1
|
Bell NM, Kenyon JC, Balasubramanian S, Lever AML. Comparative structural effects of HIV-1 Gag and nucleocapsid proteins in binding to and unwinding of the viral RNA packaging signal. Biochemistry 2012; 51:3162-9. [PMID: 22448757 DOI: 10.1021/bi2017969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major RNA binding region of the HIV-1 Gag polyprotein is the nucleocapsid (NC) domain, which is responsible for the specific capture of the genomic RNA genome during viral assembly. The Gag polyprotein has other RNA chaperone functions, which are mirrored by the isolated NC protein after physiological cleavage from Gag. Gag, however, is suggested to have superior nucleic acid chaperone activity. Here we investigate the interaction of Gag and NC with the core RNA structure of the HIV-1 packaging signal (Ψ), using 2-aminopurine substitution to create a series of modified RNAs based on the Ψ helix loop structure. The effects of 2-aminopurine substitution on the physical and structural properties of the viral Ψ were characterized. The fluorescence properties of the 2-aminopurine substitutions showed features consistent with the native GNAR tetraloop. Dissociation constants (K(d)) of the two viral proteins, measured by fluorescence polarization (FP), were similar, and both NC and Gag affected the 2-aminopurine fluorescence of bases close to the loop binding region in a similar fashion. However, the influence of Gag on the fluorescence of the 2-aminopurine nucleotides at the base of the helix implied a much more potent helix destabilizing action on the RNA stem loop (SL) versus that seen with NC. This was further supported when the viral Ψ SL was tagged with a 5' fluorophore and 3' quencher. In the absence of any viral protein, minimal fluorescence was detected; addition of NC yielded a slight increase in fluorescence, while addition of the Gag protein yielded a large change in fluorescence, further suggesting that, compared to NC, the Gag protein has a greater propensity to affect RNA structure and that Ψ helix unwinding may be an intrinsic step in RNA encapsidation.
Collapse
Affiliation(s)
- Neil M Bell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 OQQ, UK
| | | | | | | |
Collapse
|
2
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
3
|
Levin JG, Guo J, Rouzina I, Musier-Forsyth K. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. ACTA ACUST UNITED AC 2006; 80:217-86. [PMID: 16164976 DOI: 10.1016/s0079-6603(05)80006-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Judith G Levin
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
4
|
Cen S, Niu M, Kleiman L. The connection domain in reverse transcriptase facilitates the in vivo annealing of tRNALys3 to HIV-1 genomic RNA. Retrovirology 2004; 1:33. [PMID: 15494076 PMCID: PMC524520 DOI: 10.1186/1742-4690-1-33] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 10/19/2004] [Indexed: 11/19/2022] Open
Abstract
The primer tRNA for reverse transcription in HIV-1, tRNALys3, is selectively packaged into the virus during its assembly, and annealed to the viral genomic RNA. The ribonucleoprotein complex that is involved in the packaging and annealing of tRNALys into HIV-1 consists of Gag, GagPol, tRNALys, lysyl-tRNA synthetase (LysRS), and viral genomic RNA. Gag targets tRNALys for viral packaging through Gag's interaction with LysRS, a tRNALys-binding protein, while reverse transcriptase (RT) sequences within GagPol (the thumb domain) bind to tRNALys. The further annealing of tRNALys3 to viral RNA requires nucleocapsid (NC) sequences in Gag, but not the NC sequences GagPol. In this report, we further show that while the RT connection domain in GagPol is not required for tRNALys3 packaging into the virus, it is required for tRNALys3 annealing to the viral RNA genome.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
| | - Meijuan Niu
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3T 1E2
| |
Collapse
|
5
|
Tisné C, Roques BP, Dardel F. The annealing mechanism of HIV-1 reverse transcription primer onto the viral genome. J Biol Chem 2003; 279:3588-95. [PMID: 14602716 DOI: 10.1074/jbc.m310368200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse transcription of human immunodeficiency virus-1 viral RNA uses human tRNA(3)(Lys) as a primer. The first step of viral replication is, thus, the annealing of the primer tRNA onto the primer binding site located in the 5' leader region of the viral RNA. This involves large rearrangements of both RNA structures and requires the chaperone activity of the viral nucleocapsid protein. We have developed a novel approach to analyze dynamically such RNA refolding events using heteronuclear NMR spectroscopy of mixtures of (15)N-labeled and unlabeled large RNA fragments (up to 50 kDa). We have thus been able to characterize the detailed mechanisms of both heat- and nucleocapsid-mediated annealing and to identify previously unknown key steps. The role played by the nucleocapsid is 2-fold; it facilitates strand exchange at the level of the tRNA acceptor stem, presumably via its basic N- and C-terminal extensions, and it unlocks the highly stable tertiary interactions at the level of the T Psi C loop, most likely by specific interactions involving its two zinc knuckles.
Collapse
Affiliation(s)
- Carine Tisné
- Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, UMR 8015 CNRS, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | |
Collapse
|
6
|
Bernacchi S, Stoylov S, Piémont E, Ficheux D, Roques BP, Darlix JL, Mély Y. HIV-1 nucleocapsid protein activates transient melting of least stable parts of the secondary structure of TAR and its complementary sequence. J Mol Biol 2002; 317:385-99. [PMID: 11922672 DOI: 10.1006/jmbi.2002.5429] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nucleocapsid protein NCp7 of HIV-1 possesses a nucleic acid chaperone activity that is critical in minus and plus strand transfer during reverse transcription. The minus strand transfer notably relies on the ability of NCp7 to destabilize the stable stem with five contiguous, double-stranded segments of both the TAR sequence at the 3' end of the viral genome and the complementary sequence, cTAR, in minus strong-stop DNA. In order to examine the nature and the extent of NCp7 destabilizing activity, we investigated, by absorbance and fluorescence spectroscopy, the interaction of TAR and cTAR with a (12-55)NCp7 peptide containing the zinc-finger motifs but lacking the ability to aggregate the oligonucleotides. The absorbance changes in the UV band of cTAR show that seven to eight base-pairs, on average, are melted per oligonucleotide at a ratio of one peptide to 7.5 nucleotides. In contrast, the melting of TAR does not exceed an average of one base-pair per oligonucleotide. This may be linked to the greater stability of TAR, since a strong correlation between NCp7 destabilizing effect and oligonucleotide stability was observed. The effect of (12-55)NCp7 on the stem terminus was investigated by using a cTAR molecule doubly labeled at the 3' and 5' ends by a donor/acceptor couple. In the absence of the peptide, about 80 % of the oligonucleotides are in a dark non-fluorescent state, having a close proximity of the two dyes. The remaining 20 % are distributed between three fluorescent species, having either the terminal segment, the two terminal segments or all segments of the stem melted. This is in line with a fraying mechanism wherein the stem terminus fluctuates rapidly between open and closed states. Addition of (12-55)NCp7 shifts the equilibrium toward the open species, suggesting that NC enhances fraying of the stem terminus. Taken together, our data suggest that NCp7 activates the transient opening of base-pairs in the least stable parts of the stem. Also, this activity of NCp7 was found to be dependent on the zinc-finger motifs, since no melting was observed with a fingerless NCp7 peptide.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins
- Crystallography, X-Ray
- Gene Products, gag/chemistry
- Gene Products, gag/metabolism
- HIV Long Terminal Repeat/genetics
- HIV-1/genetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Sequence Alignment
- Spectrometry, Fluorescence
- Spectrophotometry, Ultraviolet
- Structure-Activity Relationship
- Viral Proteins
- Zinc Fingers
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Serena Bernacchi
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, 74, Route du Rhin, Strasbourg 1, 67401, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Hargittai MR, Mangla AT, Gorelick RJ, Musier-Forsyth K. HIV-1 nucleocapsid protein zinc finger structures induce tRNA(Lys,3) structural changes but are not critical for primer/template annealing. J Mol Biol 2001; 312:985-97. [PMID: 11580244 DOI: 10.1006/jmbi.2001.5021] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviral reverse transcriptases use host cellular tRNAs as primers to initiate reverse transcription. In the case of human immunodeficiency virus type 1 (HIV-1), the 3' 18 nucleotides of human tRNA(Lys,3) are annealed to a complementary sequence on the RNA genome known as the primer binding site (PBS). The HIV-1 nucleocapsid protein (NC) facilitates this annealing. To understand the structural changes that are induced upon NC binding to the tRNA alone, we employed a chemical probing method using the lanthanide metal terbium. At low concentrations of NC, the strong terbium cleavage observed in the core region of the tRNA is significantly attenuated. Thus, NC binding first results in disruption of the tRNA's metal binding pockets, including those that stabilize the D-TPsiC tertiary interaction. When NC concentrations approach the amount needed for complete primer/template annealing, NC further destabilizes the tRNA acceptor-TPsiC stem minihelix, as evidenced by increased terbium cleavage in this domain. A mutant form of NC (SSHS NC), which lacks the zinc finger structures, is able to anneal tRNA(Lys,3) efficiently to the PBS, and to destabilize the tRNA tertiary core, albeit less effectively than wild-type NC. This mutant form of NC does not affect cleavage significantly in the helical regions, even when bound at high concentrations. These results, as well as experiments conducted in the presence of polyLys, suggest that in the absence of the zinc finger structures, NC acts as a polycation, neutralizing the highly negative phosphodiester backbone. The presence of an effective multivalent cationic peptide is sufficient for efficient tRNA primer annealing to the PBS.
Collapse
Affiliation(s)
- M R Hargittai
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
8
|
Tisné C, Roques BP, Dardel F. Heteronuclear NMR studies of the interaction of tRNA(Lys)3 with HIV-1 nucleocapsid protein. J Mol Biol 2001; 306:443-54. [PMID: 11178904 DOI: 10.1006/jmbi.2000.4391] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reverse transcription of HIV-1 viral RNA uses human tRNA(Lys)3 as a primer. Recombinant tRNA(Lys)3 was previously overexpressed in Escherichia coli, 15N-labelled and purified for NMR studies. It was shown to be functional for priming of HIV-1 reverse transcription. Using heteronuclear 2D and 3D NMR, we have been able to assign almost all the imino groups in the helical regions and involved in the tertiary base interactions of tRNA(Lys)3. This crucial step enabled us to address the question of the annealing mechanism of tRNA(Lys)3 by the nucleocapsid protein (NC) using heteronuclear NMR. Moreover, structural aspects of the tRNA(Lys)3/(12-53)NCp7 interaction have been characterised. The (12-53)NCp7 protein binds preferentially to the inside of the L-shape of the tRNA(Lys)3, on the acceptor and D stems, and at the level of the tertiary interactions between the D and T-psi-C loops. (12-53)NCp7 binding does not induce the melting of any single base-pair or unwinding of the tRNA(Lys)3 helical domains. Moreover, NMR provides a unique means to investigate the base-pairs that are destabilised by (12-53)NCp7 binding. Indeed, the measurements of the longitudinal relaxation time T1 and of the exchange time of the imino protons revealed two major regions sensitive to catalysis by the protein, namely the G6-U67 and T54(A58) pairs. It is interesting that for the biological role of the NC protein, these pairs could be the starting points of the tRNA melting required for the hybridisation to the viral RNA.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Base Sequence
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins
- Gene Products, gag/chemistry
- Gene Products, gag/metabolism
- HIV-1
- Humans
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Nitrogen/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Nucleic Acid Denaturation
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Protein Binding
- Protons
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- Viral Proteins
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- C Tisné
- Laboratoire de Cristallographie et RMN Biologiques, EP 2075 CNRS Faculté de Pharmacie, 4 avenue de l'Observatoire, Paris, 75006, France.
| | | | | |
Collapse
|
9
|
Hargittai MR, Musier-Forsyth K. Use of terbium as a probe of tRNA tertiary structure and folding. RNA (NEW YORK, N.Y.) 2000; 6:1672-80. [PMID: 11105765 PMCID: PMC1370035 DOI: 10.1017/s135583820000128x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Lanthanide metals such as terbium have previously been shown to be useful for mapping metal-binding sites in RNA. Terbium binds to the same sites on RNA as magnesium, however, with a much higher affinity. Thus, low concentrations of terbium ions can easily displace magnesium and promote phosphodiester backbone scission. At higher concentrations, terbium cleaves RNA in a sequence-independent manner, with a preference for single-stranded, non-Watson-Crick base-paired regions. Here, we show that terbium is a sensitive probe of human tRNALys,3 tertiary structure and folding. When 1 microM tRNA is used, the optimal terbium ion concentration for detecting Mg2+-induced tertiary structural changes is 50-60 microM. Using these concentrations of RNA and terbium, a magnesium-dependent folding transition with a midpoint (KMg) of 2.6 mM is observed for unmodified human tRNALys,3. At lower Tb3+ concentrations, cleavage is restricted to nucleotides that constitute specific metal-binding pockets. This small chemical probe should also be useful for detecting protein induced structural changes in RNA.
Collapse
Affiliation(s)
- M R Hargittai
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis 55455, USA
| | | |
Collapse
|
10
|
Chan B, Weidemaier K, Yip WT, Barbara PF, Musier-Forsyth K. Intra-tRNA distance measurements for nucleocapsid proteindependent tRNA unwinding during priming of HIV reverse transcription. Proc Natl Acad Sci U S A 1999; 96:459-64. [PMID: 9892655 PMCID: PMC15158 DOI: 10.1073/pnas.96.2.459] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here the direct measurement of intra-tRNA distances during annealing of the tRNA primer to the HIV RNA genome. This key step in the initiation of retroviral reverse transcription involves hybridization of one strand of the acceptor arm of a specific lysine tRNA to the primer binding site on the RNA genome. Although the mechanism of tRNA unwinding and annealing is not known, previous studies have shown that HIV nucleocapsid protein (NC) greatly accelerates primer/template binary complex formation in vitro. An open question is whether NC alone unwinds the primer or whether unwinding by NC requires the RNA genome. We monitored the annealing process in solution by using fluorescence resonance energy transfer (FRET). Distance measurements demonstrate unequivocally that the tRNA acceptor stem is not substantially unwound by NC in the absence of the RNA genome, that is, unwinding is not separable from hybridization. Moreover, FRET measurements show that both heat- and NC-mediated annealing result in an approximately 40-A increase in the separation of the two ends of the tRNA acceptor arm on binding to the template. This large increase in separation of the two ends suggests a complete displacement of the nonhybridized strand of the acceptor stem in the initiation complex.
Collapse
Affiliation(s)
- B Chan
- University of Minnesota, Department of Chemistry, 207 Pleasant Street Southeast, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
11
|
Tanchou V, Decimo D, Péchoux C, Lener D, Rogemond V, Berthoux L, Ottmann M, Darlix JL. Role of the N-terminal zinc finger of human immunodeficiency virus type 1 nucleocapsid protein in virus structure and replication. J Virol 1998; 72:4442-7. [PMID: 9557738 PMCID: PMC109678 DOI: 10.1128/jvi.72.5.4442-4447.1998] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nucleocapsid protein (NCp7) of human immunodeficiency virus type 1 is found covering the genomic RNA in the interior of the viral particle. It is a highly basic protein with two zinc fingers of the form CX2CX4HX4C which exhibit strong affinity for a zinc cation. To study the structure-function relationship of the N-terminal zinc finger of NCp7, this domain was either deleted or changed to CX2CX4CX4C. We examined virus formation and structure as well as proviral DNA synthesis. Our data show that these two NC mutations result in the formation of particles with an abnormal core morphology and impair the end of proviral DNA synthesis, leading to noninfectious viruses.
Collapse
Affiliation(s)
- V Tanchou
- LaboRetro, Unité de Virologie Humaine INSERM U412, Ecole Normale Supérieure de Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kelleher CD, Champoux JJ. Characterization of RNA strand displacement synthesis by Moloney murine leukemia virus reverse transcriptase. J Biol Chem 1998; 273:9976-86. [PMID: 9545343 DOI: 10.1074/jbc.273.16.9976] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNase H activity of reverse transcriptase (RT) is presumably required to cleave the RNA genome following minus strand synthesis to free the DNA for use as a template during plus strand synthesis. However, since RNA degradation by RNase H appears to generate RNA fragments too large to spontaneously dissociate from the minus strand, we have investigated the possibility that RNA displacement by RT during plus strand synthesis contributes to the removal of RNA fragments. By using an RNase H- mutant of Moloney murine leukemia virus (M-MuLV) RT, we demonstrate that the polymerase can displace long regions of RNA in hybrid duplex with DNA but that this activity is approximately 5-fold slower than DNA displacement and 20-fold slower than non-displacement synthesis. Furthermore, we find that although certain hybrid sequences seem nearly refractory to the initiation of RNA displacement, the same sequences may not significantly impede synthesis when preceded by a single-stranded gap. We find that the rate of RNA displacement synthesis by wild-type M-MuLV RT is significantly greater than that of the RNase H- RT but remains less than the rate of non-displacement synthesis. M-MuLV nucleocapsid protein increases the rates of RNA and DNA displacement synthesis approximately 2-fold, and this activity appears to require the zinc finger domain.
Collapse
Affiliation(s)
- C D Kelleher
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195-7242, USA
| | | |
Collapse
|
13
|
Remy E, de Rocquigny H, Petitjean P, Muriaux D, Theilleux V, Paoletti J, Roques BP. The annealing of tRNA3Lys to human immunodeficiency virus type 1 primer binding site is critically dependent on the NCp7 zinc fingers structure. J Biol Chem 1998; 273:4819-22. [PMID: 9478919 DOI: 10.1074/jbc.273.9.4819] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The nucleocapsid protein NCp7 of the human immunodeficiency virus type 1 contains two zinc fingers of the CX2CX4HX4C type, flanked by several basic residues, and plays a major role in viral infectivity. Thus, NCp7 was shown to promote annealing of the tRNA3Lys to the primer binding site, a key step in reverse transcription. However, previous in vitro experiments were unable to clarify the role of the zinc fingers in this process, due to nucleic acid aggregation induced by the basic N- and C-terminal domains of NCp7. We show here that deletion of these sequences in (12-53)NCp7 strongly reduces the formation of aggregates and allows a direct visualization of the binary or ternary complexes between NCp7 and nucleic acids by gel electrophoresis. (12-53)NCp7 is able to induce hybridization of the 33P tRNA3Lys and the human immunodeficiency virus type 1 viral RNA-(77-257), which contains the primer binding site. Modification of the proximal zinc finger conformation in Cys23(12-53)NCp7 led to a large reduction in this hybridization process, while replacement of Trp37 by Leu in the distal zinc fingers resulted in a complete absence of annealing activity. These data account for the in vivo loss of viral infectivity following these mutations and emphasize the critical role of the structure of the zinc finger domain of NCp7. This could facilitate a rational approach to new antiviral agents directed toward NCp7.
Collapse
MESH Headings
- Amino Acid Sequence
- Capsid/genetics
- Capsid/metabolism
- Capsid Proteins
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- HIV-1/genetics
- Molecular Sequence Data
- Mutation
- Nucleic Acid Hybridization
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic
- Viral Proteins
- Zinc Fingers/genetics
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- E Remy
- Département de Pharmacochimie Moléculaire and Structurale, U266 INSERM-URA D1500 CNRS, UER des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | |
Collapse
|