1
|
Bartle L, Wellinger RJ. Methods that shaped telomerase research. Biogerontology 2024; 25:249-263. [PMID: 37903970 PMCID: PMC10998806 DOI: 10.1007/s10522-023-10073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/30/2023] [Indexed: 11/01/2023]
Abstract
Telomerase, the ribonucleoprotein (RNP) responsible for telomere maintenance, has a complex life. Complex in that it is made of multiple proteins and an RNA, and complex because it undergoes many changes, and passes through different cell compartments. As such, many methods have been developed to discover telomerase components, delve deep into understanding its structure and function and to figure out how telomerase biology ultimately relates to human health and disease. While some old gold-standard methods are still key for determining telomere length and measuring telomerase activity, new technologies are providing promising new ways to gain detailed information that we have never had access to before. Therefore, we thought it timely to briefly review the methods that have revealed information about the telomerase RNP and outline some of the remaining questions that could be answered using new methodology.
Collapse
Affiliation(s)
- Louise Bartle
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavilion, 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavilion, 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
2
|
Sanpedro-Luna JA, Jacinto-Vázquez JJ, Anastacio-Marcelino E, Posadas-Gutiérrez CM, Olmos-Pineda I, González-Bernal JA, Carcaño-Montiel M, Vega-Alvarado L, Vázquez-Cruz C, Sánchez-Alonso P. Telomerase RNA plays a major role in the completion of the life cycle in Ustilago maydis and shares conserved domains with other Ustilaginales. PLoS One 2023; 18:e0281251. [PMID: 36952474 PMCID: PMC10035886 DOI: 10.1371/journal.pone.0281251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/18/2023] [Indexed: 03/25/2023] Open
Abstract
The RNA subunit of telomerase is an essential component whose primary sequence and length are poorly conserved among eukaryotic organisms. The phytopathogen Ustilago maydis is a dimorphic fungus of the order Ustilaginales. We analyzed several species of Ustilaginales to computationally identify the TElomere RNA (TER) gene ter1. To confirm the identity of the TER gene, we disrupted the gene and characterized telomerase-negative mutants. Similar to catalytic TERT mutants, ter1Δ mutants exhibit phenotypes of growth delay, telomere shortening and low replicative potential. ter1-disrupted mutants were unable to infect maize seedlings in heterozygous crosses and showed defects such as cell cycle arrest and segregation failure. We concluded that ter1, which encodes the TER subunit of the telomerase of U. maydis, have similar and perhaps more extensive functions than trt1.
Collapse
Affiliation(s)
- Juan Antonio Sanpedro-Luna
- Instituto de Ciencias, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Juan Jacinto-Vázquez
- Instituto de Ciencias, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Estela Anastacio-Marcelino
- Instituto de Ciencias, Centro de Investigaciones Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Iván Olmos-Pineda
- Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Jesús Antonio González-Bernal
- Department of Computer Science and Engineering, The University of Texas Arlington, Arlington, Texas, United States of America
| | - Moisés Carcaño-Montiel
- Instituto de Ciencias, Centro de Investigaciones Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México, México
| | - Candelario Vázquez-Cruz
- Instituto de Ciencias, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Instituto de Ciencias, Centro de Investigaciones Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Patricia Sánchez-Alonso
- Instituto de Ciencias, Posgrado en Microbiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Instituto de Ciencias, Centro de Investigaciones Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
- * E-mail:
| |
Collapse
|
3
|
Dey A, Monroy-Eklund A, Klotz K, Saha A, Davis J, Li B, Laederach A, Chakrabarti K. In vivo architecture of the telomerase RNA catalytic core in Trypanosoma brucei. Nucleic Acids Res 2021; 49:12445-12466. [PMID: 34850114 PMCID: PMC8643685 DOI: 10.1093/nar/gkab1042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
Telomerase is a unique ribonucleoprotein (RNP) reverse transcriptase that utilizes its cognate RNA molecule as a template for telomere DNA repeat synthesis. Telomerase contains the reverse transcriptase protein, TERT and the template RNA, TR, as its core components. The 5'-half of TR forms a highly conserved catalytic core comprising of the template region and adjacent domains necessary for telomere synthesis. However, how telomerase RNA folding takes place in vivo has not been fully understood due to low abundance of the native RNP. Here, using unicellular pathogen Trypanosoma brucei as a model, we reveal important regional folding information of the native telomerase RNA core domains, i.e. TR template, template boundary element, template proximal helix and Helix IV (eCR4-CR5) domain. For this purpose, we uniquely combined in-cell probing with targeted high-throughput RNA sequencing and mutational mapping under three conditions: in vivo (in WT and TERT-/- cells), in an immunopurified catalytically active telomerase RNP complex and ex vivo (deproteinized). We discover that TR forms at least two different conformers with distinct folding topologies in the insect and mammalian developmental stages of T. brucei. Also, TERT does not significantly affect the RNA folding in vivo, suggesting that the telomerase RNA in T. brucei exists in a conformationally preorganized stable structure. Our observed differences in RNA (TR) folding at two distinct developmental stages of T. brucei suggest that important conformational changes are a key component of T. brucei development.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Anais Monroy-Eklund
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kaitlin Klotz
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Justin Davis
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kausik Chakrabarti
- To whom correspondence should be addressed. Tel: +1 704 687 1882; Fax: +1 704 687 1488;
| |
Collapse
|
4
|
Chiu JKH, Dillon TS, Chen YPP. Large-scale frequent stem pattern mining in RNA families. J Theor Biol 2018; 455:131-139. [PMID: 30036526 DOI: 10.1016/j.jtbi.2018.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
Abstract
Functionally similar non-coding RNAs are expected to be similar in certain regions of their secondary structures. These similar regions are called common structure motifs, and are structurally conserved throughout evolution to maintain their functional roles. Common structure motif identification is one of the critical tasks in RNA secondary structure analysis. Nevertheless, current approaches suffer several limitations, and/or do not scale with both structure size and the number of input secondary structures. In this work, we present a method to transform the conserved base pair stems into transaction items and apply frequent itemset mining to identify common structure motifs existing in a majority of input structures. Our experimental results on telomerase and ribosomal RNA secondary structures report frequent stem patterns that are of biological significance. Moreover, the algorithms utilized in our method are scalable and frequent stem patterns can be identified efficiently among many large structures.
Collapse
Affiliation(s)
- Jimmy Ka Ho Chiu
- Department of Computer Science and Information, Technology, La Trobe University, Melbourne VIC 3086, Australia.
| | - Tharam S Dillon
- Department of Computer Science and Information, Technology, La Trobe University, Melbourne VIC 3086, Australia.
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information, Technology, La Trobe University, Melbourne VIC 3086, Australia.
| |
Collapse
|
5
|
Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites. Int J Mol Sci 2018; 19:ijms19020333. [PMID: 29364142 PMCID: PMC5855555 DOI: 10.3390/ijms19020333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma, etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
Collapse
|
6
|
Podlevsky JD, Li Y, Chen JJL. The functional requirement of two structural domains within telomerase RNA emerged early in eukaryotes. Nucleic Acids Res 2016; 44:9891-9901. [PMID: 27378779 PMCID: PMC5175330 DOI: 10.1093/nar/gkw605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
Telomerase emerged during evolution as a prominent solution to the eukaryotic linear chromosome end-replication problem. Telomerase minimally comprises the catalytic telomerase reverse transcriptase (TERT) and telomerase RNA (TR) that provides the template for telomeric DNA synthesis. While the TERT protein is well-conserved across taxa, TR is highly divergent amongst distinct groups of species. Herein, we have identified the essential functional domains of TR from the basal eukaryotic species Trypanosoma brucei, revealing the ancestry of TR comprising two distinct structural core domains that can assemble in trans with TERT and reconstitute active telomerase enzyme in vitro. The upstream essential domain of T. brucei TR, termed the template core, constitutes three short helices in addition to the 11-nt template. Interestingly, the trypanosome template core domain lacks the ubiquitous pseudoknot found in all known TRs, suggesting later evolution of this critical structural element. The template-distal domain is a short stem-loop, termed equivalent CR4/5 (eCR4/5). While functionally similar to vertebrate and fungal CR4/5, trypanosome eCR4/5 is structurally distinctive, lacking the essential P6.1 stem-loop. Our functional study of trypanosome TR core domains suggests that the functional requirement of two discrete structural domains is a common feature of TRs and emerged early in telomerase evolution.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Yang Li
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Abstract
Telomerase is the eukaryotic solution to the ‘end-replication problem’ of linear chromosomes by synthesising the highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini. Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly facilitates enzymatic function. TR accomplishes this by having evolved structural elements for stable assembly with the TERT protein and the regulation of the telomerase catalytic cycle. Despite its prominence and prevalence, TR has profoundly diverged in length, sequence, and biogenesis pathway among distinct evolutionary lineages. This diversity has generated numerous structural and mechanistic solutions for ensuring proper RNP formation and high fidelity telomeric DNA synthesis. Telomerase provides unique insights into RNA and protein coevolution within RNP enzymes.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| | - Julian J-L Chen
- a School of Molecular Sciences, Arizona State University , Tempe , AZ , USA
| |
Collapse
|
8
|
Jansson LI, Akiyama BM, Ooms A, Lu C, Rubin SM, Stone MD. Structural basis of template-boundary definition in Tetrahymena telomerase. Nat Struct Mol Biol 2015; 22:883-8. [PMID: 26436828 PMCID: PMC4654688 DOI: 10.1038/nsmb.3101] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/02/2015] [Indexed: 01/07/2023]
Abstract
Telomerase is required to maintain repetitive G-rich telomeric DNA sequences at chromosome ends. To do so, the telomerase reverse transcriptase (TERT) subunit reiteratively uses a small region of the integral telomerase RNA (TER) as a template. An essential feature of telomerase catalysis is the strict definition of the template boundary to determine the precise TER nucleotides to be reverse transcribed by TERT. We report the 3-Å crystal structure of the Tetrahymena TERT RNA-binding domain (tTRBD) bound to the template boundary element (TBE) of TER. tTRBD is wedged into the base of the TBE RNA stem-loop, and each of the flanking RNA strands wraps around opposite sides of the protein domain. The structure illustrates how the tTRBD establishes the template boundary by positioning the TBE at the correct distance from the TERT active site to prohibit copying of nontemplate nucleotides.
Collapse
Affiliation(s)
- Linnea I Jansson
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Ben M Akiyama
- Department of Chemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Alexandra Ooms
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Cheng Lu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
9
|
Mefford MA, Rafiq Q, Zappulla DC. RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. EMBO J 2013; 32:2980-93. [PMID: 24129512 DOI: 10.1038/emboj.2013.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/23/2013] [Indexed: 12/25/2022] Open
Abstract
Telomerase is a specialized chromosome end-replicating enzyme required for genome duplication in many eukaryotes. An RNA and reverse transcriptase protein subunit comprise its enzymatic core. Telomerase is evolving rapidly, particularly its RNA component. Nevertheless, nearly all telomerase RNAs, including those of H. sapiens and S. cerevisiae, share four conserved structural elements: a core-enclosing helix (CEH), template-boundary element, template, and pseudoknot, in this order along the RNA. It is not clear how these elements coordinate telomerase activity. We find that although rearranging the order of the four conserved elements in the yeast telomerase RNA subunit, TLC1, disrupts activity, the RNA ends can be moved between the template and pseudoknot in vitro and in vivo. However, the ends disrupt activity when inserted between the other structured elements, defining an Area of Required Connectivity (ARC). Within the ARC, we find that only the junction nucleotides between the pseudoknot and CEH are essential. Integrating all of our findings provides a basic map of functional connections in the core of the yeast telomerase RNP and a framework to understand conserved element coordination in telomerase mechanism.
Collapse
Affiliation(s)
- Melissa A Mefford
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
10
|
Kuprys PV, Davis SM, Hauer TM, Meltser M, Tzfati Y, Kirk KE. Identification of telomerase RNAs from filamentous fungi reveals conservation with vertebrates and yeasts. PLoS One 2013; 8:e58661. [PMID: 23555591 PMCID: PMC3603654 DOI: 10.1371/journal.pone.0058661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/05/2013] [Indexed: 01/03/2023] Open
Abstract
Telomeres are the nucleoprotein complexes at eukaryotic chromosomal ends. Telomeric DNA is synthesized by the ribonucleoprotein telomerase, which comprises a telomerase reverse transcriptase (TERT) and a telomerase RNA (TER). TER contains a template for telomeric DNA synthesis. Filamentous fungi possess extremely short and tightly regulated telomeres. Although TERT is well conserved between most organisms, TER is highly divergent and thus difficult to identify. In order to identify the TER sequence, we used the unusually long telomeric repeat sequence of Aspergillus oryzae together with reverse-transcription-PCR and identified a transcribed sequence that contains the potential template within a region predicted to be single stranded. We report the discovery of TERs from twelve other related filamentous fungi using comparative genomic analysis. These TERs exhibited strong conservation with the vertebrate template sequence, and two of these potentially use the identical template as humans. We demonstrate the existence of important processing elements required for the maturation of yeast TERs such as an Sm site, a 5' splice site and a branch point, within the newly identified TER sequences. RNA folding programs applied to the TER sequences show the presence of secondary structures necessary for telomerase activity, such as a yeast-like template boundary, pseudoknot, and a vertebrate-like three-way junction. These telomerase RNAs identified from filamentous fungi display conserved structural elements from both yeast and vertebrate TERs. These findings not only provide insights into the structure and evolution of a complex RNA but also provide molecular tools to further study telomere dynamics in filamentous fungi.
Collapse
Affiliation(s)
- Paulius V. Kuprys
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Shaun M. Davis
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Tyler M. Hauer
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Max Meltser
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Yehuda Tzfati
- Department of Genetics, The Silberman
Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram,
Jerusalem, Israel
| | - Karen E. Kirk
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| |
Collapse
|
11
|
Cole DI, Legassie JD, Bonifacio LN, Sekaran VG, Ding F, Dokholyan NV, Jarstfer MB. New models of Tetrahymena telomerase RNA from experimentally derived constraints and modeling. J Am Chem Soc 2012; 134:20070-80. [PMID: 23163801 DOI: 10.1021/ja305636u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The telomerase ribonucleoprotein complex ensures complete replication of eukaryotic chromosomes. Telomerase RNA (TER) provides the template for replicating the G-rich strand of telomeric DNA, provides an anchor site for telomerase-associated proteins, and participates in catalysis through several incompletely characterized mechanisms. A major impediment toward understanding its nontemplating roles is the absence of high content structural information for TER within the telomerase complex. Here, we used selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) to examine the structure of Tetrahymena TER free in solution and bound to tTERT in the minimal telomerase RNP. We discovered a striking difference in the two conformations and established direct evidence for base triples in the tTER pseudoknot. We then used SHAPE data, previously published FRET data, and biochemical inference to model the structure of tTER using discrete molecular dynamics simulations. The resulting tTER structure was docked with a homology model of the Tetrahymena telomerase reverse transcriptase (tTERT) to characterize the conformational changes of tTER telomerase assembly. Free in solution, tTER appears to contain four pairing regions: stems I, II, and IV, which are present in the commonly accepted structure, and stem III, a large paired region that encompasses the template and pseudoknot domains. Our interpretation of the data and subsequent modeling affords a molecular model for telomerase assemblage in which a large stem III of tTER unwinds to allow proper association of the template with the tTERT active site and formation of the pseudoknot. Additionally, analysis of our SHAPE data and previous enzymatic footprinting allow us to propose a model for stem-loop IV function in which tTERT is activated by binding stem IV in the major groove of the helix-capping loop.
Collapse
Affiliation(s)
- Daud I Cole
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | |
Collapse
|
12
|
Goldin S, Kertesz Rosenfeld K, Manor H. Tracing the path of DNA substrates in active Tetrahymena telomerase holoenzyme complexes: mapping of DNA contact sites in the RNA subunit. Nucleic Acids Res 2012; 40:7430-41. [PMID: 22584626 PMCID: PMC3424564 DOI: 10.1093/nar/gks416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Telomerase, the enzyme that extends single-stranded telomeric DNA, consists of an RNA subunit (TER) including a short template sequence, a catalytic protein (TERT) and accessory proteins. We used site-specific UV cross-linking to map the binding sites for DNA primers in TER within active Tetrahymena telomerase holoenzyme complexes. The mapping was performed at single-nucleotide resolution by a novel technique based on RNase H digestion of RNA–DNA hybrids made with overlapping complementary oligodeoxynucleotides. These data allowed tracing of the DNA path through the telomerase complexes from the template to the TERT binding element (TBE) region of TER. TBE is known to bind TERT and to be involved in the template 5′-boundary definition. Based on these findings, we propose that upstream sequences of each growing telomeric DNA chain are involved in regulation of its growth arrest at the 5′-end of the RNA template. The upstream DNA–TBE interaction may also function as an anchor for the subsequent realignment of the 3′-end of the DNA with the 3′-end of the template to enable initiation of synthesis of a new telomeric repeat.
Collapse
Affiliation(s)
- Svetlana Goldin
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32 000, Israel
| | | | | |
Collapse
|
13
|
Eckert B, Collins K. Roles of telomerase reverse transcriptase N-terminal domain in assembly and activity of Tetrahymena telomerase holoenzyme. J Biol Chem 2012; 287:12805-14. [PMID: 22367200 DOI: 10.1074/jbc.m112.339853] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Telomerase extends chromosome ends by the addition of single-stranded telomeric repeats. To support processive repeat synthesis, it has been proposed that coordination occurs between DNA interactions with the telomerase RNA template, the active site in the telomerase reverse transcriptase (TERT) core, a TERT N-terminal (TEN) domain, and additional subunits of the telomerase holoenzyme required for telomere elongation in vivo. The roles of TEN domain surface residues in primer binding and product elongation have been studied largely using assays of minimal recombinant telomerase enzymes, which lack holoenzyme subunits that properly fold and conformationally stabilize the ribonucleoprotein and/or control its association with telomere substrates in vivo. Here, we use Tetrahymena telomerase holoenzyme reconstitution in vitro to assess TEN domain sequence requirements in the physiological enzyme context. We find that TEN domain sequence substitutions in the Tetrahymena telomerase holoenzyme influence synthesis initiation and elongation rate but not processivity. Functional and direct physical interaction assays pinpoint a conserved TEN domain surface required for holoenzyme subunit association and for high repeat addition processivity. Our results add to the understanding of telomerase holoenzyme architecture and TERT domain functions with direct implications for the unique mechanism of single-stranded repeat synthesis.
Collapse
Affiliation(s)
- Barbara Eckert
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
14
|
Abstract
Telomerase is a unique reverse transcriptase that catalyzes the addition of telomere DNA repeats onto the 3' ends of linear chromosomes and plays a critical role in maintaining genome stability. Unlike other reverse transcriptases, telomerase is unique in that it is a ribonucleoprotein complex, where the RNA component [telomerase RNA (TR)] not only provides the template for the synthesis of telomere DNA repeats but also plays essential roles in catalysis, accumulation, TR 3'-end processing, localization, and holoenzyme assembly. Biochemical studies have identified TR elements essential for catalysis that share remarkably conserved secondary structures across different species as well as species-specific domains for other functions, paving the way for high-resolution structure determination of TRs. Over the past decade, structures of key elements from the core, conserved regions 4 and 5, and small Cajal body specific RNA domains of human TR have emerged, providing significant insights into the roles of these RNA elements in telomerase function. Structures of all helical elements of the core domain have been recently reported, providing the basis for a high-resolution model of the complete core domain. We review this progress to determine the overall architecture of human telomerase RNA.
Collapse
|
15
|
Srivastava A, Cai L, Mrázek J, Malmberg RL. Mutational patterns in RNA secondary structure evolution examined in three RNA families. PLoS One 2011; 6:e20484. [PMID: 21698102 PMCID: PMC3117835 DOI: 10.1371/journal.pone.0020484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/03/2011] [Indexed: 01/02/2023] Open
Abstract
The goal of this work was to study mutational patterns in the evolution of RNA secondary structure. We analyzed bacterial tmRNA, RNaseP and eukaryotic telomerase RNA secondary structures, mapping structural variability onto phylogenetic trees constructed primarily from rRNA sequences. We found that secondary structures evolve both by whole stem insertion/deletion, and by mutations that create or disrupt stem base pairing. We analyzed the evolution of stem lengths and constructed substitution matrices describing the changes responsible for the variation in the RNA stem length. In addition, we used principal component analysis of the stem length data to determine the most variable stems in different families of RNA. This data provides new insights into the evolution of RNA secondary structures and patterns of variation in the lengths of double helical regions of RNA molecules. Our findings will facilitate design of improved mutational models for RNA structure evolution.
Collapse
Affiliation(s)
- Anuj Srivastava
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | |
Collapse
|
16
|
Xie P. A modified model for translocation events of processive nucleotide and repeat additions by the recombinant telomerase. Biophys Chem 2010; 153:83-96. [PMID: 21055868 DOI: 10.1016/j.bpc.2010.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 12/22/2022]
Abstract
Telomerase is a unique reverse transcriptase that extends the single-stranded 3' overhangs of telomeres by copying a short template sequence within the integral RNA component of the enzyme. It shows processive nucleotide and repeat addition activities, which are realized via two types of movements: translocation of the DNA:RNA hybrid away from the active site following each nucleotide addition and translocation of the 3' end of the DNA primer relative to the RNA template after each round of repeat synthesis. Here, a model is presented to describe these two types of translocation events by the recombinant Tetrahymena telomerase, via the modification of the model that has been proposed recently. Using the present model, the dynamics of the dissociation of the DNA primer from the telomerase and the dynamics of the disruption of the DNA:RNA hybrid and then repositioning of the product 3' end to the beginning of the template are studied quantitatively. Their effects on the repeat addition processivity are theoretically studied. The theoretical results are in agreement with the available experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Bayfield MA, Yang R, Maraia RJ. Conserved and divergent features of the structure and function of La and La-related proteins (LARPs). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:365-78. [PMID: 20138158 PMCID: PMC2860065 DOI: 10.1016/j.bbagrm.2010.01.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/08/2010] [Accepted: 01/27/2010] [Indexed: 12/19/2022]
Abstract
Genuine La proteins contain two RNA binding motifs, a La motif (LAM) followed by a RNA recognition motif (RRM), arranged in a unique way to bind RNA. These proteins interact with an extensive variety of cellular RNAs and exhibit activities in two broad categories: i) to promote the metabolism of nascent pol III transcripts, including precursor-tRNAs, by binding to their common, UUU-3'OH containing ends, and ii) to modulate the translation of certain mRNAs involving an unknown binding mechanism. Characterization of several La-RNA crystal structures as well as biochemical studies reveal insight into their unique two-motif domain architecture and how the LAM recognizes UUU-3'OH while the RRM binds other parts of a pre-tRNA. Recent studies of members of distinct families of conserved La-related proteins (LARPs) indicate that some of these harbor activity related to genuine La proteins, suggesting that their UUU-3'OH binding mode has been appropriated for the assembly and regulation of a specific snRNP (e.g., 7SK snRNP assembly by hLARP7/PIP7S). Analyses of other LARP family members suggest more diverged RNA binding modes and specialization for cytoplasmic mRNA-related functions. Thus it appears that while genuine La proteins exhibit broad general involvement in both snRNA-related and mRNA-related functions, different LARP families may have evolved specialized activities in either snRNA or mRNA-related functions. In this review, we summarize recent progress that has led to greater understanding of the structure and function of La proteins and their roles in tRNA processing and RNP assembly dynamics, as well as progress on the different LARPs.
Collapse
Affiliation(s)
- Mark A Bayfield
- Department of Biology, York University, Toronto, ON, Canada.
| | | | | |
Collapse
|
18
|
Robart AR, O'Connor CM, Collins K. Ciliate telomerase RNA loop IV nucleotides promote hierarchical RNP assembly and holoenzyme stability. RNA (NEW YORK, N.Y.) 2010; 16:563-571. [PMID: 20106956 PMCID: PMC2822921 DOI: 10.1261/rna.1936410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/07/2009] [Indexed: 05/27/2023]
Abstract
Telomerase adds simple-sequence repeats to chromosome 3' ends to compensate for the loss of repeats with each round of genome replication. To accomplish this de novo DNA synthesis, telomerase uses a template within its integral RNA component. In addition to providing the template, the telomerase RNA subunit (TER) also harbors nontemplate motifs that contribute to the specialized telomerase catalytic cycle of reiterative repeat synthesis. Most nontemplate TER motifs function through linkage with the template, but in ciliate and vertebrate telomerases, a stem-loop motif binds telomerase reverse transcriptase (TERT) and reconstitutes full activity of the minimal recombinant TERT+TER RNP, even when physically separated from the template. Here, we resolve the functional requirements for this motif of ciliate TER in physiological RNP context using the Tetrahymena thermophila p65-TER-TERT core RNP reconstituted in vitro and the holoenzyme reconstituted in vivo. Contrary to expectation based on assays of the minimal recombinant RNP, we find that none of a panel of individual loop IV nucleotide substitutions impacts the profile of telomerase product synthesis when reconstituted as physiological core RNP or holoenzyme RNP. However, loop IV nucleotide substitutions do variably reduce assembly of TERT with the p65-TER complex in vitro and reduce the accumulation and stability of telomerase RNP in endogenous holoenzyme context. Our results point to a unifying model of a conformational activation role for this TER motif in the telomerase RNP enzyme.
Collapse
Affiliation(s)
- Aaron R Robart
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
19
|
Xie P. A possible mechanism of processive nucleotide and repeat additions by the telomerase. Biosystems 2009; 97:168-78. [PMID: 19580845 DOI: 10.1016/j.biosystems.2009.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 06/26/2009] [Indexed: 01/03/2023]
Abstract
Telomerase is a specialized cellular ribonucleoprotein complex that can synthesize long stretches of a DNA primer by using an intrinsic RNA template sequence. This requires that the telomerase must be able to carry out both nucleotide and repeat additions. Here, based on available structures and experimental data, a model is presented to describe these two addition activities. In the model, the forward movement of the polymerase active site along the template during the processive nucleotide addition is rectified through the incorporation of a matched base, via the Brownian ratchet mechanism. The unpairing of the DNA:RNA hybrid and then repositioning of product 3'-end after each round of repeat synthesis, which are prerequisites for the processive repeat addition, are caused by a force acting on the primer. The force results from the conformational transition of the stem III pseudoknot, which is mechanically induced by the rotation of TERT fingers together with stem IV loop towards the polymerase active site upon a nucleotide binding. Based on the model, the dynamics of processive nucleotide and repeat additions by recombinant Tetrahymena telomerase is studied analytically, which gives good quantitative explanations to the previous experimental results. Moreover, some predicted results are presented. In particular, it is shown that the repeat addition processivity is mainly determined by the difference between the free-energy change required to disrupt the DNA:RNA hybrid and that required to unfold the stem III pseudoknot. A large difference in free energy corresponds to a low repeat addition processivity while a small difference in free energy corresponds to a high repeat addition processivity.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
20
|
Nested genes CDA12 and CDA13 encode proteins associated with membrane trafficking in the ciliate Tetrahymena thermophila. EUKARYOTIC CELL 2009; 8:899-912. [PMID: 19286988 DOI: 10.1128/ec.00342-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We describe a novel pair of nested genes, CDA12 and CDA13, from Tetrahymena thermophila. Both are implicated in membrane trafficking associated with cell division and conjugation. Green fluorescent protein localization reveals Cda12p decoration of diverse membrane-bound compartments, including mobile, subcortical tubulovesicular compartments; perinuclear vesicles; and candidates for recycling endosomes. Cda13p decorates intracellular foci located adjacent to cortically aligned mitochondria and their neighboring Golgi networks. The expression of antisense CDA12 RNA in transformants produces defects in cytokinesis, macronuclear segregation, and the processing of pinosomes to downstream compartments. Antisense CDA13 RNA expression produces a conjugation phenotype, resulting in the failure of mating pairs to separate, as well as failures in postconjugation cytokinesis and macronuclear fission. This study offers insight into the membrane trafficking events linking endosome and Golgi network activities, cytokinesis, and karyokinesis and the unique membrane-remodeling events that accompany conjugation in the ciliate T. thermophila. We also highlight an unusual aspect of genome organization in Tetrahymena, namely, the existence of nested, antisense genes.
Collapse
|
21
|
Box JA, Bunch JT, Zappulla DC, Glynn EF, Baumann P. A flexible template boundary element in the RNA subunit of fission yeast telomerase. J Biol Chem 2008; 283:24224-33. [PMID: 18574244 DOI: 10.1074/jbc.m802043200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Telomerase adds telomeric repeat sequences to chromosome ends using a short region of its RNA subunit as a template. Telomerase RNA subunits are phylogenetically highly divergent, and different strategies have evolved to demarcate the boundary of the template region. The recent identification of the gene encoding telomerase RNA in the fission yeast Schizosaccharomyces pombe (ter1+) has opened the door for structure-function analyses in a model that shares many features with the telomere maintenance machinery of higher eukaryotes. Here we describe a structural element in TER1 that defines the 5' boundary of the template. Disruption of a predicted long range base pairing interaction between template-adjacent nucleotides and a sequence further upstream resulted in reverse transcription beyond the template region and caused telomere shortening. Normal telomere length was restored by combining complementary nucleotide substitutions in both elements, showing that base pairing, not a specific sequence, limits reverse transcription beyond the template. The template boundary described here resembles that of budding yeasts and some mammalian telomerases. However, unlike any previously characterized boundary element, part of the paired region overlaps with the template itself, thus necessitating disruption of these interactions during most reverse transcription cycles. We show that changes in the paired region directly affect the length of individual telomeric repeat units. Our data further illustrate that marginal alignment of the telomeric 3' end with RNA sequences downstream of the template is responsible for primer slippage, causing incorporation of strings of guanosines at the start of a subset of repeats.
Collapse
Affiliation(s)
- Jessica A Box
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Telomerase is a ribonucleoprotein enzyme that extends DNA at the chromosome ends in most eukaryotes. Since 1985, telomerase has been studied intensively and components of the telomerase complex have been identified from over 160 eukaryotic species. In the last two decades, there has been a growing interest in studying telomerase owing to its vital role in chromosome stability and cellular immortality. To keep up with the remarkable explosion of knowledge about telomerase, we compiled information related to telomerase in an exhaustive database called the Telomerase Database (http://telomerase.asu.edu/). The Telomerase Database provides comprehensive information about (i) sequences of the RNA and protein subunits of telomerase, (ii) sequence alignments based on the phylogenetic relationship and structure, (iii) secondary structures of the RNA component and tertiary structures of various subunits of telomerase, (iv) mutations of telomerase components found in human patients and (v) active researchers who contributed to the wealth of current knowledge on telomerase. The information is hierarchically organized by the components, i.e. the telomerase reverse transcriptase (TERT), telomerase RNA (TR) and other telomerase-associated proteins. The Telomerase Database is a useful resource especially for researchers who are interested in investigating the structure, function, evolution and medical relevance of the telomerase enzyme.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- School of Life Sciences and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | |
Collapse
|
23
|
Chakrabarti K, Pearson M, Grate L, Sterne-Weiler T, Deans J, Donohue JP, Ares M. Structural RNAs of known and unknown function identified in malaria parasites by comparative genomics and RNA analysis. RNA (NEW YORK, N.Y.) 2007; 13:1923-39. [PMID: 17901154 PMCID: PMC2040097 DOI: 10.1261/rna.751807] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
As the genomes of more eukaryotic pathogens are sequenced, understanding how molecular differences between parasite and host might be exploited to provide new therapies has become a major focus. Central to cell function are RNA-containing complexes involved in gene expression, such as the ribosome, the spliceosome, snoRNAs, RNase P, and telomerase, among others. In this article we identify by comparative genomics and validate by RNA analysis numerous previously unknown structural RNAs encoded by the Plasmodium falciparum genome, including the telomerase RNA, U3, 31 snoRNAs, as well as previously predicted spliceosomal snRNAs, SRP RNA, MRP RNA, and RNAse P RNA. Furthermore, we identify six new RNA coding genes of unknown function. To investigate the relationships of the RNA coding genes to other genomic features in related parasites, we developed a genome browser for P. falciparum (http://areslab.ucsc.edu/cgi-bin/hgGateway). Additional experiments provide evidence supporting the prediction that snoRNAs guide methylation of a specific position on U4 snRNA, as well as predicting an snRNA promoter element particular to Plasmodium sp. These findings should allow detailed structural comparisons between the RNA components of the gene expression machinery of the parasite and its vertebrate hosts.
Collapse
Affiliation(s)
- Kausik Chakrabarti
- Department of Molecular, Cell and Developmental Biology, Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Ulyanov NB, Shefer K, James TL, Tzfati Y. Pseudoknot structures with conserved base triples in telomerase RNAs of ciliates. Nucleic Acids Res 2007; 35:6150-60. [PMID: 17827211 PMCID: PMC2094054 DOI: 10.1093/nar/gkm660] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Telomerase maintains the integrity of telomeres, the ends of linear chromosomes, by adding G-rich repeats to their 3′-ends. Telomerase RNA is an integral component of telomerase. It contains a template for the synthesis of the telomeric repeats by the telomerase reverse transcriptase. Although telomerase RNAs of different organisms are very diverse in their sequences, a functional non-template element, a pseudoknot, was predicted in all of them. Pseudoknot elements in human and the budding yeast Kluyveromyces lactis telomerase RNAs contain unusual triple-helical segments with AUU base triples, which are critical for telomerase function. Such base triples in ciliates have not been previously reported. We analyzed the pseudoknot sequences in 28 ciliate species and classified them in six different groups based on the lengths of the stems and loops composing the pseudoknot. Using miniCarlo, a helical parameter-based modeling program, we calculated 3D models for a representative of each morphological group. In all cases, the predicted structure contains at least one AUU base triple in stem 2, except for that of Colpidium colpoda, which contains unconventional GCG and AUA triples. These results suggest that base triples in a pseudoknot element are a conserved feature of all telomerases.
Collapse
Affiliation(s)
- Nikolai B. Ulyanov
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel
- *To whom correspondence should be addressed. +1 415 476 0707+1 415 502 8298 Correspondence may also be addressed to Yehuda Tzfati. +972 2 6584902+972 2 6586975
| | - Kinneret Shefer
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel
| | - Thomas L. James
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel
| | - Yehuda Tzfati
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel
| |
Collapse
|
25
|
Legassie JD, Jarstfer MB. The unmasking of telomerase. Structure 2007; 14:1603-9. [PMID: 17098185 DOI: 10.1016/j.str.2006.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/01/2006] [Accepted: 09/08/2006] [Indexed: 12/15/2022]
Abstract
Telomerase is a ribonucleoprotein complex that reverse transcribes a portion of its RNA subunit during the synthesis of G-rich DNA at the 3' end of each chromosome in most eukaryotes. This activity compensates for the inability of the normal DNA replication machinery to fully replicate chromosome termini. The roles of telomerase in cellular immortality and tumor biology have catalyzed a significant interest in this unusual polymerase. Recently the first structures of two domains, the CR4/CR5 and pseudoknot, of human telomerase RNA (hTR) were reported, offering a structural basis for interpreting biochemical studies and possible roles of hTR mutations in human diseases. Structures of the stem II and stem IV domains of Tetrahymena thermophila TR as well as the N-terminal domain of the T. thermophila telomerase reverse transcriptase have also been determined. These studies complement previous biochemical studies, providing rich insight into the structural basis for telomerase activity.
Collapse
Affiliation(s)
- Jason D Legassie
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
26
|
Garforth S, Wu Y, Prasad V. Structural features of mouse telomerase RNA are responsible for the lower activity of mouse telomerase versus human telomerase. Biochem J 2006; 397:399-406. [PMID: 16669789 PMCID: PMC1533308 DOI: 10.1042/bj20060456] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human and mouse telomerases show a high degree of similarity in both the protein and RNA components. Human telomerase is more active and more processive than the mouse telomerase. There are two key differences between hTR [human TR (telomerase RNA)] and mTR (mouse TR) structures. First, the mouse telomerase contains only 2 nt upstream of its template region, whereas the human telomerase contains 45 nt. Secondly, the template region of human telomerase contains a 5-nt alignment domain, whereas that of mouse has only 2 nt. We hypothesize that these differences are responsible for the differential telomerase activities. Mutations were made in both the hTR and mTR, changing the template length and the length of the RNA upstream of the template, and telomerase was reconstituted in vitro using mouse telomerase reverse transcriptase generated by in vitro translation. We show that the sequences upstream of the template region, with a potential to form a double-stranded helix (the P1 helix) as in hTR, increase telomerase activity. The longer alignment domain increases telomerase activity only in the context of the P1 helix. Thus the TR contributes to regulating the level of activity of mammalian telomerases.
Collapse
Affiliation(s)
- Scott J. Garforth
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, GB401, Bronx, NY 10461, U.S.A
| | - Yan Yun Wu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, GB401, Bronx, NY 10461, U.S.A
| | - Vinayaka R. Prasad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, GB401, Bronx, NY 10461, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Richards RJ, Wu H, Trantirek L, O'Connor CM, Collins K, Feigon J. Structural study of elements of Tetrahymena telomerase RNA stem-loop IV domain important for function. RNA (NEW YORK, N.Y.) 2006; 12:1475-85. [PMID: 16809815 PMCID: PMC1524899 DOI: 10.1261/rna.112306] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tetrahymena telomerase RNA (TER) contains several regions in addition to the template that are important for function. Central among these is the stem-loop IV domain, which is involved in both catalysis and RNP assembly, and includes binding sites for both the holoenzyme assembly protein p65 and telomerase reverse transcriptase (TERT). Stem-loop IV contains two regions with high evolutionary sequence conservation: a central GA bulge between helices, and a terminal loop. We solved the solution structure of loop IV and modeled the structure of the helical region containing the GA bulge, using NMR and residual dipolar couplings. The central GA bulge with flanking C-G base pairs induces a approximately 50 degrees semi-rigid bend in the helix. Loop IV is highly structured, and contains a conserved C-U base pair at the top of the helical stem. Analysis of new and previous biochemical data in light of the structure provides a rationale for some of the sequence conservation in this region of TER. The results suggest that during holoenzyme assembly the protein p65 recognizes a bend in stem IV, and this binding to central stem IV helps to position the structured loop IV for interaction with TERT and other region(s) of TER.
Collapse
Affiliation(s)
- Rebecca J Richards
- Department of Molecular Biology and Biochemistry, University of South Bohemia, Czech Republic
| | | | | | | | | | | |
Collapse
|
28
|
O'Connor CM, Collins K. A novel RNA binding domain in tetrahymena telomerase p65 initiates hierarchical assembly of telomerase holoenzyme. Mol Cell Biol 2006; 26:2029-36. [PMID: 16507983 PMCID: PMC1430299 DOI: 10.1128/mcb.26.6.2029-2036.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) and telomerase RNA (TER) assemble as part of a holoenzyme that synthesizes telomeric repeats at chromosome ends. Genetic approaches have identified proteins that are required for in vivo association of TERT and TER, including the Tetrahymena telomerase holoenzyme protein p65. Here, we use quantitative assays to define the mechanisms underlying p65 function in holoenzyme biogenesis. We demonstrate that four modules of p65 contribute affinity for TER, including a C-terminal domain that recognizes the conserved dinucleotide bulge of central stem IV. This C-terminal domain is necessary and sufficient for p65's function in enhancing the recruitment of TERT to TER. Finally, we show that p65 and TERT assemble on TER with hierarchical rather than cooperative binding. These findings elucidate an extensive network of p65-TER recognition specificity and define a novel p65 RNA binding domain that initiates telomerase holoenyzme biogenesis.
Collapse
Affiliation(s)
- Catherine M O'Connor
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA
| | | |
Collapse
|
29
|
Richards RJ, Theimer CA, Finger LD, Feigon J. Structure of the Tetrahymena thermophila telomerase RNA helix II template boundary element. Nucleic Acids Res 2006; 34:816-25. [PMID: 16452301 PMCID: PMC1360744 DOI: 10.1093/nar/gkj481] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Telomere addition by telomerase requires an internal templating sequence located in the RNA subunit of telomerase. The correct boundary definition of this template sequence is essential for the proper addition of the nucleotide repeats. Incorporation of incorrect telomeric repeats onto the ends of chromosomes has been shown to induce chromosomal instability in ciliate, yeast and human cells. A 5′ template boundary defining element (TBE) has been identified in human, yeast and ciliate telomerase RNAs. Here, we report the solution structure of the TBE element (helix II) from Tetrahymena thermophila telomerase RNA. Our results indicate that helix II and its capping pentaloop form a well-defined structure including unpaired, stacked adenine nucleotides in the stem and an unusual syn adenine nucleotide in the loop. A comparison of the T.thermophila helix II pentaloop with a pentaloop of the same sequence found in the 23S rRNA of the Haloarcula marismortui ribosome suggests possible RNA and/or protein interactions for the helix II loop within the Tetrahymena telomerase holoenzyme.
Collapse
Affiliation(s)
- Rebecca J. Richards
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, CA 90095-1569, USA
| | - Carla A. Theimer
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, CA 90095-1569, USA
| | - L. David Finger
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of CaliforniaLos Angeles, CA 90095-1569, USA
- Molecular Biology Institute, University of CaliforniaLos Angeles, CA 90095-1569, USA
- To whom correspondence should be addressed. Tel: +1 310 206 6922; Fax: +1 310 825 0982;
| |
Collapse
|
30
|
Cunningham DD, Collins K. Biological and biochemical functions of RNA in the tetrahymena telomerase holoenzyme. Mol Cell Biol 2005; 25:4442-54. [PMID: 15899850 PMCID: PMC1140614 DOI: 10.1128/mcb.25.11.4442-4454.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Telomerase extends chromosome ends by the synthesis of tandem simple-sequence repeats. Studies of minimal recombinant telomerase ribonucleoprotein (RNP) reconstituted in vitro have revealed sequences within the telomerase RNA subunit (TER) that are required to establish its internal template and other unique features of enzyme activity. Here we test the significance of these motifs following TER assembly into telomerase holoenzyme in vivo. We established a method for stable expression of epitope-tagged TER and TER variants in place of wild-type Tetrahymena TER. We found that sequence substitutions in nontemplate regions of TER altered telomere length maintenance in vivo, with an increase or decrease in the set point for telomere length homeostasis. We also characterized the in vitro activity of the telomerase holoenzymes reconstituted with TER variants, following RNA-based RNP affinity purification from cell extracts. We found that nontemplate sequence substitutions imposed specific defects in the fidelity and processivity of template use. These findings demonstrate nontemplate functions of TER that are critical for the telomerase holoenzyme catalytic cycle and for proper telomere length maintenance in vivo.
Collapse
Affiliation(s)
- Doreen D Cunningham
- Department of Molecular and Cell Biology, 16 Barker Hall, University of California, Berkeley, CA 94720-3204, USA
| | | |
Collapse
|
31
|
O’Connor CM, Lai CK, Collins K. Two purified domains of telomerase reverse transcriptase reconstitute sequence-specific interactions with RNA. J Biol Chem 2005; 280:17533-9. [PMID: 15731105 PMCID: PMC2917599 DOI: 10.1074/jbc.m501211200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) and telomerase RNA (TER) function together to create a uniquely specialized polymerase. Here we have described for the first time domains of bacterially expressed Tetrahymena TERT that interacted directly with TER in the absence of assembly chaperones. We used quantitative binding assays to define TER sequence requirements for recognition by the high affinity RNA binding domain and an independent N-terminal RNA interaction domain. The TERT RNA binding domain and N-terminal RNA interaction domain had distinct, nonoverlapping requirements for TER sequence and structure that together accounted for all of the sites of TER contact inferred for full-length TERT. The TER residues important for TERT binding are only a subset of the residues required for catalytic activity. Our findings demonstrate telomerase functional specialization by an elaborate ribonucleoprotein architecture physically separable from the active site.
Collapse
Affiliation(s)
- Catherine M. O’Connor
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204
| | | | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204
| |
Collapse
|
32
|
Prathapam R, Witkin KL, O'Connor CM, Collins K. A telomerase holoenzyme protein enhances telomerase RNA assembly with telomerase reverse transcriptase. Nat Struct Mol Biol 2005; 12:252-7. [PMID: 15696174 PMCID: PMC2913471 DOI: 10.1038/nsmb900] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 01/03/2005] [Indexed: 01/07/2023]
Abstract
Telomerase maintains the simple sequence repeats at chromosome ends, protecting cells from genomic rearrangement, proliferative senescence and death. The telomerase reverse transcriptase (TERT) and telomerase RNA (TER) alone can assemble into active enzyme in a heterologous cell extract, but the physiological process of telomerase biogenesis is more complex. The endogenous accumulation of Tetrahymena thermophila TERT and TER requires an additional telomerase holoenzyme protein, p65. Here, we reconstitute this cellular pathway for telomerase ribonucleoprotein biogenesis in vitro. We demonstrate that tandem RNA interaction domains in p65 recognize the sequence of the TER 3' stem. Notably, the p65-TER complex recruits TERT much more efficiently than does TER alone. Using bacterially expressed p65 and TERT polypeptides, we show that p65 enhances TERT-TER interaction by a mechanism involving a conserved bulge in the protein-bridging TER molecule. These findings reveal a pathway for telomerase holoenzyme biogenesis that preassembles TER for TERT recruitment.
Collapse
Affiliation(s)
- Ramadevi Prathapam
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Telomerase is a cellular reverse transcriptase responsible for telomere maintenance in most organisms. It does so by adding telomere repeats onto pre-existing ends using an integral RNA component as template. Compared to "prototypical" reverse transcriptases, telomerase is unique in being able to repetitively copy a short templating RNA segment, thus adding multiple copies of the repeat to the DNA substrate following a single binding event. This uniquely processive property hints at the intricate conformational alterations that the enzyme must choreograph during its reaction cycles. Recent studies have identified distinct structural elements within both the RNA and protein components of telomerase that modulate enzyme processivity. Pharmacological and genetic analysis suggest that telomerase processivity is a significant determinant of telomere length. Because telomere maintenance and the lack thereof have been linked to tumor progression and aging, further investigation of telomerase processivity may lead to novel medical intervention strategies.
Collapse
Affiliation(s)
- Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
34
|
Rivera MA, Blackburn EH. Processive utilization of the human telomerase template: lack of a requirement for template switching. J Biol Chem 2004; 279:53770-81. [PMID: 15456773 DOI: 10.1074/jbc.m407768200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ribonucleoprotein telomerase is a specialized reverse transcriptase minimally composed of an RNA, TER, and a protein catalytic subunit, TERT. The TER and TERT subunits of telomerase associate to form a dimeric enzyme in several organisms, including human. A small portion of TER, the template domain, is used by telomerase for the synthesis of tandem repeats of telomeric DNA. We studied some of the requirements for processive template usage by human telomerase. A blunt-ended duplex DNA primer was not utilized by telomerase. With a duplex telomeric DNA primer, a single-stranded 3' overhang with a minimum length of approximately 6 bases was required for efficient priming activity. Large substitutions in the human TER templating domain did not abolish enzymatic activity, although insertion of two residues into this sequence reduced processivity, as did a template mutation that results in a mismatch between the template region used for copying DNA and the region used for alignment of the substrate primer. Finally, by using a complementary pair of catalytically inactive telomerase RNA pseudoknot mutants in combination with a marked template, we demonstrated that processive synthesis by an obligatory dimer of human telomerase does not require template switching. These results indicate that processive template usage by human telomerase, like that of Tetrahymena telomerase, is strongly dependent on the base identities in the template domain and that a dimeric human telomerase can processively utilize a single template.
Collapse
Affiliation(s)
- Melissa A Rivera
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2200, USA
| | | |
Collapse
|
35
|
Aigner S, Cech TR. The Euplotes telomerase subunit p43 stimulates enzymatic activity and processivity in vitro. RNA (NEW YORK, N.Y.) 2004; 10:1108-18. [PMID: 15208446 PMCID: PMC1370601 DOI: 10.1261/rna.7400704] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 04/29/2004] [Indexed: 05/19/2023]
Abstract
Telomerase is a reverse transcriptase that synthesizes telomeric DNA repeats at the ends of eukaryotic chromosomes. Although it is minimally composed of a conserved catalytic protein subunit (TERT) and an RNA component, additional accessory factors present in the holoenzyme play crucial roles in the biogenesis and function of the enzyme complex. Telomerase from the ciliate Tetrahymena can be reconstituted in active form in vitro. Using this system, we show that p43, a telomerase-specific La-motif protein from the ciliate Euplotes, stimulates activity and increases repeat addition processivity of telomerase. Activity enhancement by p43 requires its incorporation into a TERT.RNA.p43 ternary complex but is independent of other dissociable protein factors functioning in telomerase complex assembly. Stimulation is enhanced at elevated temperatures, supporting a role for p43 in structural stabilization of a critical region of the RNA subunit. To our knowledge, this represents the first demonstration that an authentic telomerase accessory protein can directly affect the enzymatic activity of the core enzyme in vitro.
Collapse
Affiliation(s)
- Stefan Aigner
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | | |
Collapse
|
36
|
Chen JL, Greider CW. Telomerase RNA structure and function: implications for dyskeratosis congenita. Trends Biochem Sci 2004; 29:183-92. [PMID: 15082312 DOI: 10.1016/j.tibs.2004.02.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jiunn-Liang Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
37
|
Abstract
Telomerase uses a short template sequence in its intrinsic RNA component to synthesize telomere repeats. Disruption of the helix P1b in human telomerase RNA or alteration of its distance from the template resulted in telomerase copying residues past the normal template boundary both in vivo and in vitro. Therefore, helix P1b is important for template boundary definition in human telomerase. Mouse telomerase RNA lacks helix P1b, and the boundary is established at 2 nt downstream of the 5'-end. The divergent structure of boundary definition elements in mammals, yeast, and ciliates suggests diverse mechanisms for template boundary definition in telomerase.
Collapse
Affiliation(s)
- Jiunn-Liang Chen
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
38
|
Seto AG, Umansky K, Tzfati Y, Zaug AJ, Blackburn EH, Cech TR. A template-proximal RNA paired element contributes to Saccharomyces cerevisiae telomerase activity. RNA (NEW YORK, N.Y.) 2003; 9:1323-32. [PMID: 14561882 PMCID: PMC1287054 DOI: 10.1261/rna.5570803] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Accepted: 07/31/2003] [Indexed: 05/20/2023]
Abstract
The ribonucleoprotein complex telomerase is critical for replenishing chromosome-end sequence during eukaryotic DNA replication. The template for the addition of telomeric repeats is provided by the RNA component of telomerase. However, in budding yeast, little is known about the structure and function of most of the remainder of the telomerase RNA. Here, we report the identification of a paired element located immediately 5' of the template region in the Saccharomyces cerevisiae telomerase RNA. Mutations disrupting or replacing the helical element showed that this structure, but not its exact nucleotide sequence, is important for telomerase function in vivo and in vitro. Biochemical characterization of a paired element mutant showed that the mutant generated longer products and incorporated noncognate nucleotides. Sequencing of in vivo synthesized telomeres from this mutant showed that DNA synthesis proceeded beyond the normal template. Thus, the S. cerevisiae element resembles a similar element found in Kluyveromyces budding yeasts with respect to a function in template boundary specification. In addition, the in vitro activity of the paired element mutant indicates that the RNA element has additional functions in enzyme processivity and in directing template usage by telomerase.
Collapse
Affiliation(s)
- Anita G Seto
- Department of Chemistry and Biochemistry, and Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | | | | | |
Collapse
|
39
|
Mason DX, Goneska E, Greider CW. Stem-loop IV of tetrahymena telomerase RNA stimulates processivity in trans. Mol Cell Biol 2003; 23:5606-13. [PMID: 12897134 PMCID: PMC166324 DOI: 10.1128/mcb.23.16.5606-5613.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme responsible for the addition of telomeres onto the ends of chromosomes. Short or dysfunctional telomeres can lead to cell growth arrest, apoptosis, and genomic instability. Telomerase uses its RNA subunit to copy a short template region for telomere synthesis. To probe for regions of Tetrahymena telomerase RNA essential for function, we assayed 27 circularly permuted RNA deletions for telomerase in vitro activity and binding to the telomerase reverse transcriptase catalytic protein subunit. We found that stem-loop IV is required for wild-type telomerase activity in vitro and will stimulate processivity when added in trans.
Collapse
Affiliation(s)
- Douglas X Mason
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
40
|
Abstract
Arthur Kornberg "never met a dull enzyme" (For the Love of Enzymes: The Odyssey of a Biochemist, Harvard University Press, 1989) and telomerase is no exception. Telomerase is a remarkable polymerase that uses an internal RNA template to reverse-transcribe telomere DNA, one nucleotide at a time, onto telomeric, G-rich single-stranded DNA. In the 17 years since its discovery, the characterization of telomerase enzyme components has uncovered a highly conserved family of telomerase reverse transcriptases that, together with the telomerase RNA, appear to comprise the enzymatic core of telomerase. While not as comprehensively understood as yet, some telomerase-associated proteins also serve crucial roles in telomerase function in vivo, such as telomerase ribonudeoprotein (RNP) assembly, recruitment to the telomere, and the coordination of DNA replication at the telomere. A selected overview of the biochemical properties of this unique enzyme, in vitro and in vivo, will be presented.
Collapse
|
41
|
Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res 2003; 31:439-41. [PMID: 12520045 PMCID: PMC165453 DOI: 10.1093/nar/gkg006] [Citation(s) in RCA: 1083] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rfam is a collection of multiple sequence alignments and covariance models representing non-coding RNA families. Rfam is available on the web in the UK at http://www.sanger.ac.uk/Software/Rfam/ and in the US at http://rfam.wustl.edu/. These websites allow the user to search a query sequence against a library of covariance models, and view multiple sequence alignments and family annotation. The database can also be downloaded in flatfile form and searched locally using the INFERNAL package (http://infernal.wustl.edu/). The first release of Rfam (1.0) contains 25 families, which annotate over 50 000 non-coding RNA genes in the taxonomic divisions of the EMBL nucleotide database.
Collapse
Affiliation(s)
- Sam Griffiths-Jones
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | | | | | |
Collapse
|
42
|
Ye AJ, Romero DP. A unique pause pattern during telomere addition by the error-prone telomerase from the ciliate Paramecium tetraurelia. Gene 2002; 294:205-13. [PMID: 12234682 DOI: 10.1016/s0378-1119(02)00790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Telomeric DNA - the short, tandemly repeated sequences at the ends of chromosomes - is synthesized by telomerase, a ribonucleoprotein enzyme that copies a specific template sequence within its integral RNA moiety. The error-prone telomerase from the ciliate Paramecium tetraurelia stereotypically misincorporates TTP at telomerase RNA templating nucleotide C52, accounting for the 30% TTTGGG repeats randomly distributed in wild-type telomeres. Paramecium tetraurelia telomerase has been isolated from macronuclear extracts and characterized with respect to the extension of telomeric primers in vitro. Unlike telomerase activities from other species, the predominant pause during telomeric repeat synthesis by P. tetraurelia telomerase does not occur at the 5' end of the templating domain (templating nucleotide C49). Instead, the pause by P. tetraurelia telomerase is at templating nucleotide C53, immediately prior to incorporation of dGTP (or TTP) at C52. The configuration of the catalytic site at this template position during telomere synthesis is most likely responsible for the high incidence of misincorporation of TTP at C52. The gene for the P. tetraurelia telomerase catalytic subunit, telomerase reverse transcriptase (TERT), has been cloned and sequenced. A comparative analysis of the P. tetraurelia TERT with homologs from other species, including that from another Paramecium species that does not make a high percentage of misincorporation errors, has been initiated. This study may delineate those TERT structural elements that contribute to telomerase fidelity.
Collapse
Affiliation(s)
- Amanda J Ye
- Department of Pharmacology, Medical School, University of Minnesota, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
43
|
Abstract
Telomerase elongates chromosome ends by addition of telomeric DNA repeats. The telomerase ribonucleoprotein can copy only a short template sequence within the telomerase RNA subunit. Here, we identify a region of telomerase RNA that is necessary for both correct 5' template boundary definition and high affinity telomerase reverse transcriptase (TERT) interaction. We also demonstrate that TERT mutants in the RNA binding domain compromise both 5' boundary definition and RNA binding. Our results indicate that sequence-specific interaction of a telomerase RNA element with the TERT RNA binding domain, not the active site motifs, defines the template boundary.
Collapse
Affiliation(s)
- Cary K Lai
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | |
Collapse
|
44
|
Antal M, Boros E, Solymosy F, Kiss T. Analysis of the structure of human telomerase RNA in vivo. Nucleic Acids Res 2002; 30:912-20. [PMID: 11842102 PMCID: PMC100349 DOI: 10.1093/nar/30.4.912] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Telomerase is a ribonucleoprotein reverse transcriptase that synthesises telomeric DNA. The RNA component of telomerase acts as a template for telomere synthesis and binds the reverse transcriptase. In this study, we have performed in vivo and in vitro structural analyses of human telomerase RNA (hTR). In vivo mapping experiments showed that the 5'-terminal template domain of hTR folds into a long hairpin structure, in which the template sequence occupies a readily accessible position. Intriguingly, neither in vivo nor in vitro mapping of hTR confirmed formation of a stable 'pseudoknot' helix, suggesting that this functionally essential long range interaction is formed only temporarily. In vitro control mappings demonstrated that the 5'-terminal template domain of hTR cannot fold correctly in the absence of cellular protein factors. The 3'-terminal domain of hTR, both in vivo and in vitro, folds into the previously predicted box H/ACA snoRNA-like 'hairpin-hinge-hairpin-tail' structure. Finally, comparison of the in vivo and in vitro modification patterns of hTR revealed several regions that might be directly involved in binding of telomerase reverse transcriptase or other telomerase proteins.
Collapse
Affiliation(s)
- Mária Antal
- Biological Research Center, Hungarian Academy of Sciences, PO Box 521, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
45
|
Mason DX, Autexier C, Greider CW. Tetrahymena proteins p80 and p95 are not core telomerase components. Proc Natl Acad Sci U S A 2001; 98:12368-73. [PMID: 11592988 PMCID: PMC60060 DOI: 10.1073/pnas.221456398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2001] [Accepted: 08/29/2001] [Indexed: 11/18/2022] Open
Abstract
Telomeres provide stability to eukaryotic chromosomes and consist of tandem DNA repeat sequences. Telomeric repeats are synthesized and maintained by a specialized reverse transcriptase, termed telomerase. Tetrahymena thermophila telomerase contains two essential components: Tetrahymena telomerase reverse transcriptase (tTERT), the catalytic protein component, and telomerase RNA that provides the template for telomere repeat synthesis. In addition to these two components, two proteins, p80 and p95, were previously found to copurify with telomerase activity and to interact with tTERT and telomerase RNA. To investigate the role of p80 and p95 in the telomerase enzyme, we tested the interaction of p80, p95, and tTERT in several different recombinant expression systems and in Tetrahymena extracts. Immunoprecipitation of recombinant proteins showed that although p80 and p95 associated with each other, they did not associate with tTERT. In in vitro transcription and translation lysates, tTERT was associated with telomerase activity, but p80 and p95 were not. p80 bound telomerase RNA as well as several other unrelated RNAs, suggesting p80 has a general affinity for RNA. Immunoprecipitations from Tetrahymena extracts also showed no evidence for an interaction between the core tTERT/telomerase RNA complex and the p80 and p95 proteins. These data suggest that p80 and p95 are not associated with the bulk of active telomerase in Tetrahymena.
Collapse
Affiliation(s)
- D X Mason
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
46
|
Büchler P, Conejo-Garcia JR, Lehmann G, Müller M, Emrich T, Reber HA, Büchler MW, Friess H. Real-time quantitative PCR of telomerase mRNA is useful for the differentiation of benign and malignant pancreatic disorders. Pancreas 2001; 22:331-40. [PMID: 11345132 DOI: 10.1097/00006676-200105000-00001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The presence of telomerase activity has been proposed as a specific and sensitive marker for malignant tissue, and positivity rates of up to 95% have been reported in pancreatic cancer. In the present study telomerase activity analysis was reevaluated in 29 pancreatic cancer tissues compared with 36 chronic pancreatitis tissues and 21 normal controls, and a study was made of whether malignant and benign pancreatic disorders can be better differentiated using a novel technique real-time quantitative PCR analysis-analyzing telomerase mRNA expression. Telomerase activity was present in 35% (10 of 29) of pancreatic cancer samples, 3% (one of 36) of chronic pancreatitis samples, and none of the normal pancreatic tissue samples in the TRAP assay. Real-time quantitative PCR analysis revealed the presence of telomerase mRNA expression in 50% (10 of 20) of normal, 86% (31 of 36) of chronic pancreatitis, and 90% (26 of 29) of pancreatic cancer samples. However, quantification of the expression data revealed that the relative increase above normal was 5.5 (range, 3.5-8.6) for chronic pancreatitis and 23.9 (range, 18.6-30.7) for pancreatic cancer samples (p < 0.01). No relationship was found between telomerase activity and the fold increase of telomerase mRNA above normal and gender, patient age, tumor stage, or tumor grade. These data indicate that detection of telomerase activity using the TRAP assay has limitations in differentiating benign and malignant pancreatic disorders. However, telomerase mRNA analysis by real-time quantitative PCR analysis allows a highly sensitive detection and differentiation of pancreatic cancer from normal pancreas and chronic pancreatitis and thereby may serve as a new reliable, easy, and effective diagnostic tool for cancer diagnosis.
Collapse
Affiliation(s)
- P Büchler
- Department of Visceral and Transplantation Surgery, University of Bern, Inselspital, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Martin-Rivera L, Blasco MA. Identification of functional domains and dominant negative mutations in vertebrate telomerase RNA using an in vivo reconstitution system. J Biol Chem 2001; 276:5856-65. [PMID: 11056167 DOI: 10.1074/jbc.m008419200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The telomerase holoenzyme consists of two essential components, a reverse transcriptase, TERT (telomerase reverse transcriptase), and an RNA molecule, TR (telomerase RNA, also known as TERC), that contains the template for the synthesis of new telomeric repeats. Telomerase RNA has been isolated from 32 different vertebrates, and a common secondary structure has been proposed (Chen, J.-L., Blasco, M. A., and Greider, C. W. (2000) Cell 100, 503-514). We have generated 25 mutants in the four conserved structural domains of the mouse telomerase RNA molecule, mTR, and assayed their ability to reconstitute telomerase activity in mTR(-/-) cells in vivo. We found that the pseudoknot and the CR4/CR5 domains are required for telomerase activity but are not essential for mTR stability in the cell, whereas mutations in the BoxH/ACA and the CR7 domains affect mTR accumulation in the cell. We have also identified mTR mutants that are able to inhibit wild type telomerase in vivo.
Collapse
Affiliation(s)
- L Martin-Rivera
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia-CSIC, Campus Cantoblanco, E-28049 Madrid, Spain
| | | |
Collapse
|
48
|
Abstract
Telomerase is a ribonucleoprotein reverse transcriptase that extends the ends of chromosomes. The two telomerase subunits essential for catalysis in vitro are the telomerase reverse transcriptase (TERT) and the telomerase RNA. Using truncations and site-specific mutations, we identified sequence elements of TERT and telomerase RNA required for catalytic activity and protein-RNA interaction for Tetrahymena thermophila telomerase. We found that the TERT amino and carboxyl termini, although evolutionarily poorly conserved, are nonetheless important for catalytic activity. In contrast, high-affinity telomerase RNA binding requires only a small region in the amino terminus of TERT. Surprisingly, the TERT region necessary and sufficient for telomerase RNA binding is completely separable from the reverse transcriptase motifs. The minimal Tetrahymena TERT RNA binding domain contains two sequence motifs with ciliate-specific conservation and one TERT motif with conservation across all species. With human TERT, we demonstrate that a similar region within the TERT amino terminus is essential for human telomerase RNA binding as well. Finally, we defined the Tetrahymena telomerase RNA sequences that are essential for TERT interaction. We found that a four-nucleotide region 5' of the template is critical for TERT binding and that the 5' end of telomerase RNA is sufficient for TERT binding. Our results reveal at least one evolutionarily conserved molecular mechanism by which the telomerase reverse transcriptase is functionally specialized for obligate use of an internal RNA template.
Collapse
Affiliation(s)
- C K Lai
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | |
Collapse
|
49
|
Beattie TL, Zhou W, Robinson MO, Harrington L. Polymerization defects within human telomerase are distinct from telomerase RNA and TEP1 binding. Mol Biol Cell 2000; 11:3329-40. [PMID: 11029039 PMCID: PMC14995 DOI: 10.1091/mbc.11.10.3329] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The minimal, active core of human telomerase is postulated to contain two components, the telomerase RNA hTER and the telomerase reverse transcriptase hTERT. The reconstitution of human telomerase activity in vitro has facilitated the identification of sequences within the telomerase RNA and the RT motifs of hTERT that are essential for telomerase activity. However, the precise role of residues outside the RT domain of hTERT is unknown. Here we have delineated several regions within hTERT that are important for telomerase catalysis, primer use, and interaction with the telomerase RNA and the telomerase-associated protein TEP1. In particular, certain deletions of the amino and carboxy terminus of hTERT that retained an interaction with telomerase RNA and TEP1 were nonetheless completely inactive in vitro and in vivo. Furthermore, hTERT truncations lacking the amino terminus that were competent to bind the telomerase RNA were severely compromised for the ability to elongate telomeric and nontelomeric primers. These results suggest that the interaction of telomerase RNA with hTERT can be functionally uncoupled from polymerization, and that there are regions outside the RT domain of hTERT that are critical for telomerase activity and primer use. These results establish that the human telomerase RT possesses unique polymerization determinants that distinguish it from other RTs.
Collapse
Affiliation(s)
- T L Beattie
- Ontario Cancer Institute/Amgen Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1 Canada
| | | | | | | |
Collapse
|
50
|
Abstract
Telomerase is a cellular reverse transcriptase specialized for use of a template carried within the RNA component of the enzyme ribonucleoprotein complex. Substrates for telomerase are single-stranded oligonucleotides in vitro and chromosome ends in vivo. In vitro, a bound substrate is extended by an initial round of DNA synthesis on the internal RNA template and in some cases by multiple rounds of template copying before product dissociation. In vivo, de novo synthesis of one strand of a telomeric repeat sequence by telomerase balances the sequence loss resulting from incomplete replication of linear chromosome ends by RNA primer-requiring DNA polymerases. Telomerase biochemistry has been studied extensively by using partially purified cell extracts. Telomerase components are being identified and beginning to be produced in recombinant form. This review focuses on the enzyme mechanism of telomerases from ciliate species, thus far the most intensively studied systems.
Collapse
Affiliation(s)
- K Collins
- Department of Molecular and Cell Biology, University of California at Berkeley 94720-3204, USA.
| |
Collapse
|