1
|
Kemp MG. DNA damage-induced ATM- and Rad-3-related (ATR) kinase activation in non-replicating cells is regulated by the XPB subunit of transcription factor IIH (TFIIH). J Biol Chem 2017; 292:12424-12435. [PMID: 28592488 DOI: 10.1074/jbc.m117.788406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/05/2017] [Indexed: 11/06/2022] Open
Abstract
The role of the DNA damage response protein kinase ataxia telangiectasia-mutated (ATM)- and Rad-3-related (ATR) in the cellular response to DNA damage during the replicative phase of the cell cycle has been extensively studied. However, little is known about ATR kinase function in cells that are not actively replicating DNA and that constitute most cells in the human body. Using small-molecule inhibitors of ATR kinase and overexpression of a kinase-inactive form of the enzyme, I show here that ATR promotes cell death in non-replicating/non-cycling cultured human cells exposed to N-acetoxy-2-acetylaminofluorene (NA-AAF), which generates bulky DNA adducts that block RNA polymerase movement. Immunoblot analyses of soluble protein extracts revealed that ATR and other cellular proteins containing SQ motifs become rapidly and robustly phosphorylated in non-cycling cells exposed to NA-AAF in a manner largely dependent on ATR kinase activity but independent of the essential nucleotide excision repair factor XPA. Although the topoisomerase I inhibitor camptothecin also activated ATR in non-cycling cells, other transcription inhibitors that do not directly damage DNA failed to do so. Interestingly, genetic and pharmacological inhibition of the XPB subunit of transcription factor IIH prevented the accumulation of the single-stranded DNA binding protein replication protein A (RPA) on damaged chromatin and severely abrogated ATR signaling in response to NA-AAF and camptothecin. Together, these results reveal a previously unknown role for transcription factor IIH in ATR kinase activation in non-replicating, non-cycling cells.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435.
| |
Collapse
|
2
|
McKay BC, Cabrita MA. Arresting transcription and sentencing the cell: the consequences of blocked transcription. Mech Ageing Dev 2013; 134:243-52. [PMID: 23542592 DOI: 10.1016/j.mad.2013.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/16/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Bulky DNA adducts induced by agents like ultraviolet light, cisplatin and oxidative metabolism pose a block to elongation by RNA polymerase II (RNAPII). The arrested RNAPII can initiate the repair of transcription-blocking DNA lesions by transcription-coupled nucleotide excision repair (TC-NER) to permit efficient recovery of mRNA synthesis while widespread sustained transcription blocks lead to apoptosis. Therefore, RNAPII serves as a processive DNA damage sensor that identifies transcription-blocking DNA lesions. Cockayne syndrome (CS) is an autosomal recessive disorder characterized by a complex phenotype that includes clinical photosensitivity, progressive neurological degeneration and premature-aging. CS is associated with defects in TC-NER and the recovery of mRNA synthesis, making CS cells exquisitely sensitive to a variety of DNA damaging agents. These defects in the coupling of repair and transcription appear to underlie some of the complex clinical features of CS. Recent insight into the consequences of blocked transcription and their relationship to CS will be discussed.
Collapse
Affiliation(s)
- Bruce C McKay
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Canada.
| | | |
Collapse
|
3
|
Episkopou H, Kyrtopoulos SA, Sfikakis PP, Dimopoulos MA, Souliotis VL. The repair of melphalan-induced DNA adducts in the transcribed strand of active genes is subject to a strong polarity effect. Mutat Res 2011; 714:78-87. [PMID: 21762707 DOI: 10.1016/j.mrfmmm.2011.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/10/2011] [Accepted: 06/28/2011] [Indexed: 11/18/2022]
Abstract
To investigate the mechanisms of the therapeutic action and drug resistance to the nitrogen mustard melphalan, melphalan-induced DNA damage repair and chromatin structure were examined along the p53, N-ras and d-globin gene loci in cells carrying different repair activities. In nucleotide excision repair-deficient XP-A cells, similar levels of adducts were found in all fragments examined, indicating uniform distribution of DNA damage. In both, repair-proficient CS-B and XP-C cells, faster repair was observed in regions inside the transcribed N-ras and p53 genes, compared to regions on both sides outside of the genes, while no such difference was observed for the inactive d-globin gene. Moreover, very fast adduct repair on the transcribed strand of the active genes was seen immediately downstream of the transcription start site, together with a steeply decreasing gradient of repair efficiency along the gene towards the 3'-end. In all cells analyzed, the above variation in DNA repair efficiency was paralleled exactly by the variation in the degree of local chromatin condensation, more relaxed chromatin being associated with faster repair. Similar results were obtained using peripheral blood mononuclear cells from healthy volunteers, suggesting that the existence of a repair gradient along transcribed genes may be a universal phenomenon. In conclusion, these findings demonstrate that the repair of melphalan adducts in the transcribed strand of active genes is subject to a strong polarity effect arising from variations in the chromatin structure.
Collapse
Affiliation(s)
- Hara Episkopou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | |
Collapse
|
4
|
Episkopou H, Kyrtopoulos SA, Sfikakis PP, Fousteri M, Dimopoulos MA, Mullenders LH, Souliotis VL. Association between Transcriptional Activity, Local Chromatin Structure, and the Efficiencies of Both Subpathways of Nucleotide Excision Repair of Melphalan Adducts. Cancer Res 2009; 69:4424-33. [DOI: 10.1158/0008-5472.can-08-3489] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9:958-70. [PMID: 19023283 DOI: 10.1038/nrm2549] [Citation(s) in RCA: 788] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by sunlight sensitivity without enhanced skin cancer. Although multiple gene products are implicated in TCR, we still lack an understanding of the precise signals that can trigger this pathway. Futile cycles of TCR at naturally occurring non-canonical DNA structures might contribute to genomic instability and genetic disease.
Collapse
|
6
|
|
7
|
Wijnhoven SWP, Hoogervorst EM, de Waard H, van der Horst GTJ, van Steeg H. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models. Mutat Res 2007; 614:77-94. [PMID: 16769089 DOI: 10.1016/j.mrfmmm.2005.12.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/23/2005] [Accepted: 12/28/2005] [Indexed: 10/24/2022]
Abstract
Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can lead to a (partial) defect in GG-NER, TC-NER or both. GG-NER defects in mice predispose to cancer, both spontaneous as well as UV-induced. As such these models (Xpa, Xpc and Xpe) recapitulate the human xeroderma pigmentosum (XP) syndrome. Defects in TC-NER in humans are associated with Cockayne syndrome (CS), a disease not linked to tumor development. Mice with TC-NER defects (Csa and Csb) are - except for the skin - not susceptible to develop (carcinogen-induced) tumors. Some NER factors, i.e. XPB, XPD, XPF, XPG and ERCC1 have functions outside NER, like transcription initiation and inter-strand crosslink repair. Deficiencies in these processes in mice lead to very severe phenotypes, like trichothiodystrophy (TTD) or a combination of XP and CS. In most cases these animals have a (very) short life span, display segmental progeria, but do not develop tumors. Here we will overview the available NER-related mouse models and will discuss their phenotypes in terms of (chemical-induced) tissue-specific tumor development, mutagenesis and premature aging features.
Collapse
Affiliation(s)
- Susan W P Wijnhoven
- National Institute of Public Health and the Environment (RIVM), Laboratory of Toxicology, Pathology and Genetics, PO Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Banoub J, Combden S, Miller-Banoub J, Sheppard G, Hodder H. Structural Characterization of Intact Covalently Linked DNA Adducts by Electrospray Mass Spectrometry. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319908044639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Joeph Banoub
- a Department of Fisheries and Oceans, Science Branch, Environmental Sciences Division , St. John's , NF , A1C 5X1 , CANADA
- b Memorial University of Newfoundland, Department of Biochemistry , St. John's , NF , A1B 3X9 , CANADA
| | - Stven Combden
- b Memorial University of Newfoundland, Department of Biochemistry , St. John's , NF , A1B 3X9 , CANADA
| | - Judith Miller-Banoub
- a Department of Fisheries and Oceans, Science Branch, Environmental Sciences Division , St. John's , NF , A1C 5X1 , CANADA
| | - George Sheppard
- a Department of Fisheries and Oceans, Science Branch, Environmental Sciences Division , St. John's , NF , A1C 5X1 , CANADA
| | - Howard Hodder
- a Department of Fisheries and Oceans, Science Branch, Environmental Sciences Division , St. John's , NF , A1C 5X1 , CANADA
| |
Collapse
|
9
|
Gillet LCJ, Schärer OD. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 2006; 106:253-76. [PMID: 16464005 DOI: 10.1021/cr040483f] [Citation(s) in RCA: 470] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ludovic C J Gillet
- Institute for Molecular Cancer Research, University of Zürich, Switzerland
| | | |
Collapse
|
10
|
Jiang G, Sancar A. Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences. Mol Cell Biol 2006; 26:39-49. [PMID: 16354678 PMCID: PMC1317637 DOI: 10.1128/mcb.26.1.39-49.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a chromatin immunoprecipitation method for analyzing the binding of repair and checkpoint proteins to DNA base lesions in any region of the human genome. Using this method, we investigated the recruitment of DNA damage checkpoint proteins RPA, Rad9, and ATR to base damage induced by UV and acetoxyacetylaminofluorene in transcribed and nontranscribed regions in wild-type and excision repair-deficient human cells in G1 and S phases of the cell cycle. We find that all 3 damage sensors tested assemble at the site or in the vicinity of damage in the absence of DNA replication or repair and that transcription enhances recruitment of checkpoint proteins to the damage site. Furthermore, we find that UV irradiation of human cells defective in excision repair leads to phosphorylation of Chk1 kinase in both G1 and S phase of the cell cycle, suggesting that primary DNA lesions as well as stalled transcription complexes may act as signals to initiate the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Biochemistry and Biophysics, Mary Ellen Jones Building CB 7260, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
11
|
van Zeeland AA, Vreeswijk MPG, de Gruijl FR, van Kranen HJ, Vrieling H, Mullenders LFH. Transcription-coupled repair: impact on UV-induced mutagenesis in cultured rodent cells and mouse skin tumors. Mutat Res 2005; 577:170-8. [PMID: 15949822 DOI: 10.1016/j.mrfmmm.2005.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 03/22/2005] [Accepted: 03/29/2005] [Indexed: 11/25/2022]
Abstract
UV-induced cyclobutane pyrimidine dimers (CPDs) are removed with accelerated speed from the transcribed strand of expressed genes in cultured mammalian cells by a process called transcription-coupled repair (TCR). It has been previously shown that this phenomenon has consequences for the molecular nature of the mutations induced by UV-light. Here, we review these data and show that TCR has not only a clear impact on UV-induced mutations in cultured mammalian cells but also on genes involved in tumor formation in the skin of UV-exposed mice. Mutations observed in the p53 gene in UV-induced squamous cell carcinoma are predominantly found at sites of dipyrimidines in the non-transcribed strand. In contrast, in UVC-irradiated Csb(-/-) Chinese hamster cells and in UVB-induced tumors in the Csb(-/-) mouse, almost all mutations are at positions of dipyrimidine sites in the transcribed strand of the mutated gene. Csb(-/-) mice appear to be susceptible to UVB-induced skin cancer in contrast to the human CSB patients. We speculate that the UVB-induced cancer susceptibility of Csb(-/-) mice is related to the absence of TCR as well as to a lack of a compensating global genome repair system for CPDs in mice.
Collapse
Affiliation(s)
- Albert A van Zeeland
- Department of Toxicogenetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Zacal NJ, Francis MA, Rainbow AJ. Enhanced expression from the human cytomegalovirus immediate-early promoter in a non-replicating adenovirus encoded reporter gene following cellular exposure to chemical DNA damaging agents. Biochem Biophys Res Commun 2005; 332:441-9. [PMID: 15894289 DOI: 10.1016/j.bbrc.2005.04.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 04/29/2005] [Indexed: 11/15/2022]
Abstract
We have examined expression from the human cytomegalovirus (CMV) promoter of a reporter gene encoded in a replication-deficient adenovirus following cellular exposure to heat shock and chemical DNA damaging agents. Expression of the reporter gene was enhanced following prior treatment of cells with cisplatin and N-acetoxy-acetylaminofluorine, but not heat shock. This enhancement was more pronounced and induced by lower chemical concentrations in xeroderma pigmentosum (XP) and Cockayne syndrome fibroblasts that are deficient in the transcription-coupled repair (TCR) pathway of nucleotide excision repair (NER) compared to that in TCR-proficient XP-C and normal strains. This is consistent with an induction of expression from the CMV promoter mediated by persistent (unrepaired) DNA damage in active genes. We show also that expression of the CMV-driven reporter is enhanced following treatment of several human tumour cell lines. This later finding has implications for combined chemotherapy and gene therapy using CMV-driven expression vectors.
Collapse
Affiliation(s)
- Natalie J Zacal
- Department of Biology, McMaster University, Hamilton, Ont., Canada L8S 4K1
| | | | | |
Collapse
|
13
|
Fousteri M, van Hoffen A, Vargova H, Mullenders LHF. Repair of DNA lesions in chromosomal DNA. DNA Repair (Amst) 2005; 4:919-25. [PMID: 15961352 DOI: 10.1016/j.dnarep.2005.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
Decondensation of chromatin is essential to facilitate access to DNA metabolizing processes such as transcription and DNA repair. Disruption of histone-DNA contacts by histone modification or by ATP dependent chromatin remodelling allows DNA-binding proteins to compete with histones for DNA. The efficiency of global genome nucleotide excision repair (GGR) that removes a variety of helix distorting DNA lesions is known to be affected by chromatin structure most notably demonstrated by the slow repair of heterochromatin. In addition, the efficiency of GGR to repair lesions in transcriptionally active genes requires functional CSA and B proteins. We found that repair of UV-photolesions in both strands of the active adenosine deaminase gene was delayed in CS cells when compared to normal human fibroblasts. We suggest that the lack of transcription recovery characteristic for CS cells exposed to DNA damaging agents, might lead to changes in the chromatin structure of active genes, causing less efficient repair of lesions in these genes when compared to normal cells.
Collapse
Affiliation(s)
- Maria Fousteri
- Department of Toxicogenetics, Leiden University Medical Centre, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
14
|
Gillet LCJ, Alzeer J, Schärer OD. Site-specific incorporation of N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) into oligonucleotides using modified 'ultra-mild' DNA synthesis. Nucleic Acids Res 2005; 33:1961-9. [PMID: 15814813 PMCID: PMC1074722 DOI: 10.1093/nar/gki335] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 12/30/2022] Open
Abstract
Aromatic amino and nitro compounds are potent carcinogens found in the environment that exert their toxic effects by reacting with DNA following metabolic activation. One important adduct is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF), which has been extensively used in studies of the mechanisms of DNA repair and mutagenesis. Despite the importance of dG-AAF adducts in DNA, an efficient method for its incorporation into DNA using solid-phase synthesis is still missing. We report the development of a modified 'ultra-mild' DNA synthesis protocol that allows the incorporation of dG-AAF into oligonucleotides of any length accessible by solid-phase DNA synthesis with high efficiency and independent of sequence context. Key to this endeavor was the development of improved deprotection conditions (10% diisopropylamine in methanol supplemented with 0.25 M of beta-mercaptoethanol) designed to remove protecting groups of commercially available 'ultra-mild' phosphoramidite building blocks without compromising the integrity of the exquisitely base-labile acetyl group at N8 of dG-AAF. We demonstrate the suitability of these oligonucleotides in the nucleotide excision repair reaction. Our synthetic approach should facilitate comprehensive studies of the mechanisms of repair and mutagenesis induced by dG-AAF adducts in DNA and should be of general use for the incorporation of base-labile functionalities into DNA.
Collapse
Affiliation(s)
- Ludovic C. J. Gillet
- Institute for Molecular Cancer Research, University of ZürichAugust Forel Strasse 7, 8008 Zürich, Switzerland
| | - Jawad Alzeer
- Institute for Molecular Cancer Research, University of ZürichAugust Forel Strasse 7, 8008 Zürich, Switzerland
| | - Orlando D. Schärer
- Institute for Molecular Cancer Research, University of ZürichAugust Forel Strasse 7, 8008 Zürich, Switzerland
| |
Collapse
|
15
|
Iwamoto TA, Kobayashi N, Imoto K, Yamamoto A, Nakamura Y, Yamauchi Y, Okumura H, Tanaka A, Hanaoka F, Shibutani S, Miyagawa S, Mori T. In situ detection of acetylaminofluorene-DNA adducts in human cells using monoclonal antibodies. DNA Repair (Amst) 2005; 3:1475-82. [PMID: 15380103 DOI: 10.1016/j.dnarep.2004.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/26/2004] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
The present study was performed to generate monoclonal antibodies capable of detecting N-acetoxy-2-acetylaminofluorene (NA-AAF)-derived DNA adducts in human cells in situ. As an immunogen, we employed NA-AAF-modified single-stranded DNA coupled electrostatically to methylated protein and we produced five different monoclonal antibodies. All of them showed strong binding to NA-AAF-modified DNA, but had undetectable or minimal binding to undamaged DNA. Competitive inhibition experiments revealed that the epitope recognized by these antibodies is N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) in DNA, although deacetylated N-(deoxyguanosin-8-yl)-2-aminofluorene in DNA is also recognized with slightly less efficiency. In contrast, these antibodies did not bind to 3-(deoxyguanosin-N(2)-yl)-2-acetylaminofluorene in DNA or to UV-induced lesions in DNA. Interestingly, they showed only minimal binding to small AAF-nucleoside adducts (dG-C8-AAF), indicating that DNA regions flanking a DNA-bound adduct, in addition to the adduct itself, are essential for the stable binding of the antibodies. Using an enzyme-linked immunosorbent assay with the most promising antibody (AAF-1), we detected the concentration-dependent induction of NA-AAF-modified adducts in DNA from repair deficient xeroderma pigmentosum (XP) cells treated with physiological concentrations of NA-AAF. Moreover, the assay enabled to confirm that normal human cells efficiently repaired NA-AAF-induced DNA adducts but not XP-A cells. Most importantly, the formation of NA-AAF-induced DNA adducts in individual nuclei of XP cells could be clearly visualized using indirect immunofluorescence. Thus, we succeeded in establishing novel monoclonal antibodies capable of the in situ detection of NA-AAF-induced DNA adducts in human cells.
Collapse
Affiliation(s)
- Taka-aki Iwamoto
- Radioisotope Research Center, Department of Dermatology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
van Gijssel HE, Mullenders LHF, van Oosterwijk MF, Meerman JHN. Blockage of transcription as a trigger for p53 accumulation by 2-acetylaminofluorene DNA-adducts. Life Sci 2003; 73:1759-71. [PMID: 12888115 DOI: 10.1016/s0024-3205(03)00506-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The hepatocarcinogen 2-acetylaminofluorene is one of the most studied experimental carcinogens. We have shown previously that normal rat hepatocytes accumulate the tumour suppressor p53 after exposure to this compound while preneoplastic rat hepatocytes do not. We suggested that the lack of p53 response may confer a growth advantage on preneoplastic hepatocytes and may be an important factor in hepatic tumor promotion by 2-acetylaminofluorene and other genotoxic compounds. Inhibition of RNA polymerase II driven transcription by DNA lesions may constitute one of the mechanisms leading to accumulation of the tumour suppressor p53. We have investigated the accumulation of p53 by structurally different DNA lesions of 2-acetylaminofluorene for which the rate of nucleotide excision repair (NER) and inhibition of transcription are known. Experiments were performed with NER proficient human fibroblasts as well as repair deficient xeroderma pigmentosum group A (XPA) cells, XPC cells [only transcription coupled repair (TCR)] and Cockayne syndrome (CS)B cells [only global genome repair (GGR)]. The cells were exposed to N-acetoxy-acetylaminofluorene (NAAAF) in the presence or absence of paraoxon inducing dG-C8-AAF or dG-C8-AF adducts respectively. Both treatments led to accumulation of p53 in all cells. However, dG-C8-AAF adducts produced greater p53 induction than dG-C8-AF adducts. The percentage p53-positive cells was highest and the threshold for p53 accumulation was lowest in XPA and CSB cells. Our results further demonstrate that both the potency of a lesion to inhibit transcription as well as the restoration of RNA synthesis determines the magnitude of p53 induction.
Collapse
Affiliation(s)
- Hilde E van Gijssel
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | |
Collapse
|
17
|
Rubbi CP, Milner J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J 2003; 22:975-86. [PMID: 12574133 PMCID: PMC145442 DOI: 10.1093/emboj/cdg082] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Revised: 11/13/2002] [Accepted: 12/18/2002] [Indexed: 11/13/2022] Open
Abstract
One of the longest standing problems in DNA repair is how cells relax chromatin in order to make DNA lesions accessible for global nucleotide excision repair (NER). Since chromatin has to be relaxed for efficient lesion detection, the key question is whether chromatin relaxation precedes lesion detection or vice versa. Chromatin accessibility factors have been proposed but not yet identified. Here we show that p53 acts as a chromatin accessibility factor, mediating UV-induced global chromatin relaxation. Using localized subnuclear UV irradiation, we demonstrate that chromatin relaxation is extended over the whole nucleus and that this process requires p53. We show that the sequence for initiation of global NER is as follows: transcription-associated lesion detection; p53-mediated global chromatin relaxation; and global lesion detection. The tumour suppressor p53 is crucial for genomic stability, a role partially explained by its pro-apoptotic capacity. We demonstrate here that p53 is also a fundamental component of DNA repair, playing a direct role in rectifying DNA damage.
Collapse
Affiliation(s)
- Carlos P Rubbi
- Department of Biology, University of York, York YO10 5DD, UK.
| | | |
Collapse
|
18
|
Dubaele S, Egly JM. Cockayne syndrome, between transcription and DNA repair defects. J Eur Acad Dermatol Venereol 2002; 16:220-6. [PMID: 12195559 DOI: 10.1046/j.1468-3083.2002.00453.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Selzer RR, Nyaga S, Tuo J, May A, Muftuoglu M, Christiansen M, Citterio E, Brosh RM, Bohr VA. Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells. Nucleic Acids Res 2002; 30:782-93. [PMID: 11809892 PMCID: PMC100288 DOI: 10.1093/nar/30.3.782] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Revised: 11/10/2001] [Accepted: 11/27/2001] [Indexed: 11/13/2022] Open
Abstract
Cockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the transcribed strand of active genes, both after exposure to UV and in the presence of oxidative DNA lesions. A previous study has indicated that a conserved helicase ATPase motif II residue is essential for the function of the CSB protein in responding to UV-induced DNA damage in a hamster cell line. Due to the limitations in studying a complex human disorder in another species, this study introduced the site-directed mutation of the ATPase motif II in the human CSB gene in an isogenic human cell line. The CSB mutant allele was tested for genetic complementation of UV-sensitive phenotypes in the human CS-B cell line CS1AN.S3.G2. In addition, the incision of an 8-oxoguanine lesion by extracts of the CS-B cell lines stably transfected with the wild-type or ATPase mutant CSB gene has been investigated. The ATPase motif II point mutation (E646Q) abolished the function of the CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery and apoptosis. Interestingly, whole-cell extract prepared from these mutant cells retained wild-type incision activity on an oligonucleotide containing a single 8-oxoguanine lesion, whereas the absence of the CSB gene altogether resulted in reduced incision activity relative to wild-type. These results suggest damage-specific functional requirements for CSB in the repair of UV-induced and oxidative lesions in human cells. The transfection of the mutant or wild-type CSB gene into the CS1AN.S3.G2 cells did not alter the expression of the subset of genes examined by cDNA array analysis.
Collapse
Affiliation(s)
- Rebecca R Selzer
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
van Zeeland AA, Mullenders LH, Vrieling H. Gene and sequence specificity of DNA damage induction and repair: consequences for mutagenesis. Mutat Res 2001; 485:15-21. [PMID: 11341990 DOI: 10.1016/s0921-8777(00)00072-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of DNA repair has been expanded enormously in the last 20 years. In this paper, work on gene and sequence specificity of DNA damage induction and repair is summarized in the light of the large and broad contribution of Phil Hanawalt to this field of research. Furthermore, the consequences of DNA damage and repair for mutation induction is discussed, and the contribution of Paul Lohman to the development of assays employing transgenic mice for the detection of gene mutations is highlighted.
Collapse
Affiliation(s)
- A A van Zeeland
- Department of Radiation Genetics and Chemical Mutagenesis - MGC, Leiden University Medical Center, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | | | |
Collapse
|
21
|
Balajee AS, Proietti De Santis L, Brosh RM, Selzer R, Bohr VA. Role of the ATPase domain of the Cockayne syndrome group B protein in UV induced apoptosis. Oncogene 2000; 19:477-89. [PMID: 10698517 DOI: 10.1038/sj.onc.1203372] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cockayne syndrome (CS) is a human autosomal recessive disorder characterized by many neurological and developmental abnormalities. CS cells are defective in the transcription coupled repair (TCR) pathway that removes DNA damage from the transcribed strand of active genes. The individuals suffering from CS do not generally develop cancer but show increased neurodegeneration. Two genetic complementation groups (CS-A and CS-B) have been identified. The lack of cancer formation in CS may be due to selective elimination of cells containing DNA damage by a suicidal pathway. In this study, we have evaluated the role of the CSB gene in UV induced apoptosis in human and hamster cells. The hamster cell line UV61 carries a mutation in the homolog of the human CSB gene. We show that both human CS-B and hamster UV61 cells display increased apoptotic response following UV exposure compared with normal cells. The increased sensitivity of UV61 cells to apoptosis is complemented by the transfection of the wild type human CSB gene. In order to determine which functional domain of the CSB gene participates in the apoptotic pathway, we constructed stable cell lines with different CSB domain disruptions. UV61 cells were stably transfected with the human CSB cDNA containing a point mutation in the highly conserved glutamic acid residue in ATPase motif II. This cell line (UV61/ pc3.1-CSBE646Q) showed the same increased apoptosis as the UV61 cells. In contrast, cells containing a deletion in the acidic domain at the N-terminal end of the CSB protein had no effect on apoptosis. This indicates that the integrity of the ATPase domain of CSB protein is critical for preventing the UV induced apoptotic pathway. In primary human CS-B cells, the induction and stabilization of the p53 protein seems to correlate with their increased apoptotic potential. In contrast, no change in the level of either p53 or activation of mdm2 protein by p53 was observed in hamster UV61 cells after UV exposure. This suggests that the CSB dependent apoptotic pathway can occur independently of the transactivation potential of p53 in hamster cells.
Collapse
Affiliation(s)
- A S Balajee
- Laboratory of Molecular Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
22
|
Ye N, Bianchi MS, Bianchi NO, Holmquist GP. Adaptive enhancement and kinetics of nucleotide excision repair in humans. Mutat Res 1999; 435:43-61. [PMID: 10526216 DOI: 10.1016/s0921-8777(99)00022-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An adaptive response, low doses of a mutagen rendering cells more able to subsequently cope with higher doses of that or a related challenging mutagen, enhances nucleotide excision repair in human fibroblasts. After fibroblasts were flashed with 20 J/m2 of UVC, the cyclopyrimidine dimer frequency at any single dinucleotide position remained unchanged for several hours before abruptly displaying first order kinetics of repair. These kinetics were determined by ligation-mediated PCR along exon 9 of the human p53 gene. When a chronic dose of quinacrine mustard (QM) preceded the UVC challenge, the duration of the cyclobutane pyrimidine dimer (CPD) repair lags were reduced by a factor of three and the kinetic half-lives for CPD repair were reduced by a factor of three. The observed repair kinetics are consistent with the following model. The UVC dose required (K(m)) to generate a substrate concentration which half-saturates the cell's repair capacity is 3 J/m2 for the high affinity (6-4) photoproducts and greater than 100 J/m2 for the low affinity cyclobutane dimers. After 20 J/m2 of UVC, the repair enzyme is saturated with (6-4) photoproducts; these competitively inhibit CPD repair by binding all available repair enzyme. After the (6-4)s are repaired, the CPD concentration is less than K(m)(CPD) and so CPD repair kinetics initiate with first order kinetics. QM-induced enhancement, by increasing the concentration, Vmax, of repair enzyme, shortens the duration of (6-4) saturation and increases the rate constant for cyclobutane dimer repair. The data exactly fit the expectations from Michaelis kinetics. Transcription coupled repair is less amenable to Michaelis interpretations and enhanced global repair was almost as rapid as the slightly enhanced transcription coupled repair. We infer that repair enhancement is unable to proportionally increase the number of matrix attachment sites necessary for transcription coupled repair. Understanding competitive inhibition between adduct classes and adaptive enhancement of Vmax is important to understanding the effects of high doses of mutagen mixtures.
Collapse
Affiliation(s)
- N Ye
- Beckman Research Institute, Department of Biology, City of Hope Medical Center, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- L H Mullenders
- Department of Radiation Genetics and Chemical Mutagenesis-MGC, Leiden University Medical Center, Netherlands.
| |
Collapse
|
24
|
van Oosterwijk MF, Filon R, de Groot AJ, van Zeeland AA, Mullenders LH. Lack of transcription-coupled repair of acetylaminofluorene DNA adducts in human fibroblasts contrasts their efficient inhibition of transcription. J Biol Chem 1998; 273:13599-604. [PMID: 9593697 DOI: 10.1074/jbc.273.22.13599] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-(deoxyguanosine-8-yl)-2-acetylaminofluorene (dG-C8-AAF) lesion is among the most helix distorting DNA lesions. In normal fibroblasts dG-C8-AAF is repaired rapidly in transcriptionally active genes, but without strand specificity, indicating that repair of dG-C8-AAF by global genome repair (GGR) overrules transcription-coupled repair (TCR). Yet, dG-C8-AAF is a very potent inhibitor of transcription. The target size of inhibition (45 kilobases) suggests that transcription inhibition by dG-C8-AAF is caused by blockage of initiation rather than elongation. Cockayne's syndrome (CS) cells appear to be extremely sensitive to the cytotoxic effects of dG-C8-AAF and are unable to recover inhibited RNA synthesis. However, CS cells exhibit no detectable defect in repair of dG-C8-AAF in active genes, indicating that impaired TCR is not the cause of the enhanced sensitivity of CS cells. These and data reported previously suggest that the degree of DNA helix distortion determines the rate of GGR as well as the extent of inhibition of transcription initiation. An interchange of the transcription/repair factor TFIIH from promoter sites to sites of damage might underlie inhibition of transcription initiation. This process is likely to occur more rapidly and efficiently in the case of strongly DNA helix distorting lesions, resulting in a very efficient GGR, a poor contribution of TCR to repair of lesions in active genes, and an efficient inhibition of transcription.
Collapse
Affiliation(s)
- M F van Oosterwijk
- Department of Radiation Genetics and Chemical Mutagenesis, Medical Genetics Center, Leiden University, 2333 AL Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Vrieling H, van Zeeland AA, Mullenders LH. Transcription coupled repair and its impact on mutagenesis. Mutat Res 1998; 400:135-42. [PMID: 9685614 DOI: 10.1016/s0027-5107(98)00064-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- H Vrieling
- Department of Radiation Genetics and Chemical Mutagenesis-MGC, Leiden University Medical Centre, PO Box 9503, 2300 RA Leiden, Netherlands
| | | | | |
Collapse
|
26
|
Verhage RA, Tijsterman M, van de Putte P, Brouwer J. Transcription-Coupled and Global Genome Nucleotide Excision Repair. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|