1
|
Frazão A, Thode VA, Lohmann LG. Comparative chloroplast genomics and insights into the molecular evolution of Tanaecium (Bignonieae, Bignoniaceae). Sci Rep 2023; 13:12469. [PMID: 37528152 PMCID: PMC10394017 DOI: 10.1038/s41598-023-39403-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Species of Tanaecium (Bignonieae, Bignoniaceae) are lianas distributed in the Neotropics and centered in the Amazon. Members of the genus exhibit exceptionally diverse flower morphology and pollination systems. Here, we sequenced, assembled, and annotated 12 complete and four partial chloroplast genomes representing 15 Tanaecium species and more than 70% of the known diversity in the genus. Gene content and order were similar in all species of Tanaecium studied, with genome sizes ranging between 158,470 and 160,935 bp. Tanaecium chloroplast genomes have 137 genes, including 80-81 protein-coding genes, 37 tRNA genes, and four rRNA genes. No rearrangements were found in Tanaecium plastomes, but two different patterns of boundaries between regions were recovered. Tanaecium plastomes show nucleotide variability, although only rpoA was hypervariable. Multiple SSRs and repeat regions were detected, and eight genes were found to have signatures of positive selection. Phylogeny reconstruction using 15 Tanaecium plastomes resulted in a strongly supported topology, elucidating several relationships not recovered previously and bringing new insights into the evolution of the genus.
Collapse
Affiliation(s)
- Annelise Frazão
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
- Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| | - Verônica A Thode
- Programa de Pós-Graduação em Botânica, Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lúcia G Lohmann
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Clara L, David C, Laila S, Virginie R, Marie-Joelle V. Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in S. lividans and S. coelicolor Suggests a Link between Various Stresses and Antibiotic Production. Int J Mol Sci 2022; 23:ijms232314792. [PMID: 36499130 PMCID: PMC9739823 DOI: 10.3390/ijms232314792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces coelicolor and Streptomyces lividans constitute model strains to study the regulation of antibiotics biosynthesis in Streptomyces species since these closely related strains possess the same pathways directing the biosynthesis of various antibiotics but only S. coelicolor produces them. To get a better understanding of the origin of the contrasted abilities of these strains to produce bioactive specialized metabolites, these strains were grown in conditions of phosphate limitation or proficiency and a comparative analysis of their transcriptional/regulatory proteins was carried out. The abundance of the vast majority of the 355 proteins detected greatly differed between these two strains and responded differently to phosphate availability. This study confirmed, consistently with previous studies, that S. coelicolor suffers from nitrogen stress. This stress likely triggers the degradation of the nitrogen-rich peptidoglycan cell wall in order to recycle nitrogen present in its constituents, resulting in cell wall stress. When an altered cell wall is unable to fulfill its osmo-protective function, the bacteria also suffer from osmotic stress. This study thus revealed that these three stresses are intimately linked in S. coelicolor. The aggravation of these stresses leading to an increase of antibiotic biosynthesis, the connection between these stresses, and antibiotic production are discussed.
Collapse
Affiliation(s)
- Lejeune Clara
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cornu David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Sago Laila
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Redeker Virginie
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Center (MIRCen), Institut François Jacob, Université Paris-Saclay, 92260 Fontenay-aux-Roses, France
| | - Virolle Marie-Joelle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
3
|
Villegas Kcam MC, Tsong AJ, Chappell J. Rational engineering of a modular bacterial CRISPR-Cas activation platform with expanded target range. Nucleic Acids Res 2021; 49:4793-4802. [PMID: 33823546 PMCID: PMC8096225 DOI: 10.1093/nar/gkab211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR-Cas activator (CRISPRa) systems that selectively turn on transcription of a target gene are a potentially transformative technology for programming cellular function. While in eukaryotes versatile CRISPRa systems exist, in bacteria these systems suffer from a limited ability to activate different genes due to strict distance-dependent requirements of functional target binding sites, and require greater customization to optimize performance in different genetic and cellular contexts. To address this, we apply a rational protein engineering approach to create a new CRISPRa platform that is highly modular to allow for easy customization and has increased targeting flexibility through harnessing engineered Cas proteins. We first demonstrate that transcription activation domains can be recruited by CRISPR-Cas through noncovalent protein-protein interactions, which allows each component to be encoded on separate and easily interchangeable plasmid elements. We then exploit this modularity to rapidly screen a library of different activation domains, creating new systems with distinct regulatory properties. Furthermore, we demonstrate that by harnessing a library of circularly permuted Cas proteins, we can create CRISPRa systems that have different target binding site requirements, which together, allow for expanded target range.
Collapse
Affiliation(s)
| | - Annette J Tsong
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
| | - James Chappell
- Department of BioSciences, Rice University, 6100 Main Street, MS 140, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, MS 142, Houston, TX 77005, USA
| |
Collapse
|
4
|
Kim JH, Ham SH, Lee BR. Characterization of the RNA polymerase α subunit operon from Corynebacterium ammoniagenes. World J Microbiol Biotechnol 2011; 28:669-76. [PMID: 22806862 DOI: 10.1007/s11274-011-0861-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/02/2011] [Indexed: 11/30/2022]
Abstract
The rpoA gene, which encodes the α subunit of RNA polymerase, and the surrounding regions were cloned from Corynebacterium ammoniagenes (ATCC 6872), a parental strain of an industrial nucleotide producer in Korea. This region encodes genes for the following proteins (in order): initiation factor IF-1, the ribosomal proteins S13, S11 and S4, the α subunit of RNA polymerase and the ribosomal protein L17. Transcript mapping via reverse transcription polymerase chain reaction demonstrates that IF1, S13, S11, S4, α and L17 are transcribed as a polycistronic transcript from two tandem promoters preceding the IF-1 gene. The gene order of the C. ammoniagenes rpoA operon is characteristic of Corynebacteria. The rpoA gene encodes a protein of 334 amino acids with a deduced molecular weight of 35,971 Da, exhibiting 42 and 82% similarity to the Escherichia coli and Corynebacterium glutamicum α subunits, respectively. The regions that mediate interactions with β and β' subunits and the residues that participate in the recognition of the UP element are conserved in the C. ammoniagenes α subunit. In contrast, there are differences between the C. ammoniagenes and E. coli α subunits in the residues assigned to the dimerization domain and the amino acids adjacent to conserved residues that mediate UP element recognition. The C. ammoniagenes rpoA gene expressed in E. coli complemented a temperature sensitive rpoA mutation, indicating that the C. ammoniagenes α subunit can function in E. coli.
Collapse
Affiliation(s)
- Jeong Hyun Kim
- Indang Institute of Molecular Biology, Inje University, Seoul, 100-032, Korea
| | | | | |
Collapse
|
5
|
Najmanová L, Janata J, Kopecký J, Spízek J. Spore-specific modification of DNA-dependent RNA polymerase alpha subunit in streptomycetes--a new model of transcription regulation. Folia Microbiol (Praha) 2004; 48:573-9. [PMID: 14976711 DOI: 10.1007/bf02993461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
At the very beginning of spore germination in streptomycetes the full-length alpha subunit of DNA-dependent RNA polymerase is shortened from its C-terminus. The C-terminal domain of the protein is required for binding of DNA and transcription regulators but its regulatory role in streptomycetes was not extensively studied. Comparison of the sequences of E. coli and S. coelicolor RNA polymerase alpha subunit (RNAP alpha) C-terminal domains reveals that the majority of amino acid residues responsible for the interaction with transcription regulators is conserved in both microorganisms. The spore specific modification of streptomycete RNAP alpha could thus have its regulatory role. The nature of the proteolytic enzyme, responsible for the RNAP alpha cleavage is discussed.
Collapse
Affiliation(s)
- L Najmanová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | | | | | |
Collapse
|
6
|
Viollier PH, Kelemen GH, Dale GE, Nguyen KT, Buttner MJ, Thompson CJ. Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Mol Microbiol 2003; 47:699-714. [PMID: 12535070 DOI: 10.1046/j.1365-2958.2003.03302.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Whereas in Bacillus subtilis, a general stress response stimulon under the control of a single sigma factor (SigB) is induced by different physiological and environmental stresses (heat, salt or ethanol shock), in Streptomyces coelicolor, these environmental stresses induce independent sets of proteins, and its genome encodes nine SigB paralogues. To investigate possible functions of multiple sigB-like genes in S. coelicolor, Pctc, a promoter routinely used to assay SigB activity in vivo, was analysed as a heterologous reporter. The fact that Pctc was activated by osmotic shock, but not by heat or ethanol, confirmed that stress response system(s) could operate independently in S. coelicolor. Pctc was also induced transiently during growth of liquid cultures, presumably by nutritional signals. We purified an RNA polymerase holoenzyme from crude extracts that catalysed specific transcription of Pctc in vitro. Its sigma subunit was identified as a product of the sigH gene, which is co-transcribed downstream of a putative antisigma factor gene (prsH). Although the sigH function was not needed for normal colony morphology, prsH was conditionally required for both aerial hyphae formation and regulation of antibiotic biosynthesis. Levels of two different sigH-encoded proteins were growth phase dependent but not significantly changed by osmotic stress, implying the important roles of post-translational regulatory elements such as PrsH. In addition, synthesis of three other SigH-like proteins was induced by osmotic stress, but not by ethanol or heat. Two of them were genetically assigned to sigH homologous loci sigI and sigJ and shown to be independently regulated. This family of SigH-like proteins displayed different osmotic response kinetics. Thus, in contrast to many other bacteria, S. coelicolor uses an osmotic sensory system that can co-ordinate the activity of multiple paralogues to control the relative activity of promoters within the same stress stimulon. Such specialized stress response systems may reflect adaptive functions needed for colonial differentiation.
Collapse
Affiliation(s)
- Patrick H Viollier
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Park W, Jeon CO, Madsen EL. Interaction of NahR, a LysR-type transcriptional regulator, with the alpha subunit of RNA polymerase in the naphthalene degrading bacterium, Pseudomonas putida NCIB 9816-4. FEMS Microbiol Lett 2002; 213:159-65. [PMID: 12167532 DOI: 10.1111/j.1574-6968.2002.tb11300.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
NahR, a LysR-type transcriptional regulator, is required for expression of naphthalene catabolic operons. However, detailed mechanisms of transcriptional activation by NahR are poorly understood. Many transcriptional activators make direct contact with RNA polymerase (RNAP) to initiate transcription. We investigated the hypothesis that direct contact between NahR and the alpha subunit of RNAP (alphaRNAP) may be involved in expression of the naphthalene catabolic operons in Pseudomonas putida NCIB 9816-4. Interactions between the NahR and alphaRNAP in P. putida NCIB 9816-4 were analyzed using the yeast two-hybrid system. The results obtained indicate that protein-protein interactions occur between alphaRNAP and the NahR. Gene activation by NahR is consistent with the general transcriptional mechanism of class I transcription factors, which function by contacting alphaRNAP.
Collapse
Affiliation(s)
- Woojun Park
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | |
Collapse
|
8
|
Lai JY, Huang CF, Tseng YH, Yang MT. Sequence and molecular analysis of the rpoA cluster genes from Xanthomonas campestris pv. campestris. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:553-9. [PMID: 10899600 DOI: 10.1016/s0167-4781(00)00143-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Xanthomonas campestris rpsM (S13)-rpsK (S11)-rpsD (S4)-rpoA (alpha)-rplQ (L17) cluster, encoding RNA polymerase alpha-subunit and four ribosomal proteins, reside in a 3164-bp DNA region. The N-terminal sequence of the authentic alpha-protein determined chemically matches that predicted from the nucleotide sequence. rplQ is monocistronic, instead of being co-transcribed with the other genes as in Escherichia coli. Antiserum against the His-tagged alpha-protein cross-reacted with the E. coli alpha-protein.
Collapse
Affiliation(s)
- J Y Lai
- Institute of Molecular Biology, National Chung Hsing University, 402, Taichung, Taiwan
| | | | | | | |
Collapse
|
9
|
Najmanová L, Janata J, Kalousek F, Novák P, Felsberg J, Spízek J. Two forms of DNA-dependent RNA polymerase alpha subunit in streptomycetes. FEMS Microbiol Lett 2000; 187:9-14. [PMID: 10828392 DOI: 10.1111/j.1574-6968.2000.tb09128.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We demonstrated two different DNA-dependent RNA polymerase (RNAP) alpha subunits in spores of Streptomyces granaticolor with apparent molecular masses of 40 and 43 kDa. The 43-kDa subunit was also found in vegetative cells. These two proteins are highly similar to each other as well as to other bacterial RNAP alpha subunits. The 40-kDa subunit is shortened from its C-terminus, in the portion of the protein, required for binding of DNA and transcription regulators. The gene for RNAP alpha from S. granaticolor was cloned and sequenced and the corresponding protein was overproduced in Escherichia coli. In vitro experiments using purified RNAP alpha showed that the cell free extract from spores of S. granaticolor exhibits proteolytic activity responsible for the alpha subunit shortening, whereas that from vegetative cells does not. This modification of alpha subunit might point to a novel mechanism of transcriptional control in streptomycetes.
Collapse
Affiliation(s)
- L Najmanová
- Institute of Microbiology, MBU AV CR, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|