1
|
Trimidal SG, Benjamin R, Bae JE, Han MV, Kong E, Singer A, Williams TS, Yang B, Schiller MR. Can Designer Indels Be Tailored by Gene Editing?: Can Indels Be Customized? Bioessays 2019; 41:e1900126. [PMID: 31693213 PMCID: PMC7202862 DOI: 10.1002/bies.201900126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Indexed: 12/23/2022]
Abstract
Genome editing with engineered nucleases (GEENs) introduce site-specific DNA double-strand breaks (DSBs) and repairs DSBs via nonhomologous end-joining (NHEJ) pathways that eventually create indels (insertions/deletions) in a genome. Whether the features of indels resulting from gene editing could be customized is asked. A review of the literature reveals how gene editing technologies via NHEJ pathways impact gene editing. The survey consolidates a body of literature that suggests that the type (insertion, deletion, and complex) and the approximate length of indel edits can be somewhat customized with different GEENs and by manipulating the expression of key NHEJ genes. Structural data suggest that binding of GEENs to DNA may interfere with binding of key components of DNA repair complexes, favoring either classical- or alternative-NHEJ. The hypotheses have some limitations, but if validated, will enable scientists to better control indel makeup, holding promise for basic science and clinical applications of gene editing. Also see the video abstract here https://youtu.be/vTkJtUsLi3w.
Collapse
Affiliation(s)
- Sara G Trimidal
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ronald Benjamin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Ji Eun Bae
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Elizabeth Kong
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Aaron Singer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Tyler S Williams
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Martin R Schiller
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
2
|
Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Appl Microbiol Biotechnol 2017; 101:3953-3976. [PMID: 28389711 DOI: 10.1007/s00253-017-8263-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/28/2022]
Abstract
Filamentous fungi are prolific repertoire of structurally diverse secondary metabolites of remarkable biological activities such as lovastatin and paclitaxel that have been approved by FDA as drugs for hypercholesterolemia and cancer treatment. The clusters of genes encoding lovastatin and paclitaxel are cryptic at standard laboratory cultural conditions (Kennedy et al. Science 284:1368-1372, 1999; Bergmann et al. Nature Chem Biol 3:213-217, 2007). The expression of these genes might be triggered in response to nutritional and physical conditions; nevertheless, the overall yield of these metabolites does not match the global need. Consequently, overexpression of the downstream limiting enzymes and/or blocking the competing metabolic pathways of these metabolites could be the most successful technologies to enhance their yield. This is the first review summarizing the different strategies implemented for fungal genome editing, molecular regulatory mechanisms, and prospective of clustered regulatory interspaced short palindromic repeat/Cas9 system in metabolic engineering of fungi to improve their yield of lovastatin and taxol to industrial scale. Thus, elucidating the putative metabolic pathways in fungi for overproduction of lovastatin and taxol was the ultimate objective of this review.
Collapse
|
3
|
Stoddard BL. Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob DNA 2014; 5:7. [PMID: 24589358 PMCID: PMC3943268 DOI: 10.1186/1759-8753-5-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022] Open
Abstract
Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N, A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Singh P, Tripathi P, Muniyappa K. Mutational analysis of active-site residues in the Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease: Asp(122) and Asp(193) are crucial to the double-stranded DNA cleavage activity whereas Asp(218) is not. Protein Sci 2010; 19:111-23. [PMID: 19937653 DOI: 10.1002/pro.292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mycobacterium leprae recA harbors an in-frame insertion sequence that encodes an intein homing endonuclease (PI-MleI). Most inteins (intein endonucleases) possess two conserved LAGLIDADG (DOD) motifs at their active center. A common feature of LAGLIDADG-type homing endonucleases is that they recognize and cleave the same or very similar DNA sequences. However, PI-MleI is distinctive from other members of the family of LAGLIDADG-type HEases for its modular structure with functionally separable domains for DNA-binding and cleavage, each with distinct sequence preferences. Sequence alignment analyses of PI-MleI revealed three putative LAGLIDADG motifs; however, there is conflicting bioinformatics data in regard to their identity and specific location within the intein polypeptide. To resolve this conflict and to determine the active-site residues essential for DNA target site recognition and double-stranded DNA cleavage, we performed site-directed mutagenesis of presumptive catalytic residues in the LAGLIDADG motifs. Analysis of target DNA recognition and kinetic parameters of the wild-type PI-MleI and its variants disclosed that the two amino acid residues, Asp(122) (in Block C) and Asp(193) (in functional Block E), are crucial to the double-stranded DNA endonuclease activity, whereas Asp(218) (in pseudo-Block E) is not. However, despite the reduced catalytic activity, the PI-MleI variants, like the wild-type PI-MleI, generated a footprint of the same length around the insertion site. The D122T variant showed significantly reduced catalytic activity, and D122A and D193A mutations although failed to affect their DNA-binding affinities, but abolished the double-stranded DNA cleavage activity. On the other hand, D122C variant showed approximately twofold higher double-stranded DNA cleavage activity, compared with the wild-type PI-MleI. These results provide compelling evidence that Asp(122) and Asp(193) in DOD motif I and II, respectively, are bona fide active-site residues essential for DNA cleavage activity. The implications of these results are discussed in this report.
Collapse
Affiliation(s)
- Pawan Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | |
Collapse
|
5
|
Singh P, Tripathi P, Silva GH, Pingoud A, Muniyappa K. Characterization of Mycobacterium leprae RecA intein, a LAGLIDADG homing endonuclease, reveals a unique mode of DNA binding, helical distortion, and cleavage compared with a canonical LAGLIDADG homing endonuclease. J Biol Chem 2009; 284:25912-28. [PMID: 19605345 PMCID: PMC2757992 DOI: 10.1074/jbc.m109.042861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium leprae, which has undergone reductive evolution leaving behind a minimal set of essential genes, has retained intervening sequences in four of its genes implicating a vital role for them in the survival of the leprosy bacillus. A single in-frame intervening sequence has been found embedded within its recA gene. Comparison of the M. leprae recA intervening sequence with the known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease. In light of massive gene decay and function loss in the leprosy bacillus, we sought to investigate whether its recA intervening sequence encodes a catalytically active homing endonuclease. Here we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations, Mg2+ or Mn2+. A combination of approaches, including four complementary footprinting assays such as DNase I, copper-phenanthroline, methylation protection, and KMnO4, enhancement of 2-aminopurine fluorescence, and mapping of the cleavage site revealed that PI-MleI binds to cognate DNA flanking its insertion site, induces helical distortion at the cleavage site, and generates two staggered double strand breaks. Taken together, these results implicate that PI-MleI possesses a modular structure with separate domains for DNA target recognition and cleavage, each with distinct sequence preferences. From a biological standpoint, it is tempting to speculate that our findings have implications for understanding the evolution of the LAGLIDADG family of homing endonucleases.
Collapse
Affiliation(s)
- Pawan Singh
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - Pankaj Tripathi
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| | - George H. Silva
- the Institut fur Biochemie, Justus-Liebig-Universitat, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Alfred Pingoud
- the Institut fur Biochemie, Justus-Liebig-Universitat, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - K. Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India and
| |
Collapse
|
6
|
Spiegel PC, Chevalier B, Sussman D, Turmel M, Lemieux C, Stoddard BL. The structure of I-CeuI homing endonuclease: Evolving asymmetric DNA recognition from a symmetric protein scaffold. Structure 2006; 14:869-80. [PMID: 16698548 DOI: 10.1016/j.str.2006.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 01/19/2023]
Abstract
Homing endonucleases are highly specific catalysts of DNA strand breaks, leading to the transfer of mobile intervening sequences containing the endonuclease ORF. We have determined the structure and DNA recognition behavior of I-CeuI, a homodimeric LAGLIDADG endonuclease from Chlamydomonas eugametos. This symmetric endonuclease displays unique structural elaborations on its core enzyme fold, and it preferentially cleaves a highly asymmetric target site. This latter property represents an early step, prior to gene fusion, in the generation of asymmetric DNA binding platforms from homodimeric ancestors. The divergence of the sequence, structure, and target recognition behavior of homing endonucleases, as illustrated by this study, leads to the invasion of novel genomic sites by mobile introns during evolution.
Collapse
Affiliation(s)
- P Clint Spiegel
- Graduate Programs in Biomolecular Structure and Design and Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
7
|
Eisenschmidt K, Lanio T, Simoncsits A, Jeltsch A, Pingoud V, Wende W, Pingoud A. Developing a programmed restriction endonuclease for highly specific DNA cleavage. Nucleic Acids Res 2005; 33:7039-47. [PMID: 16356926 PMCID: PMC1316111 DOI: 10.1093/nar/gki1009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Specific cleavage of large DNA molecules at few sites, necessary for the analysis of genomic DNA or for targeting individual genes in complex genomes, requires endonucleases of extremely high specificity. Restriction endonucleases (REase) that recognize DNA sequences of 4-8 bp are not sufficiently specific for this purpose. In principle, the specificity of REases can be extended by fusion to sequence recognition modules, e.g. specific DNA-binding domains or triple-helix forming oligonucleotides (TFO). We have chosen to extend the specificity of REases using TFOs, given the combinatorial flexibility this fusion offers in addressing a short, yet precisely recognized restriction site next to a defined triple-helix forming site (TFS). We demonstrate here that the single chain variant of PvuII (scPvuII) covalently coupled via the bifunctional cross-linker N-(gamma-maleimidobutryloxy) succinimide ester to a TFO (5'-NH2-[CH2](6 or 12)-MPMPMPMPMPPPPPPT-3', with M being 5-methyl-2'-deoxycytidine and P being 5-[1-propynyl]-2'-deoxyuridine), cleaves DNA specifically at the recognition site of PvuII (CAGCTG) if located in a distance of approximately one helical turn to a TFS (underlined) complementary to the TFO ('addressed' site: 5'-TTTTTTTCTCTCTCTCN(approximately 10)CAGCTG-3'), leaving 'unaddressed' PvuII sites intact. The preference for cleavage of an 'addressed' compared to an 'unaddressed' site is >1000-fold, if the cleavage reaction is initiated by addition of Mg2+ ions after preincubation of scPvuII-TFO and substrate in the absence of Mg2+ ions to allow triple-helix formation before DNA cleavage. Single base pair substitutions in the TFS prevent addressed DNA cleavage by scPvuII-TFO.
Collapse
Affiliation(s)
| | | | - András Simoncsits
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| | - Albert Jeltsch
- School of Engineering and Science, International University BremenCampus Ring 1, D-28725 Bremen, Germany
| | | | | | - Alfred Pingoud
- To whom correspondence should be addressed. Tel: +49 641 9935400; Fax: +49 641 9935409;
| |
Collapse
|
8
|
Steuer S, Pingoud V, Pingoud A, Wende W. Chimeras of the homing endonuclease PI-SceI and the homologous Candida tropicalis intein: a study to explore the possibility of exchanging DNA-binding modules to obtain highly specific endonucleases with altered specificity. Chembiochem 2004; 5:206-13. [PMID: 14760742 DOI: 10.1002/cbic.200300718] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Homing endonucleases are extremely specific endodeoxyribonucleases. In vivo, these enzymes confer mobility on their genes by inducing a very specific double-strand cut in cognate alleles that lack the cooling sequence for the homing endonuclease; the cellular repair of the double-strand break with the endonuclease-containing allele as a template leads to integration of the endonuclease gene, completing the homing process. As a result of their extreme sequence specificity, homing endonucleases are promising tools for genome engineering. For this purpose, it is desirable to design enzymes with defined new specificities. To analyse which DNA-binding elements are potential candidates for use in the design of enzymes with modified or even new specificity, we produced several chimeric proteins derived from the Saccharomyces cerevisiae VMA1 intein (PI-SceI) and the related Candida tropicalis VMA1 intein. Although the mature Candida intein is devoid of endonucleolytic activity, the exchange of two DNA-binding modules of PI-SceI with the homologous elements from the Candida intein results in an active endonuclease. The low sequence homology in these modules indicates that different protein-DNA contacts are responsible for the recognition of related DNA sequences. This flexibility in DNA recognition should, in principle, allow endonucleases to be produced with new specificities useful for genome engineering.
Collapse
Affiliation(s)
- Shawn Steuer
- Justus-Liebig-Universität, Institut für Biochemie FB08, Heinrich-Buff-Ring 58, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
9
|
Gimble FS, Moure CM, Posey KL. Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system. J Mol Biol 2004; 334:993-1008. [PMID: 14643662 DOI: 10.1016/j.jmb.2003.10.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PI-SceI protein from Saccharomyces cerevisiae is a member of the LAGLIDADG family of homing endonucleases that have been used in genomic engineering. To assess the flexibility of the PI-SceI-binding interaction and to make progress towards the directed evolution of homing endonucleases that cleave specified DNA targets, we applied a two-hybrid method to select PI-SceI variants from a randomized expression library that bind to different DNA substrates. In particular, the codon for Arg94, which is located in the protein splicing domain and makes essential contacts to two adjacent base-pairs, and the codons for four proximal residues were randomized. There is little conservation of the wild-type amino acid residues at the five randomized positions in the variants that were selected to bind to the wild-type site, yet one of the purified derivatives displays DNA-binding specificity and DNA endonuclease activity that is similar to that of the wild-type enzyme. A spectrum of DNA-binding behaviors ranging from partial relaxation of specificity to marked shifts in target site recognition are present in variants selected to bind to sites containing mutations at the two base-pairs. Our results illustrate the inherent plasticity of the PI-SceI/DNA interface and demonstrate that selection based on DNA binding is an effective means of altering the DNA cleavage specificity of homing endonucleases. Furthermore, it is apparent that homing endonuclease target specificity derives, in part, from constraints on the flexibility of DNA contacts imposed by hydrogen bonds to proximal residues.
Collapse
Affiliation(s)
- Frederick S Gimble
- Center for Genome Research, Institute of Biosciences and Technology, Texas A & M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA.
| | | | | |
Collapse
|
10
|
Noël AJ, Wende W, Pingoud A. DNA recognition by the homing endonuclease PI-SceI involves a divalent metal ion cofactor-induced conformational change. J Biol Chem 2003; 279:6794-804. [PMID: 14634013 DOI: 10.1074/jbc.m311372200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PI-SceI, a homing endonuclease of the LAGLIDADG family, consists of two domains involved in DNA cleavage and protein splicing, respectively. Both domains cooperate in binding the recognition sequence. Comparison of the structures of PI-SceI in the absence and presence of substrate reveals major conformational changes in both the protein and DNA. Notably, in the protein-splicing domain the loop comprising residues 53-70 and adopts a "closed" conformation, thus enabling it to interact with the DNA. We have studied the dynamics of DNA binding and subsequent loop movement by fluorescence techniques. Six amino acids in loop53-70 were individually replaced by cysteine and modified by fluorescein. The interaction of the modified PI-SceI variants with the substrate, unlabeled or labeled with tetramethylrhodamine, was analyzed in equilibrium and stopped-flow experiments. A kinetic scheme was established describing the interaction between PI-SceI and DNA. It is noteworthy that the apparent hinge-flap motion of loop53-70 is only observed in the presence of a divalent metal ion cofactor. Substitution of the major Mg2+-binding ligands in PI-SceI, Asp-218 and Asp-326, by Asn or "nicking" PI-SceI with trypsin at Arg-277, which interferes with formation of an active enzyme.substrate complex, both prevent the conformational change of loop53-70. Deletion of the loop inactivates the enzyme. We conclude that loop53-70 is an important structural element that couples DNA recognition by the splicing domain with DNA cleavage by the catalytic domain and as such "communicates" with the Mg2+ binding sites at the catalytic centers.
Collapse
Affiliation(s)
- Ann-Josée Noël
- Institute for Biochemistry, Justus-Liebig University, D-35392 Giessen, Germany
| | | | | |
Collapse
|
11
|
Thion L, Laurine E, Erard M, Burlet-Schiltz O, Monsarrat B, Masson JM, Saves I. The two-step cleavage activity of PI-TfuI intein endonuclease demonstrated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Biol Chem 2002; 277:45442-50. [PMID: 12239210 DOI: 10.1074/jbc.m203507200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PI-TfuI, an intein spliced from the DNA polymerase of Thermococcus fumicolans, is a highly specific endonuclease, whose cleavage efficiency and specificity depend on both the substrate topology and the divalent cation used as cofactor. An open circular intermediate was observed during the cleavage of supercoiled DNA by PI-TfuI, suggesting a two-step cleavage of the DNA. We characterized this nicked intermediate and, through the development of a method of analysis of the cleavage reaction based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we demonstrated that the cleavage of DNA by PI-TfuI indeed results from two cleavage events. One step results in the cleavage of the bottom strand, which is independent of the DNA conformation or choice of the metal ion cofactor. A second step, which is slower, leads to the cleavage of the top strand and governs the specific requirements of PI-TfuI concerning the essential cofactor and the DNA topology. These two steps were shown to be independent in optimal conditions of cleavage. These data give support to the existence of two distinct and independent active sites in the endonuclease domain of the archaeal intein.
Collapse
Affiliation(s)
- Laurent Thion
- Institut de Pharmacologie et Biologie Structurale, I.P.B.S./C.N.R.S., 205 Route de Narbonne, F-31077 Toulouse Cedex, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Saves I, Morlot C, Thion L, Rolland JL, Diétrich J, Masson JM. Investigating the endonuclease activity of four Pyrococcus abyssi inteins. Nucleic Acids Res 2002; 30:4158-65. [PMID: 12364594 PMCID: PMC140554 DOI: 10.1093/nar/gkf556] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Among the 14 inteins of the Pyrococcus abyssi genome, 10 harbour the LAGLIDADG motifs of dodecapeptide endonucleases. Four of these were cloned, expressed in Escherichia coli and purified to assay their potential endonuclease activity. PabRIR1-2 and PabRIR1-3 are specific endonucleases, named PI-PabI and PI-PabII, respectively, cleaving the sequence spanning their homing site. This is consistent with their size and with the relative positions and sequences of their endonuclease motifs. However, PI-PabI is 10-fold more active than PI-PabII and a discrepancy of the DNA recognition and cleavage mechanisms was observed between the two inteins. In particular, analysis of the DNA cleavage reactions by MALDI-TOF highlighted that while the cleavage of DNA by PI-PabI consists of two steps corresponding to the cleavage of each DNA strand, PI-PabII processes the two DNA strands simultaneously. Furthermore, the two inteins interact differently with DNA. In addition, we did not detect any endonuclease activity for PabLon and PabRIR1-1. Deletions in the intein sequences and mutations in the putative endonuclease motifs probably abolish this activity. Hence, inteins from the same archaebacteria, even if contained in the same host protein, did not evolve uniformly and are presumably at different stages of the invasion cycle.
Collapse
Affiliation(s)
- Isabelle Saves
- Institut de Pharmacologie et Biologie Structurale (UMR5089), CNRS/Université Paul Sabatier Toulouse III, 205 Route de Narbonne, F-31077 Toulouse Cedex, France.
| | | | | | | | | | | |
Collapse
|
13
|
Werner E, Wende W, Pingoud A, Heinemann U. High resolution crystal structure of domain I of the Saccharomyces cerevisiae homing endonuclease PI-SceI. Nucleic Acids Res 2002; 30:3962-71. [PMID: 12235380 PMCID: PMC137108 DOI: 10.1093/nar/gkf523] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The homing endonuclease PI-SceI from Saccharo myces cerevisiae consists of two domains. The protein splicing domain I catalyzes the excision of the mature endonuclease (intein) from a precursor protein and the religation of the flanking amino acid sequences (exteins) to a functional protein. Furthermore, domain I is involved in binding and recognition of the specific DNA substrate. Domain II of PI-SceI, the endonuclease domain, which is structurally homologous to other homing endonucleases from the LAGLIDADG family, harbors the endonucleolytic center of PI-SceI, which in vivo initiates the homing process by introducing a double-strand cut in the approximately 35 bp recognition sequence. At 1.35 A resolution, the crystal structure of PI-SceI domain I provides a detailed view of the part of the protein that is responsible for tight and specific DNA binding. A geometry-based docking of the 75 degrees bent recognition sequence to the full-length protein implies a conformational change or hinge movement of a subdomain of domain I, the tongs part, that is predicted to reach into the major groove near base pairs +16 to +18.
Collapse
Affiliation(s)
- Erik Werner
- Crystallography Group, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Gruen M, Chang K, Serbanescu I, Liu DR. An in vivo selection system for homing endonuclease activity. Nucleic Acids Res 2002; 30:e29. [PMID: 11917035 PMCID: PMC101853 DOI: 10.1093/nar/30.7.e29] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2001] [Revised: 01/08/2002] [Accepted: 01/25/2002] [Indexed: 11/12/2022] Open
Abstract
Homing endonucleases are enzymes that catalyze the highly sequence-specific cleavage of DNA. We have developed an in vivo selection in Escherichia coli that links cell survival with homing endonuclease-mediated DNA cleavage activity and sequence specificity. Using this selection, wild-type and mutant variants of three homing endonucleases were characterized without requiring protein purification and in vitro analysis. This selection system may facilitate the study of sequence-specific DNA cleaving enzymes, and selections based on this work may enable the evolution of homing endonucleases with novel activities or specificities.
Collapse
Affiliation(s)
- Mathias Gruen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- I Giriat
- Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
16
|
Saves I, Westrelin F, Daffé M, Masson JM. Identification of the first eubacterial endonuclease coded by an intein allele in the pps1 gene of mycobacteria. Nucleic Acids Res 2001; 29:4310-8. [PMID: 11691918 PMCID: PMC60189 DOI: 10.1093/nar/29.21.4310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A survey of a vast range of mycobacterial strains led us to discover a new Pps1 intein allele in Mycobacterium gastri which differs from those of Mycobacterium tuberculosis and Mycobacterium leprae in both its sequence and insertion site. While little is known about Pps1, except that it belongs to the YC24 family of ABC transporters, we show that, unlike the other inteins described so far from Eubacteria, the MgaPps1 intein possesses a specific endonuclease activity. The intein is the first eubacterial intein to be characterised as an endonuclease. Like other intein endonucleases, its minimal sequence for recognition and cleavage is quite large, with 22 bp spanning the Pps1-c site. The fact that an active endonuclease is found among the mycobacterial inteins supports the concept of a cyclical model of invasion by horizontal transfer of these genes, followed by degeneration and loss until a new invasion event, thus explaining their long-term persistence in closely related eubacterial species.
Collapse
Affiliation(s)
- I Saves
- Institut de Pharmacologie et Biologie Structurale (UMR5089), CNRS/Université Paul Sabatier Toulouse III, 205 Route de Narbonne, F-31077 Toulouse Cedex, France.
| | | | | | | |
Collapse
|
17
|
Gimble FS. Degeneration of a homing endonuclease and its target sequence in a wild yeast strain. Nucleic Acids Res 2001; 29:4215-23. [PMID: 11600710 PMCID: PMC60219 DOI: 10.1093/nar/29.20.4215] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mobile introns and inteins self-propagate by 'homing', a gene conversion process initiated by site-specific homing endonucleases. The VMA intein, which encodes the PI-SceI endonuclease in Saccharomyces cerevisiae, is present in several different yeast strains. Surprisingly, a wild wine yeast (DH1-1A) contains not only the intein(+) allele, but also an inteinless allele that has not undergone gene conversion. To elucidate how these two alleles co-exist, we characterized the endonuclease encoded by the DH1-1A intein(+) allele and the target site in the intein(-) allele. Sequence analysis reveals seven mutations in the 31 bp recognition sequence, none of which occurs at positions that are individually critical for activity. However, binding and cleavage of the sequence by PI-SceI is reduced 10-fold compared to the S.cerevisiae target. The PI-SceI analog encoded by the DH1-1A intein(+) allele contains 11 mutations at residues in the endonuclease and protein splicing domains. None affects protein splicing, but one, a R417Q substitution, accounts for most of the decrease in DNA cleavage and DNA binding activity of the DH1-1A protein. Loss of activity in the DH1-1A endonuclease and target site provides one explanation for co-existence of the intein(+) and intein(-) alleles.
Collapse
Affiliation(s)
- F S Gimble
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Chevalier BS, Stoddard BL. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 2001; 29:3757-74. [PMID: 11557808 PMCID: PMC55915 DOI: 10.1093/nar/29.18.3757] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Homing endonucleases confer mobility to their host intervening sequence, either an intron or intein, by catalyzing a highly specific double-strand break in a cognate allele lacking the intervening sequence. These proteins are characterized by their ability to bind long DNA target sites (14-40 bp) and their tolerance of minor sequence changes in these sites. A wealth of biochemical and structural data has been generated for these enzymes over the past few years. Herein we review our current understanding of homing endonucleases, including their diversity and evolution, DNA-binding and catalytic mechanisms, and attempts to engineer them to bind novel DNA substrates.
Collapse
Affiliation(s)
- B S Chevalier
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center and Graduate Program in Molecular and Cell Biology, University of Washington, 1100 Fairview Avenue North A3-023, Seattle, WA 98109, USA
| | | |
Collapse
|
19
|
Friedhoff P, Lurz R, Lüder G, Pingoud A. Sau3AI, a monomeric type II restriction endonuclease that dimerizes on the DNA and thereby induces DNA loops. J Biol Chem 2001; 276:23581-8. [PMID: 11316811 DOI: 10.1074/jbc.m101694200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we report that Sau3AI, an unusually large type II restriction enzyme with sequence homology to the mismatch repair protein MutH, is a monomeric enzyme as shown by gel filtration and ultracentrifugation. Structural similarities in the N- and C-terminal halves of the protein suggest that Sau3AI is a pseudo-dimer, i.e. a polypeptide with two similar domains. Since Sau3AI displays a nonlinear dependence of cleavage activity on enzyme concentration and a strong preference for substrates with two recognition sites over those with only one, it is likely that the functionally active form of Sau3AI is a dimer of a pseudo-dimer. Indeed, electron microscopy studies demonstrate that two distant recognition sites are brought together through DNA looping induced by the simultaneous binding of two Sau3AI molecules to the DNA. We suggest that the dimeric form of Sau3AI supplies two DNA-binding sites, one that is associated with the catalytic center and one that serves as an effector site.
Collapse
Affiliation(s)
- P Friedhoff
- Institut für Biochemie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
20
|
Abstract
Intein is the protein equivalent of intron and has been discovered in increasing numbers of organisms and host proteins. A self-splicing intein catalyzes its own removal from the host protein through a posttranslational process of protein splicing. A mobile intein displays a site-specific endonuclease activity that confers genetic mobility to the intein through intein homing. Recent findings of intein structure and the mechanism of protein splicing illuminated how inteins work and yielded clues regarding intein's origin, spread, and evolution. Inteins can evolve into new structures and new functions, such as split inteins that do trans-splicing. The structural basis of intein function needs to be identified for a full understanding of the origin and evolution of this marvelous genetic element.
Collapse
Affiliation(s)
- X Q Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| |
Collapse
|
21
|
Saves I, Eleaume H, Dietrich J, Masson JM. The thy pol-2 intein of Thermococcus hydrothermalis is an isoschizomer of PI-TliI and PI-TfuII endonucleases. Nucleic Acids Res 2000; 28:4391-6. [PMID: 11058140 PMCID: PMC113141 DOI: 10.1093/nar/28.21.4391] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Revised: 07/18/2000] [Accepted: 07/18/2000] [Indexed: 11/13/2022] Open
Abstract
THY Pol-2 intein, from Thermococcus hydrothermalis, belongs to the same allelic family as TLI Pol-2 (PI-TLII), Tfu Pol-2 (PI-TFUII) and TspTY Pol-3 mini-intein, all inserted at the pol-c site of archaeal DNA polymerase genes. This new intein was cloned, expressed in Escherichia coli and purified. The intein is a specific endonuclease (PI-THY:I) which cleaves the inteinless sequence of the THY DNA pol gene. Moreover, PI-TLII, PI-TFUII and PI-THYI are very similar endonucleases which cleave DNA in the same optimal conditions at 70 degrees C yielding similar 3'-hydroxyl overhangs of 4 bp and the reaction is subject to product inhibition. The three enzymes are able to cleave the three DNA sequences spanning the pol-c site and a 24 bp consensus cleavage site was defined for the three isoschizomers. However, the exact size of the minimal cleavage site depends both on the substrate sequence and the endonuclease. The inability of the isoschizomers to cleave the inteinless DNA polymerase gene from Pyrococcus spp. KOD is due to point substitutions on the 5' side of the pol-c site, suggesting that the absence of inteins of this allelic family in DNA polymerase genes from Pyrococcus spp. can be linked to small differences in the target site sequence.
Collapse
Affiliation(s)
- I Saves
- Institut de Pharmacologie et Biologie Structurale, 205 Route de Narbonne, F-31077 Toulouse Cedex, France
| | | | | | | |
Collapse
|
22
|
Christ F, Steuer S, Thole H, Wende W, Pingoud A, Pingoud V. A model for the PI-SceIxDNA complex based on multiple base and phosphate backbone-specific photocross-links. J Mol Biol 2000; 300:867-75. [PMID: 10891273 DOI: 10.1006/jmbi.2000.3872] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have synthesized different oligodeoxynucleotides carrying, in single positions of the >36 bp recognition site of PI-SceI, photoreactive base analogues (5-iododeoxypyrimidines) or phosphate modifications (p-azidophenacylphosphorothioates) and used them in photocross-linking experiments with PI-SceI to probe the protein-DNA interface of the specific complex between the homing endonuclease PI-SceI and its DNA substrate. One base-specific and several backbone-specific cross-links were analyzed in detail: the cross-linking positions were identified by Edman degradation of isolated cross-linked peptidexoligodeoxynucleotide adducts and confirmed by site-directed mutagenesis. Based on these results and the crystal structure of PI-SceI, a model for the structure of the PI-SceIxDNA complex is proposed.
Collapse
Affiliation(s)
- F Christ
- Institut für Biochemie Fachbereich 08, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, Giessen, D-35392, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Monteilhet C, Dziadkowiec D, Szczepanek T, Lazowska J. Purification and characterization of the DNA cleavage and recognition site of I-ScaI mitochondrial group I intron encoded endonuclease produced in Escherichia coli. Nucleic Acids Res 2000; 28:1245-51. [PMID: 10666469 PMCID: PMC102596 DOI: 10.1093/nar/28.5.1245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The second intron in the mitochondrial cytb gene of Saccharomyces capensis, belonging to group I, encodes a 280 amino acid protein containing two LAGLIDADG motifs. Genetic and molecular studies have previously shown that this protein has a dual function in the wild-type strain. It acts as a specific homing endonuclease I- Sca I promoting intron mobility and as a maturase promoting intron splicing. Here we describe the synthesis of a universal code equivalent to the mitochondrial sequence coding for this protein and the in vitro characterization of I- Sca I endonuclease activity, using a truncated mutant form of the protein p28bi2 produced in Escherichia coli. We have also determined the cleavage pattern as well as the recognition site of p28bi2. It was found that p28bi2 generates a double-strand cleavage downstream from the intron insertion site with 4 nt long 3'-overhangs. Mutational analysis of the DNA target site shows that p28bi2 recognizes a 16-19 bp sequence from positions -11 to +8 with respect to the intron insertion site.
Collapse
Affiliation(s)
- C Monteilhet
- Centre de Génétique Moléculaire CNRS, 91198 Gif-sur Yvette Cedex, France.
| | | | | | | |
Collapse
|
24
|
Saves I, Ozanne V, Dietrich J, Masson JM. Inteins of Thermococcus fumicolans DNA polymerase are endonucleases with distinct enzymatic behaviors. J Biol Chem 2000; 275:2335-41. [PMID: 10644683 DOI: 10.1074/jbc.275.4.2335] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA polymerase gene of Thermococcus fumicolans harbors two intein genes. Both inteins have been produced in Escherichia coli and purified either as naturally spliced products from the expression of the complete DNA polymerase gene or directly from the cloned inteins genes. Both recombinant inteins exhibit endonuclease activity, with an optimal temperature of 70 degrees C. The Tfu pol-1 intein, which belongs to the Psp KOD pol-1 allelic family, recognizes and cleaves a minimal sequence of 16 base pairs (bp) on supercoiled DNA with either Mn(2+) or Mg(2+) as cofactor. It cleaves linear DNA only with Mn(2+) and requires a 19-bp minimal recognition sequence. The Tfu pol-2 intein, which belongs to the Tli pol-2 allelic family, is a highly active homing endonuclease using Mg(2+) as cofactor. Its minimal recognition and cleavage site is 21 bp long either on linear or circular DNA substrates. Its endonuclease activity is strongly inhibited by the 3' digestion product, which remains bound to the enzyme after the cleavage reaction. According to current nomenclature, these endonucleases were named PI-TfuI and PI-TfuII. These two inteins thus exhibit different requirements for metal cofactor and substrate topology as well as different mechanism of action.
Collapse
Affiliation(s)
- I Saves
- Institut de Pharmacologie et Biologie Structurale, IPBS/CNRS, 205 Route de Narbonne, F-31077 Toulouse Cedex, France
| | | | | | | |
Collapse
|
25
|
Hu D, Crist M, Duan X, Quiocho FA, Gimble FS. Probing the structure of the PI-SceI-DNA complex by affinity cleavage and affinity photocross-linking. J Biol Chem 2000; 275:2705-12. [PMID: 10644733 DOI: 10.1074/jbc.275.4.2705] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PI-SceI protein is an intein-encoded homing endonuclease that initiates the mobility of its gene by making a double strand break at a single site in the yeast genome. The PI-SceI protein splicing and endonucleolytic active sites are separately located in each of two domains in the PI-SceI structure. To determine the spatial relationship between bases in the PI-SceI recognition sequence and selected PI-SceI amino acids, the PI-SceI-DNA complex was probed by photocross-linking and affinity cleavage methods. Unique solvent-accessible cysteine residues were introduced into the two PI-SceI domains at positions 91, 97, 170, 230, 376, and 378, and the mutant proteins were modified with either 4-azidophenacyl bromide or iron (S)-1-(p-bromoacetamidobenzyl)-ethylenediaminetetraacetate (FeBABE). The phenyl azide-coupled proteins cross-linked to the PI-SceI target sequence, and the FeBABE-modified proteins cleaved the DNA proximal to the derivatized amino acid. The results suggest that an extended beta-hairpin loop in the endonuclease domain that contains residues 376 and 378 contacts the major groove near the PI-SceI cleavage site. Conversely, residues 91, 97, and 170 in the protein splicing domain are in close proximity to a distant region of the substrate. To interpret our results, we used a new PI-SceI structure that is ordered in regions of the protein that bind DNA. The data strongly support a model of the PI-SceI-DNA complex derived from this structure.
Collapse
Affiliation(s)
- D Hu
- Center for Genome Research, Institute of Biosciences and Technology, Department of Medical Biochemistry, The Texas A & M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
26
|
Komori K, Ichiyanagi K, Morikawa K, Ishino Y. PI-PfuI and PI-PfuII, intein-coded homing endonucleases from Pyrococcus furiosus. II. Characterization Of the binding and cleavage abilities by site-directed mutagenesis. Nucleic Acids Res 1999; 27:4175-82. [PMID: 10518608 PMCID: PMC148691 DOI: 10.1093/nar/27.21.4175] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PI- Pfu I and PI- Pfu II from Pyrococcus furiosus are homing endonucleases, as shown in the accompanying paper. These two endonucleases are produced by protein splicing from the precursor protein including ribonucleotide reductase (RNR). We show here that both enzymes specifically interact with their substrate DNA and distort the DNA strands by 73 degrees and 67 degrees, respectively. They have two copies of the amino acid sequence motif LAGLIDADG, which is present in the majority of homing endonucleases and provides some of the catalytic residues necessary for DNA cleavage activity. Site-specific mutagenesis studies showed that two acidic residues in the motifs, Asp149 and Glu250 in PI- Pfu I, and Asp156 and Asp249 in PI- Pfu II, were critical for catalysis. The third residues of the active site triads, as predicted from the structure of PI- Sce I, were Asn225 in PI- Pfu I and Lys224 in PI- Pfu II. Substitution of Asn225 in PI- Pfu I by Ala did not affect catalysis. The cleavage activity of PI- Pfu II was 50-fold decreased by the substitution of Ala for Lys224. The binding affinity of the mutant protein for the substrate DNA also decreased 6-fold. The Lys in PI- Pfu II may play a direct or indirect role in catalysis of the endonuclease activity.
Collapse
Affiliation(s)
- K Komori
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
27
|
Komori K, Fujita N, Ichiyanagi K, Shinagawa H, Morikawa K, Ishino Y. PI-PfuI and PI-PfuII, intein-coded homing endonucleases from Pyrococcus furiosus. I. Purification and identification of the homing-type endonuclease activities. Nucleic Acids Res 1999; 27:4167-74. [PMID: 10518607 PMCID: PMC148690 DOI: 10.1093/nar/27.21.4167] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We screened for proteins with specific binding activity to Holliday junction DNA from the hyperthermophilic archaeon Pyrococcus furiosus and found a protein that has specific affinity for DNA with a branched structure, like a three-way or four-way junction. The protein was identified as one of the two inteins encoded in the gene for ribonucleotide reductase (RNR) by gene cloning. These two inteins were spliced out from the precursor protein as polypeptides with molecular weights of 53.078 and 43.976 kDa, respectively. The amino acid sequences of these inteins have two copies of the LAGLIDADG motif, which is found in the site-specific DNA endonucleases. The purified proteins actually cleaved double-stranded DNA with the sequence of the intein(-)allele, and, therefore, they were designated PI- Pfu I and PI- Pfu II. They generate a 4 bp 3'-OH overhang with a 5'-phosphate, like other known homing endonucleases originating from inteins. The optimal conditions of the DNA cleavage reaction, including temperature, pH, and concentrations of KCl and MgCl(2), have been determined. The high affinity for junction DNA of PI- Pfu I was confirmed using the purified protein.
Collapse
Affiliation(s)
- K Komori
- Department of Molecular Biology, Biomolecular Engineering Research Institute, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Pingoud V, Thole H, Christ F, Grindl W, Wende W, Pingoud A. Photocross-linking of the homing endonuclease PI-SceI to its recognition sequence. J Biol Chem 1999; 274:10235-43. [PMID: 10187809 DOI: 10.1074/jbc.274.15.10235] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PI-SceI is an intein-encoded protein that belongs to the LAGLIDADG family of homing endonucleases. According to the crystal structure and mutational studies, this endonuclease consists of two domains, one responsible for protein splicing, the other for DNA cleavage, and both presumably for DNA binding. To define the DNA binding site of PI-SceI, photocross-linking was used to identify amino acid residues in contact with DNA. Sixty-three double-stranded oligodeoxynucleotides comprising the minimal recognition sequence and containing single 5-iodopyrimidine substitutions in almost all positions of the recognition sequence were synthesized and irradiated in the presence of PI-SceI with a helium/cadmium laser (325 nm). The best cross-linking yield (approximately 30%) was obtained with an oligodeoxynucleotide with a 5-iododeoxyuridine at position +9 in the bottom strand. The subsequent analysis showed that cross-linking had occurred with amino acid His-333, 6 amino acids after the second LAGLIDADG motif. With the H333A variant of PI-SceI or in the presence of excess unmodified oligodeoxynucleotide, no cross-linking was observed, indicating the specificity of the cross-linking reaction. Chemical modification of His residues in PI-SceI by diethylpyrocarbonate leads to a substantial reduction in the binding and cleavage activity of PI-SceI. This inactivation can be suppressed by substrate binding. This result further supports the finding that at least one His residue is in close contact to the DNA. Based on these and published results, conclusions are drawn regarding the DNA binding site of PI-SceI.
Collapse
Affiliation(s)
- V Pingoud
- Institut für Biochemie, Fachbereich Biologie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Silva GH, Dalgaard JZ, Belfort M, Van Roey P. Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. J Mol Biol 1999; 286:1123-36. [PMID: 10047486 DOI: 10.1006/jmbi.1998.2519] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
I-DmoI is a 22 kDa endonuclease encoded by an intron in the 23 S rRNA gene of the hyperthermophilic archaeon Desulfurococcus mobilis. The structure of I-DmoI has been determined to 2.2 A resolution using multi-wavelength anomalous diffraction techniques. I-DmoI, a protein of the LAGLIDADG motif family, represents the first structure of a freestanding endonuclease with two LAGLIDADG motifs, and the first of a thermostable homing endonuclease. I-DmoI consists of two similar alpha/beta domains (alphabetabetaalphabetabetaalpha) related by pseudo 2-fold symmetry. The LAGLIDADG motifs are located at the carboxy-terminal end of the first alpha-helix of each domain. These helices form a two-helix bundle at the interface between the domains and are perpendicular to a saddle-shaped DNA binding surface, formed by two four-stranded antiparallel beta-sheets. Despite substantially different sequences, the overall fold of I-DmoI is similar to that of two other LAGLIDADG proteins for which the structures are known, I-CreI and the endonuclease domain of PI-SceI. The three structures differ most in the loops connecting the beta-strands, relating to the respective DNA target site sizes and geometries. In addition, the absence of conserved residues surrounding the active site, other than those within the LAGLIDADG motif, is of mechanistic importance. Finally, the carboxy-terminal domain of I-DmoI is smaller and has a more irregular fold than the amino-terminal domain, which is more similar to I-CreI, a symmetric homodimeric endonuclease. This is reversed compared to PI-SceI, where the amino-terminal domain is more similar to carboxy-terminal domain of I-DmoI and to I-CreI, with interesting evolutionary implications.
Collapse
Affiliation(s)
- G H Silva
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201-0509, USA
| | | | | | | |
Collapse
|
30
|
Gimble FS, Duan X, Hu D, Quiocho FA. Identification of Lys-403 in the PI-SceI homing endonuclease as part of a symmetric catalytic center. J Biol Chem 1998; 273:30524-9. [PMID: 9804821 DOI: 10.1074/jbc.273.46.30524] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Superposition of the PI-SceI and I-CreI homing endonuclease three-dimensional x-ray structures indicates general similarity between the I-CreI homodimer and the PI-SceI endonuclease domain. Saddle-shaped structures are present in each protein that are proposed to bind DNA. At the putative endonucleolytic active sites, the superposition reveals that two lysine (Lys-301 and Lys-403 in PI-SceI and Lys-98 and Lys-98' in I-CreI) and two aspartic acid residues (Asp-218 and Asp-326 in PI-SceI and Asp-20 and Asp-20' in I-CreI) are related by 2-fold symmetry. The critical role of Lys-301, Asp-218, and Asp-326 in the PI-SceI reaction pathway was reported previously. Here, we demonstrate the significance of the active-site symmetry by showing that alanine substitution at Lys-403 reduces cleavage activity by greater than 50-fold but has little effect on the DNA binding activity of the mutant enzyme. Substitution of Lys-403 with arginine, which maintains the positive charge, has only a modest effect on activity. Interestingly, even though the Lys-301 and Lys-403 residues display pseudosymmetry, PI-SceI mutant proteins with substitutions at these positions have different behaviors. The presence of similar basic and acidic residues in many LAGLIDADG homing endonucleases suggests that these enzymes use a common reaction mechanism to cleave double-stranded DNA.
Collapse
Affiliation(s)
- F S Gimble
- Center for Macromolecular Design, Institute of Biosciences and Technology and Department of Biochemistry and Biophysics, Texas A & M University, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
31
|
Argast GM, Stephens KM, Emond MJ, Monnat RJ. I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment. J Mol Biol 1998; 280:345-53. [PMID: 9665841 DOI: 10.1006/jmbi.1998.1886] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasmid libraries containing partially randomized cleavage sites for the eukaryotic homing endonucleases I-PpoI and I-CreI were constructed, and sites that could be cleaved by I-PpoI or I-CreI were selectively recovered by successive cycles of cleavage and gel separation followed by religation and growth in Escherichia coli. Twenty-one different I-PpoI-sensitive homing sites, including the native homing site, were isolated. These sites were identical at four nucleotide positions within the 15 bp homing site, had a restricted pattern of base substitutions at the remaining 11 positions and displayed a preference for purines flanking the top strand of the homing site sequence. Twenty-one different I-CreI-sensitive homing sites, including the native site, were isolated. Ten nucleotide positions were identical in homing site variants that were I-CreI-sensitive and required the addition of SDS for efficient cleavage product release. Four of these ten positions were identical in homing sites that did not require SDS for product release. There was a preference for pyrimidines flanking the top strand of the homing site sequence. Three of the 24 I-CreI homing site nucleotide positions apparently lacked informational content, i. e. were permissive of cleavage when occupied by any nucleotide. These results suggest that I-PpoI and I-CreI make a large number of DNA-protein contacts across their homing site sequences, and that different subsets of these contacts may be sufficient to maintain a high degree of sequence-specific homing site recognition and cleavage. The sequential enrichment protocol we used should be useful for defining the sequence degeneracy and informational content of other homing endonuclease target sites.
Collapse
Affiliation(s)
- G M Argast
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
32
|
Grindl W, Wende W, Pingoud V, Pingoud A. The protein splicing domain of the homing endonuclease PI-sceI is responsible for specific DNA binding. Nucleic Acids Res 1998; 26:1857-62. [PMID: 9518476 PMCID: PMC147489 DOI: 10.1093/nar/26.8.1857] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The homing endonuclease PI- Sce I consists of a protein splicing domain (I) and an endonucleolytic domain (II). To characterize the two domains with respect to their contribution to DNA recognition we cloned, purified and characterized the isolated domains. Both domains have no detectable endonucleolytic activity. Domain I binds specifically to the PI- Sce I recognition sequence, whereas domain II displays only weak non-specific DNA binding. In the specific complex with domain I the DNA is bent to a similar extent as observed with the initial complex formed between PI- Sce I and DNA. Our results indicate that protein splicing domain I is also involved in recognition of the DNA substrate.
Collapse
Affiliation(s)
- W Grindl
- Institut für Biochemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
33
|
He Z, Crist M, Yen H, Duan X, Quiocho FA, Gimble FS. Amino acid residues in both the protein splicing and endonuclease domains of the PI-SceI intein mediate DNA binding. J Biol Chem 1998; 273:4607-15. [PMID: 9468518 DOI: 10.1074/jbc.273.8.4607] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A structure-based model describing the interaction of the two-domain PI-SceI endonuclease with its 31-base pair DNA substrate suggests that the endonuclease domain (domain II) contacts the cleavage site region of the substrate, while the protein splicing domain (domain I) interacts with a distal region that is sufficient for high affinity binding. To support this model, alanine-scanning mutagenesis was used to assemble a set of 49 PI-SceI mutant proteins that were purified and assayed for their DNA binding and cleavage properties. Fourteen mutant proteins were 4- to >500-fold less active than wild-type PI-SceI in cleavage assays, and one mutant (T225A) was 3-fold more active. Alanine substitution at two positions in domain I reduces overall binding >60-fold by perturbing the interaction of PI-SceI with the minimal binding region. Conversely, mutations in domain II have little effect on binding, reduce binding to the cleavage site region only, or affect binding to both regions. Interestingly, substitutions at Lys301, which is part of the endonucleolytic active site, eliminate binding to the cleavage site region but permit contact with the minimal binding region. This experimental evidence demonstrates that the protein splicing domain as well as the endonuclease domain is involved in binding of a DNA substrate with the requisite length.
Collapse
Affiliation(s)
- Z He
- Center for Macromolecular Design, Institute of Biosciences and Technology, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Site-specific hydrolysis of DNA is common to many biological processes. Three new structures, FokI, I-CreI and PI-SceI, were reported in the past year, providing the first view of type IIs endonucleases and homing endonucleases. Together, they reveal an extraordinary set of new mechanisms by which endonucleases target the hydrolysis of specific DNA sequences.
Collapse
Affiliation(s)
- A K Aggarwal
- Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
35
|
Abstract
Homing endonucleases are rare-cutting enzymes encoded by introns and inteins. They have striking structural and functional properties that distinguish them from restriction enzymes. Nomenclature conventions analogous to those for restriction enzymes have been developed for the homing endonucleases. Recent progress in understanding the structure and function of the four families of homing enzymes is reviewed. Of particular interest are the first reported structures of homing endonucleases of the LAGLIDADG family. The exploitation of the homing enzymes in genome analysis and recombination research is also summarized. Finally, the evolution of homing endonucleases is considered, both at the structure-function level and in terms of their persistence in widely divergent biological systems.
Collapse
Affiliation(s)
- M Belfort
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, PO Box 22002, Albany, New York 12201-2002, USA.
| | | |
Collapse
|
36
|
Heath PJ, Stephens KM, Monnat RJ, Stoddard BL. The structure of I-Crel, a group I intron-encoded homing endonuclease. NATURE STRUCTURAL BIOLOGY 1997; 4:468-76. [PMID: 9187655 DOI: 10.1038/nsb0697-468] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structure of I-Crel provides the first view of a protein encoded by a gene within an intron. This endonuclease recognizes a long DNA site approximately 20 base pairs in length and facilitates the lateral transfer of that intron. The protein exhibits a DNA-binding surface consisting of four antiparallel beta-strands that form a 20 A wide groove which is over 70 A long. The architecture of this fold is different from that of the TATA binding protein, TBP, which also contains an antiparallel beta-saddle. The conserved LAGLIDADG motif, which is found in many mobile intron endonucleases, maturases and inteins, forms a novel helical interface and contributes essential residues to the active site.
Collapse
Affiliation(s)
- P J Heath
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington 98104, USA
| | | | | | | |
Collapse
|
37
|
Duan X, Gimble FS, Quiocho FA. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell 1997; 89:555-64. [PMID: 9160747 DOI: 10.1016/s0092-8674(00)80237-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PI-Scel is a bifunctional yeast protein that propagates its mobile gene by catalyzing protein splicing and site-specific DNA double-strand cleavage. Here, we report the 2.4 A crystal structure of the PI-Scel protein. The structure is composed of two separate domains (I and II) with novel folds and different functions. Domain I, which is elongated and formed largely from seven beta sheets, harbors the N and C termini residues and two His residues that are implicated in protein splicing. Domain II, which is compact and is primarily composed of two similar alpha/beta motifs related by local two-fold symmetry, contains the putative nuclease active site with a cluster of two acidic residues and one basic residue commonly found in restriction endonucleases. This report presents prototypic structures of domains with single endonuclease and protein splicing active sites.
Collapse
Affiliation(s)
- X Duan
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
38
|
Pingoud A, Jeltsch A. Recognition and cleavage of DNA by type-II restriction endonucleases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:1-22. [PMID: 9210460 DOI: 10.1111/j.1432-1033.1997.t01-6-00001.x] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Restriction endonucleases are enzymes which recognize short DNA sequences and cleave the DNA in both strands. Depending on the enzymological properties different types are distinguished. Type II restriction endonucleases are homodimers which recognize short palindromic sequences 4-8 bp in length and, in the presence of Mg2+, cleave the DNA within or next to the recognition site. They are capable of non-specific binding to DNA and make use of linear diffusion to locate their target site. Binding and recognition of the specific site involves contacts to the bases of the recognition sequence and the phosphodiester backbone over approximately 10-12 bp. In general, recognition is highly redundant which explains the extreme specificity of these enzymes. Specific binding is accompanied by conformational changes over both the protein and the DNA. This mutual induced fit leads to the activation of the catalytic centers. The precise mechanism of cleavage has not yet been established for any restriction endonuclease. Currently two models are discussed: the substrate-assisted catalysis mechanism and the two-metal-ion mechanism. Structural similarities identified between EcoRI, EcoRV, BamHI, PvuII and Cfr10I suggest that many type II restriction endonucleases are not only functionally but also evolutionarily related.
Collapse
Affiliation(s)
- A Pingoud
- Institut für Biochemie, Fachbereich Biologie, Justus-Liebig-Universität, Giessen, Germany
| | | |
Collapse
|