation.
Collapse
|
4
|
Abstract
Many non-coding RNAs fold into complex three-dimensional structures, yet the self-assembly of RNA structure is hampered by mispairing, weak tertiary interactions, electrostatic barriers, and the frequent requirement that the 5' and 3' ends of the transcript interact. This rugged free energy landscape for RNA folding means that some RNA molecules in a population rapidly form their native structure, while many others become kinetically trapped in misfolded conformations. Transient binding of RNA chaperone proteins destabilize misfolded intermediates and lower the transition states between conformations, producing a smoother landscape that increases the rate of folding and the probability that a molecule will find the native structure. DEAD-box proteins couple the chemical potential of ATP hydrolysis with repetitive cycles of RNA binding and release, expanding the range of conditions under which they can refold RNA structures.
Collapse
Affiliation(s)
- Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Ramaswamy P, Woodson SA. Global stabilization of rRNA structure by ribosomal proteins S4, S17, and S20. J Mol Biol 2009; 392:666-77. [PMID: 19616559 DOI: 10.1016/j.jmb.2009.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/01/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Ribosomal proteins stabilize the folded structure of the ribosomal RNA and enable the recruitment of further proteins to the complex. Quantitative hydroxyl radical footprinting was used to measure the extent to which three different primary assembly proteins, S4, S17, and S20, stabilize the three-dimensional structure of the Escherichia coli 16S 5' domain. The stability of the complexes was perturbed by varying the concentration of MgCl(2). Each protein influences the stability of the ribosomal RNA tertiary interactions beyond its immediate binding site. S4 and S17 stabilize the entire 5' domain, while S20 has a more local effect. Multistage folding of individual helices within the 5' domain shows that each protein stabilizes a different ensemble of structural intermediates that include nonnative interactions at low Mg(2+) concentration. We propose that the combined interactions of S4, S17, and S20 with different helical junctions bias the free-energy landscape toward a few RNA conformations that are competent to add the secondary assembly protein S16 in the next step of assembly.
Collapse
|
6
|
Ramaswamy P, Woodson SA. S16 throws a conformational switch during assembly of 30S 5' domain. Nat Struct Mol Biol 2009; 16:438-45. [PMID: 19343072 PMCID: PMC2720800 DOI: 10.1038/nsmb.1585] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 03/09/2009] [Indexed: 11/09/2022]
Abstract
Rapid and accurate assembly of new ribosomal subunits is essential for cell growth. Here, we show that the ribosomal proteins make assembly more cooperative by discriminating against non-native conformations of the E. coli 16S rRNA. We used hydroxyl radical footprinting to measure how much the proteins stabilize individual rRNA tertiary interactions, revealing the free energy landscape for assembly of the 16S 5′ domain. When ribosomal proteins S4, S17, and S20 bind the 5′ domain RNA, a native and a non-native assembly intermediate are equally populated. The secondary assembly protein S16 suppresses the non-native intermediate, smoothing the path to the native complex. In the final step of 5′ domain assembly, S16 drives a conformational switch at helix 3 that stabilizes pseudoknots in the 30S decoding center. Long-range communication between the S16 binding site and the decoding center helps explain the critical role of S16 in 30S assembly.
Collapse
Affiliation(s)
- Priya Ramaswamy
- Program in Cell, Molecular and Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
7
|
Tsunewaki K, Matsuoka Y, Yamazaki Y, Ogihara Y. Evolutionary dynamics of wheat mitochondrial gene structure with special remarks on the origin and effects of RNA editing in cereals. Genes Genet Syst 2008; 83:301-20. [PMID: 18931456 DOI: 10.1266/ggs.83.301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We investigated the evolutionary dynamics of wheat mitochondrial genes with respect to their structural differentiation during organellar evolution, and to mutations that occurred during cereal evolution. First, we compared the nucleotide sequences of three wheat mitochondrial genes to those of wheat chloroplast, alpha-proteobacterium and cyanobacterium orthologs. As a result, we were able to (1) differentiate the conserved and variable segments of the orthologs, (2) reveal the functional importance of the conserved segments, and (3) provide a corroborative support for the alpha-proteobacterial and cyanobacterial origins of those mitochondrial and chloroplast genes, respectively. Second, we compared the nucleotide sequences of wheat mitochondrial genes to those of rice and maize to determine the types and frequencies of base changes and indels occurred in cereal evolution. Our analyses showed that both the evolutionary speed, in terms of number of base substitutions per site, and the transition/transversion ratio of the cereal mitochondrial genes were less than two-fifths of those of the chloroplast genes. Eight mitochondrial gene groups differed in their evolutionary variability, RNA and Complex I (nad) genes being most stable whereas Complex V (atp) and ribosomal protein genes most variable. C-to-T transition was the most frequent type of base change; C-to-G and G-to-C transversions occurred at lower rates than all other changes. The excess of C-to-T transitions was attributed to C-to-U RNA editing that developed in early stage of vascular plant evolution. On the contrary, the editing of C residues at cereal T-to-C transition sites developed mostly during cereal divergence. Most indels were associated with short direct repeats, suggesting intra- and intermolecular recombination as an important mechanism for their origin. Most of the repeats associated with indels were di- or trinucleotides, although no preference was noticed for their sequences. The maize mt genome was characterized by a high incidence of indels, comparing to the wheat and rice mt genomes.
Collapse
|
8
|
Kaczanowska M, Rydén-Aulin M. Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 2007; 71:477-94. [PMID: 17804668 PMCID: PMC2168646 DOI: 10.1128/mmbr.00013-07] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation, the decoding of mRNA into protein, is the third and final element of the central dogma. The ribosome, a nucleoprotein particle, is responsible and essential for this process. The bacterial ribosome consists of three rRNA molecules and approximately 55 proteins, components that are put together in an intricate and tightly regulated way. When finally matured, the quality of the particle, as well as the amount of active ribosomes, must be checked. The focus of this review is ribosome biogenesis in Escherichia coli and its cross-talk with the ongoing protein synthesis. We discuss how the ribosomal components are produced and how their synthesis is regulated according to growth rate and the nutritional contents of the medium. We also present the many accessory factors important for the correct assembly process, the list of which has grown substantially during the last few years, even though the precise mechanisms and roles of most of the proteins are not understood.
Collapse
Affiliation(s)
- Magdalena Kaczanowska
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
9
|
Schoemaker RJW, Gultyaev AP. Computer simulation of chaperone effects of Archaeal C/D box sRNA binding on rRNA folding. Nucleic Acids Res 2006; 34:2015-26. [PMID: 16614451 PMCID: PMC1435978 DOI: 10.1093/nar/gkl154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Revised: 03/12/2006] [Accepted: 03/20/2006] [Indexed: 12/04/2022] Open
Abstract
Archaeal C/D box small RNAs (sRNAs) are homologues of eukaryotic C/D box small nucleolar RNAs (snoRNAs). Their main function is guiding 2'-O-ribose methylation of nucleotides in rRNAs. The methylation requires the pairing of an sRNA antisense element to an rRNA target site with formation of an RNA-RNA duplex. The temporary formation of such a duplex during rRNA maturation is expected to influence rRNA folding in a chaperone-like way, in particular in thermophilic Archaea, where multiple sRNAs with two binding sites are found. Here we investigate possible mechanisms of chaperone function of Archaeoglobus fulgidus and Pyrococcus abyssi C/D box sRNAs using computer simulations of rRNA secondary structure formation by genetic algorithm. The effects of sRNA binding on rRNA structure are introduced as temporary structural constraints during co-transcriptional folding. Comparisons of the final predictions with simulations without sRNA binding and with phylogenetic structures show that sRNAs with two antisense elements may significantly facilitate the correct formation of long-range interactions in rRNAs, in particular at elevated temperatures. The simulations suggest that the main mechanism of this effect is a transient restriction of folding in rRNA domains where the termini are brought together by binding to double-guide sRNAs.
Collapse
MESH Headings
- Archaeoglobus fulgidus/genetics
- Base Sequence
- Binding Sites
- Computer Simulation
- Molecular Chaperones/chemistry
- Molecular Chaperones/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Pyrococcus abyssi/genetics
- RNA, Antisense/chemistry
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Temperature
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Ruud J. W. Schoemaker
- Section Theoretical Biology, Leiden Institute of Biology, Leiden UniversityKaiserstraat 63, 2311 GP Leiden, The Netherlands
| | - Alexander P. Gultyaev
- Section Theoretical Biology, Leiden Institute of Biology, Leiden UniversityKaiserstraat 63, 2311 GP Leiden, The Netherlands
| |
Collapse
|
10
|
Liiv A, Remme J. Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly. J Mol Biol 2004; 342:725-41. [PMID: 15342233 DOI: 10.1016/j.jmb.2004.07.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/10/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
An important step of ribosome assembly is the folding of the rRNA into a functional structure. Despite knowledge of the folded state of rRNA in the ribosomal subunits, there is very little information on the rRNA folding pathway. We are interested in understanding how the functional structure of rRNA is formed and whether the rRNA folding intermediates have a role in ribosome assembly. To this end, transient secondary structures around both ends of pre-23S rRNA were analyzed by a chemical probing approach, using pre-23S rRNA transcripts. Metastable hairpin loop structures were found at both ends of 23S rRNA. The functional importance of the transient structures around the ends of 23S rRNA was tested by mutations that alter only the transient structure. The effect of mutations on 23S rRNA folding was tested in vitro and in vivo. It was found that both stabilization and destabilization of the transient structure around the 5' end of 23S rRNA inhibits post-transcriptional refolding in vitro and ribosome formation in vivo. The data suggest that the transient structure of rRNA has a function during 23S rRNA folding and thereby in ribosome assembly.
Collapse
MESH Headings
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Nucleic Acid Conformation
- Protein Subunits
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribonuclease III/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Aivar Liiv
- Estonian Biocentre, Tartu University, Riia st. 23, 51010 Tartu, Estonia
| | | |
Collapse
|
11
|
Schäferkordt J, Wagner R. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation. Nucleic Acids Res 2001; 29:3394-403. [PMID: 11504877 PMCID: PMC55841 DOI: 10.1093/nar/29.16.3394] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of base change mutations in a highly conserved sequence (boxC) within the leader of bacterial ribosomal RNAs (rRNAs) was studied. The boxC sequence preceding the 16S rRNA structural gene constitutes part of the RNase III processing site, one of the first cleavage sites on the pathway to mature 16S rRNA. Moreover, rRNA leader sequences facilitate correct 16S rRNA folding, thereby assisting ribosomal subunit formation. Mutations in boxC cause cold sensitivity and result in 16S rRNA and 30S subunit deficiency. Strains in which all rRNA operons are replaced by mutant transcription units are viable. Thermodynamic studies by temperature gradient gel electrophoresis reveal that mutant transcripts have a different, less ordered structure. In addition, RNA secondary structure differences between mutant and wild-type transcripts were determined by chemical and enzymatic probing. Differences are found in the leader RNA sequence itself but also in structurally important regions of the mature 16S rRNA. A minor fraction of the rRNA transcripts from mutant operons is not processed by RNase III, resulting in a significantly extended precursor half-life compared to the wild-type. The boxC mutations also give rise to a new aberrant degradation product of 16S rRNA. This intermediate cannot be detected in strains lacking RNase III. Together the results indicate that the boxC sequence, although important for RNase III processing, is likely to serve additional functions by facilitating correct formation of the mature 16S rRNA structure. They also suggest that quality control steps are acting during ribosome biogenesis.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Cold Temperature
- Conserved Sequence/genetics
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins
- Half-Life
- Molecular Sequence Data
- Mutation/genetics
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Operon/genetics
- Phenotype
- Protein Subunits
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribonuclease III
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Deletion/genetics
- Temperature
- Thermodynamics
Collapse
Affiliation(s)
- J Schäferkordt
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
12
|
Torres M, Condon C, Balada JM, Squires C, Squires CL. Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination. EMBO J 2001; 20:3811-20. [PMID: 11447122 PMCID: PMC125540 DOI: 10.1093/emboj/20.14.3811] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli ribosomal RNA (rRNA) operons contain antitermination motifs necessary for forming terminator-resistant transcription complexes. In preliminary work, we isolated 'antiterminating' transcription complexes and identified four new proteins potentially involved in rRNA transcription antitermination: ribosomal (r-) proteins S4, L3, L4 and L13. We show here that these r-proteins and Nus factors lead to an 11-fold increase in terminator read-through in in vitro transcription reactions. A significant portion of the effect was a result of r-protein S4. We show that S4 acted as a general antitermination factor, with properties very similar to NusA. It retarded termination and increased read-through at Rho-dependent terminators, even in the absence of the rRNA antiterminator motif. High concentrations of NusG showed reduced antitermination by S4. Like rrn antitermination, S4 selectively antiterminated at Rho-dependent terminators. Lastly, S4 tightly bound RNA polymerase in vivo. Our results suggest that, like NusA, S4 is a general transcription antitermination factor that associates with RNA polymerase during normal transcription and is also involved in rRNA operon antitermination. A model for key r-proteins playing a regulatory role in rRNA synthesis is presented.
Collapse
Affiliation(s)
| | - Ciarán Condon
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA and
CNRS UPR9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France Corresponding author e-mail:
| | | | | | - Catherine L. Squires
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA and
CNRS UPR9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France Corresponding author e-mail:
| |
Collapse
|
13
|
Besançon W, Wagner R. Characterization of transient RNA-RNA interactions important for the facilitated structure formation of bacterial ribosomal 16S RNA. Nucleic Acids Res 1999; 27:4353-62. [PMID: 10536142 PMCID: PMC148716 DOI: 10.1093/nar/27.22.4353] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The co-transcribed leader sequences of bacterial rRNA are known to affect the structure and function of the small ribosomal subunits. Base changes in the leader nut -like sequence elements have been shown to cause misfolded but correctly processed 16S rRNA structures at low growth temperature. Transient interactions of leader sequences with the nascent 16S rRNA are considered to guide rRNA folding and to facilitate correct structure formation. In order to understand this chaperone-like activity of the leader RNA we have analyzed the thermodynamic stabilities of wild-type and mutant leader transcripts. We show here that base changes cause subtle differences in the melting profiles of the corresponding leader transcripts. Furthermore, we show that direct interaction between leader transcripts and the 16S rRNA is limited to the 5'-domain of the 16S rRNA for both wild-type and mutant leaders. Binding studies of mutant and wild-type leader transcripts to 16S rRNA revealed small changes in the affinities and the thermal stabilities as a consequence of the base changes. Different complex stabilities as a function of the Mg(2+) ion concentration indicated that mutant and wild-type leader transcripts interact differently with the 16S rRNA, consistent with a less stable and tightly folded structure of the mutant leader. Employing time-resolved oligonucleotide hybridization assays we could show different folding kinetics for 16S rRNA molecules when linked to wild-type leader, mutant leader or in the absence of leader RNA. The studies help to understand how bacterial rRNA leader transcripts may affect the folding of the small subunit rRNA.
Collapse
Affiliation(s)
- W Besançon
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
14
|
Liiv A, Tenson T, Margus T, Remme J. Multiple functions of the transcribed spacers in ribosomal RNA operons. Biol Chem 1998; 379:783-93. [PMID: 9705142 DOI: 10.1515/bchm.1998.379.7.783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
rRNA operons contain about 25% transcribed spacer sequences in addition to the 16S, 23S, 5S and tRNA genes. The spacer sequences are removed from the primary rRNA transcript by a series of co-ordinated nucleolytic events. Besides the role in rRNA processing, the spacer sequences are also involved in transcription and the ribosome assembly. In this study we analyze the spacer between tRNA and 23S rRNA genes. Based on computer modeling and chemical probing data, a model for the transient secondary structure of the intergenic spacer is proposed. Mutational analysis has shown that the transient secondary structure around the 5' end of 23S rRNA is involved in ribosome assembly. We propose that the transient structure at the 5' end of 23S rRNA directs 23S rRNA folding into the mature structure and facilitates ribosomal large subunit assembly.
Collapse
Affiliation(s)
- A Liiv
- Dept. of Molecular Biology, Institute of Molecular and Cell Biology, Tartu University, Estonia
| | | | | | | |
Collapse
|
15
|
Liiv A, Remme J. Base-pairing of 23 S rRNA ends is essential for ribosomal large subunit assembly. J Mol Biol 1998; 276:537-45. [PMID: 9551095 DOI: 10.1006/jmbi.1997.1532] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In ribosomal RNA precursors the spacer sequences bracketing mature 16 S and 23 S rRNA are base-paired to form long helices (processing stems). In pre-23 S rRNA, the processing stem is continued by eight base-pairs of mature 23 S rRNA known as helix 1. Recently, we have found that any part of 23 S rRNA between positions 40 and 2773 could be deleted without the loss of ribosome-like particle formation, while both end regions were indispensable. In this paper we have analyzed the role of the 5' and 3' end regions of 23 S rRNA during ribosomal 50 S assembly in vivo by using mutants of the 23 S rRNA gene. Deletions and substitutions in both strands of the helix 1 lead to the loss of plasmid derived 50 S formation. Compensatory mutations restoring helix 1 were assembled into functional 50 S subunits. We conclude that the helix 1 of 23 S rRNA is the main RNA determinant for ribosomal large-subunit assembly. Deletions in both the 5' and 3' strand of the processing stem reduced the ability of the 23 S rRNA to form ribosomal 50 S subunits. However, even the complete removal of either the 5' or the 3' strand of the processing stem did not abolish the 50 S assembly completely. Thus, processing stem facilitates, but is not essential for assembly.
Collapse
MESH Headings
- Adenine
- Bacterial Proteins/biosynthesis
- Base Composition
- Base Sequence
- Escherichia coli/genetics
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Thymine
Collapse
Affiliation(s)
- A Liiv
- Department of Molecular Biology, Tartu University, Estonia
| | | |
Collapse
|
16
|
Balzer M, Wagner R. Mutations in the leader region of ribosomal RNA operons cause structurally defective 30 S ribosomes as revealed by in vivo structural probing. J Mol Biol 1998; 276:547-57. [PMID: 9551096 DOI: 10.1006/jmbi.1997.1556] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biogenesis of functional ribosomes is regulated in a very complex manner, involving different proteins and RNA molecules. RNAs are not only essential components of both ribosomal subunits but also transiently interacting factors during particle formation. In eukaryotes snoRNAs act as molecular chaperones to assist maturation, modification and assembly. In a very similar way highly conserved leader sequences of bacterial rRNA operons are involved in the correct formation of 30 S ribosomal subunits. Certain mutations in the rRNA leader region cause severe growth defects due to malfunction of ribosomes which are assembled from such transcription units. To understand how the leader sequences act to facilitate the formation of the correct 30 S subunits we performed in vivo chemical probing to assess structural differences between ribosomes assembled either from rRNA transcribed from wild-type operons or from operons which contain mutations in the rRNA leader region. Cells transformed with plasmids containing the respective rRNA operons were reacted with dimethylsulphate (DMS). Ribosomes were isolated by sucrose gradient centrifugation and modified nucleotides within the 16 S rRNA were identified by primer extension reaction. Structural differences between ribosomes from wild-type and mutant rRNA operons occur in several clusters within the 16 S rRNA secondary structure. The most prominent differences are located in the central domain including the universally conserved pseudoknot structure which connects the 5', the central and the 3' domain of 16 S rRNA. Two other clusters with structural differences fall in the 5' domain where the leader had been shown to interact with mature 16 S rRNA and within the ribosomal protein S4 binding site. The other differences in structure are located in sites which are also known as sites for the action of several antibiotics. The data explain the functional defects of ribosomes from rRNA operons with leader mutations and help to understand the altered biogenesis pathway from mutations in an rRNA leader region to the formation of functionally defective ribosomes.
Collapse
Affiliation(s)
- M Balzer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | |
Collapse
|
17
|
Heinemann M, Wagner R. Guanosine 3',5'-bis(diphosphate) (ppGpp)-dependent inhibition of transcription from stringently controlled Escherichia coli promoters can be explained by an altered initiation pathway that traps RNA polymerase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:990-9. [PMID: 9288924 DOI: 10.1111/j.1432-1033.1997.00990.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An in vitro analysis was performed to investigate the inhibitory mechanism of the global regulatory substances guanosine 3',5'-bis(diphosphate) (ppGpp) and guanosine 3'-diphosphate 5'-triphosphate (pppGpp) during initiation of transcription. Three promoters with well known differential ppGpp sensitivities in vivo were studied: the Escherichia coli rrnB P2 promoter that is only weakly ppGpp dependent; a P2 base change variant (P2F) that confers both stringent and growth rate regulation; and the completely unregulated PtacI promoter. The in vivo ppGpp dependency for all three promoters was verified in vitro in multiple round transcription reactions, reflecting a combination of the effects at initiation, promoter clearance, and elongation. In the main part of our study, we concentrated on the contribution of initiation complex formation to the overall inhibition of transcription. Kinetic measurements of complex association and dissociation revealed that at sensitive promoters (p)ppGpp triggered an alternative initiation pathway by RNA polymerase. This involved the stabilization of the initial closed complexes, and impeded open complex formation. Subsequently formed ternary complexes were structurally altered. Based on the above findings, we propose a model which suggests that ppGpp-altered RNA polymerases are preferentially bound and enter the alternative pathway. Thus, discrimination is obtained at early steps of initiation, which causes efficient inhibition at later steps of the transcription cycle probably involving promoter clearance and elongation.
Collapse
Affiliation(s)
- M Heinemann
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | |
Collapse
|
18
|
Masquida B, Felden B, Westhof E. Context dependent RNA-RNA recognition in a three-dimensional model of the 16S rRNA core. Bioorg Med Chem 1997; 5:1021-35. [PMID: 9222495 DOI: 10.1016/s0968-0896(97)00053-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A 3-D model of the core of the 16S rRNA of Escherichia coli containing 328 residues has been built in the protein map derived from neutron scattering data with the help of all the available phylogenetic, biochemical, and cross-linking data. The three pseudoknots of the 16S-core cluster, through the arrangement of complex three-, four- and five-way junctions, around the neck and at the subunit interface. The roles in assembly, initiation or elongation of the three pseudoknots in ribosomal dynamics are emphasized. The 530-loop, localized on the periphery of the 30S particle, could be built with and without a pseudoknot independently of the state of the particle. The pseudoknot of the central domain controls the dynamics of an helix connected to the subunit interface which could trigger some mechanism during translation. The process of the model construction is compatible with a folding scenario in which the 5'-terminal pseudoknot controls the assembly of the central junction and the subsequent folding of the 3'-major domain. The modelling, together with the phylogenetic analysis and the experimental data, point to several potential RNA-RNA contacts which depend on the structural and sequence context in which they occur.
Collapse
Affiliation(s)
- B Masquida
- Institut de Biologie Moléculaire et Cellulaire du CNRS-UPR 9002, Strasbourg, France
| | | | | |
Collapse
|
19
|
Krohn M, Wagner R. Transcriptional pausing of RNA polymerase in the presence of guanosine tetraphosphate depends on the promoter and gene sequence. J Biol Chem 1996; 271:23884-94. [PMID: 8798619 DOI: 10.1074/jbc.271.39.23884] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have studied the response of the effector molecule guanosine 3',5'-bisdiphosphate (ppGpp) on RNA polymerase pausing during in vitro transcription elongation. Pausing was followed during single round extension of stalled ternary complexes excluding possible ppGpp effects on initiation. The ppGpp dependences of early pausing sites within different transcription systems controlled by promoters with known response to enhanced ppGpp levels in vivo were quantitatively characterized. Transcription of stable RNAs and mRNA genes were analyzed. In addition, the in vitro pausing behavior of two promoter variants directing the same sequence but differing in their in vivo ppGpp sensitivity were compared. In the presence of ppGpp we noted a slight general enhancement of specific pauses in all transcription systems. However, genes known to be under stringent or growth rate control in vivo revealed a notably stronger pausing enhancement. The sites of pausing are not changed by the presence of ppGpp but appear to be sequence-specific. The effect of ppGpp on the extent of pausing depends on the particular promoter and closely adjacent sequences that the RNA polymerase has passed during initiation. Pausing enhancement requires the presence of ppGpp during elongation but not during initiation. The results underline the importance of pausing for transcription regulation and offer a plausible explanation for inhibition of stable RNA expression under conditions of elevated concentrations of ppGpp.
Collapse
Affiliation(s)
- M Krohn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
20
|
Graumann P, Schröder K, Schmid R, Marahiel MA. Cold shock stress-induced proteins in Bacillus subtilis. J Bacteriol 1996; 178:4611-9. [PMID: 8755892 PMCID: PMC178231 DOI: 10.1128/jb.178.15.4611-4619.1996] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacteria respond to a decrease in temperature with the induction of proteins that are classified as cold-induced proteins (CIPs). Using two-dimensional gel electrophoresis, we analyzed the cold shock response in Bacillus subtilis. After a shift from 37 to 15 degrees C the synthesis of a majority of proteins was repressed; in contrast, 37 proteins were synthesized at rates higher than preshift rates. One hour after cold shock, the induction of CIPs decreased, and after 2 h, general protein synthesis resumed. The identified main CIPs were excised from two-dimensional gels and were subjected to microsequencing. Three small acidic proteins that showed the highest relative induction after cold shock were highly homologous and belonged to a protein family of which one member, the major cold shock protein, CspB, has previously been characterized. Two-dimensional gel analyses of a cspB null mutant revealed that CspB affects the level of induction of several CIPs. Other identified CIPs function at various levels of cellular physiology, such as chemotaxis (CheY), sugar uptake (Hpr), translation (ribosomal proteins S6 and L7/L12), protein folding (PPiB), and general metabolism (CysK, Ilvc, Gap, and triosephosphate isomerase).
Collapse
Affiliation(s)
- P Graumann
- Biochemie, Fachbereich Chemie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
21
|
Abstract
Post-transcriptional processing of precursor-ribosomal RNA comprises a complex pathway of endonucleolytic cleavages, exonucleolytic digestion and covalent modifications. The general order of the various processing steps is well conserved in eukaryotic cells, but the underlying mechanisms are largely unknown. Recent analysis of pre-rRNA processing, mainly in the yeast Saccharomyces cerevisiae, has significantly improved our understanding of this important cellular activity. Here we will review the data that have led to our current picture of yeast pre-rRNA processing.
Collapse
Affiliation(s)
- J Venema
- European Molecular Biology Laboratory (EMBL), Gene Expression Programme, Heidelberg, Germany
| | | |
Collapse
|