1
|
Lindahl L. Ribosome Structural Changes Dynamically Affect Ribosome Function. Int J Mol Sci 2024; 25:11186. [PMID: 39456968 PMCID: PMC11508205 DOI: 10.3390/ijms252011186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Ribosomes were known to be multicomponent complexes as early as the 1960s. Nonetheless, the prevailing view for decades considered active ribosomes to be a monolithic population, in which all ribosomes are identical in composition and function. This implied that ribosomes themselves did not actively contribute to the regulation of protein synthesis. In this perspective, I review evidence for a different model, based on results showing that ribosomes can harbor different types of ribosomal RNA (rRNA) and ribosomal proteins (r-proteins) and, furthermore, need not contain a complete set of r-proteins. I also summarize recent results favoring the notion that such distinct types of ribosomes have different affinities for specific messenger RNAs and may execute the translation process differently. Thus, ribosomes should be considered active contributors to the regulation of protein synthesis.
Collapse
Affiliation(s)
- Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
2
|
Hariharan N, Ghosh S, Palakodeti D. The story of rRNA expansion segments: Finding functionality amidst diversity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1732. [PMID: 35429135 DOI: 10.1002/wrna.1732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 01/31/2023]
Abstract
Expansion segments (ESs) are multinucleotide insertions present across phyla at specific conserved positions in eukaryotic rRNAs. ESs are generally absent in bacterial rRNAs with some exceptions, while the archaeal rRNAs have microexpansions at regions that coincide with those of eukaryotic ESs. Although there is an increasing prominence of ribosomes, especially the ribosomal proteins, in fine-tuning gene expression through translation regulation, the role of rRNA ESs is relatively underexplored. While rRNAs have been established as the major catalytic hub in ribosome function, the presence of ESs widens their scope as a species-specific regulatory hub of protein synthesis. In this comprehensive review, we have elaborately discussed the current understanding of the functional aspects of rRNA ESs of cytoplasmic eukaryotic ribosomes and discuss their past, present, and future. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Ribosome Structure/Function Translation > Regulation.
Collapse
Affiliation(s)
- Nivedita Hariharan
- Technologies for the Advancement of Science, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,The University of Trans-disciplinary Health Sciences and Technology, Bangalore, India
| | - Sumana Ghosh
- Manipal Academy of Higher Education, Manipal, India
| | - Dasaradhi Palakodeti
- Technologies for the Advancement of Science, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
3
|
Fan W, Eklund E, Sherman RM, Liu H, Pitts S, Ford B, Rajeshkumar NV, Laiho M. Widespread genetic heterogeneity of human ribosomal RNA genes. RNA (NEW YORK, N.Y.) 2022; 28:478-492. [PMID: 35110373 PMCID: PMC8925967 DOI: 10.1261/rna.078925.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/28/2021] [Indexed: 05/28/2023]
Abstract
Polymorphism drives survival under stress and provides adaptability. Genetic polymorphism of ribosomal RNA (rRNA) genes derives from internal repeat variation of this multicopy gene, and from interindividual variation. A considerable amount of rRNA sequence heterogeneity has been proposed but has been challenging to estimate given the scarcity of accurate reference sequences. We identified four rDNA copies on chromosome 21 (GRCh38) with 99% similarity to recently introduced reference sequence KY962518.1. We customized a GATK bioinformatics pipeline using the four rDNA loci, spanning a total 145 kb, for variant calling and used high-coverage whole-genome sequencing (WGS) data from the 1000 Genomes Project to analyze variants in 2504 individuals from 26 populations. We identified a total of 3791 variant positions. The variants positioned nonrandomly on the rRNA gene. Invariant regions included the promoter, early 5' ETS, most of 18S, 5.8S, ITS1, and large areas of the intragenic spacer. A total of 470 variant positions were observed on 28S rRNA. The majority of the 28S rRNA variants were located on highly flexible human-expanded rRNA helical folds ES7L and ES27L, suggesting that these represent positions of diversity and are potentially under continuous evolution. Several variants were validated based on RNA-seq analyses. Population analyses showed remarkable ancestry-linked genetic variance and the presence of both high penetrance and frequent variants in the 5' ETS, ITS2, and 28S regions segregating according to the continental populations. These findings provide a genetic view of rRNA gene array heterogeneity and raise the need to functionally assess how the 28S rRNA variants affect ribosome functions.
Collapse
Affiliation(s)
- Wenjun Fan
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Eetu Eklund
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Rachel M Sherman
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Stephanie Pitts
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Brittany Ford
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - N V Rajeshkumar
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
4
|
Ding Q, Li R, Ren X, Chan LY, Ho VWS, Xie D, Ye P, Zhao Z. Genomic architecture of 5S rDNA cluster and its variations within and between species. BMC Genomics 2022; 23:238. [PMID: 35346033 PMCID: PMC8961926 DOI: 10.1186/s12864-022-08476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ribosomal DNAs (rDNAs) are arranged in purely tandem repeats, preventing them from being reliably assembled onto chromosomes during generation of genome assembly. The uncertainty of rDNA genomic structure presents a significant barrier for studying their function and evolution. RESULTS Here we generate ultra-long Oxford Nanopore Technologies (ONT) and short NGS reads to delineate the architecture and variation of the 5S rDNA cluster in the different strains of C. elegans and C. briggsae. We classify the individual rDNA's repeating units into 25 types based on the unique sequence variations in each unit of C. elegans (N2). We next perform assembly of the cluster by taking advantage of the long reads that carry these units, which led to an assembly of 5S rDNA cluster consisting of up to 167 consecutive 5S rDNA units in the N2 strain. The ordering and copy number of various rDNA units are consistent with the separation time between strains. Surprisingly, we observed a drastically reduced level of variation in the unit composition in the 5S rDNA cluster in the C. elegans CB4856 and C. briggsae AF16 strains than in the C. elegans N2 strain, suggesting that N2, a widely used reference strain, is likely to be defective in maintaining the 5S rDNA cluster stability compared with other wild isolates of C. elegans or C. briggsae. CONCLUSIONS The results demonstrate that Nanopore DNA sequencing reads are capable of generating assembly of highly repetitive sequences, and rDNA units are highly dynamic both within and between population(s) of the same species in terms of sequence and copy number. The detailed structure and variation of the 5S rDNA units within the rDNA cluster pave the way for functional and evolutionary studies.
Collapse
Affiliation(s)
- Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Vincy W S Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Pohao Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
5
|
Regulatory roles of nucleolus organizer region-derived long non-coding RNAs. Mamm Genome 2021; 33:402-411. [PMID: 34436664 DOI: 10.1007/s00335-021-09906-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
The nucleolus is the largest sub-nuclear domain, serving primarily as the place for ribosome biogenesis. A delicately regulated function of the nucleolus is vital to the cell not only for maintaining proper protein synthesis but is also tightly associated with responses to different types of cellular stresses. Recently, several long non-coding RNAs (lncRNAs) were found to be part of the regulatory network that modulate nucleolar functions. Several of these lncRNAs are encoded in the ribosomal DNA (rDNA) repeats or are transcribed from the genomic regions that are located near the nucleolus organizer regions (NORs). In this review, we first discuss the current understanding of the sequence of the NORs and variations between different NORs. We then focus on the NOR-derived lncRNAs in mammalian cells and their functions in rRNA transcription and the organization of nucleolar structure under different cellular conditions. The identification of these lncRNAs reveals great potential of the NORs in harboring novel genes involved in the regulation of nucleolar functions.
Collapse
|
6
|
Loss of m 1acp 3Ψ Ribosomal RNA Modification Is a Major Feature of Cancer. Cell Rep 2021; 31:107611. [PMID: 32375039 DOI: 10.1016/j.celrep.2020.107611] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
The ribosome is an RNA-protein complex that is essential for translation in all domains of life. The structural and catalytic core of the ribosome is its ribosomal RNA (rRNA). While mutations in ribosomal protein (RP) genes are known drivers of oncogenesis, oncogenic rRNA variants have remained elusive. We identify a cancer-specific single-nucleotide variation in 18S rRNA at nucleotide 1248.U in up to 45.9% of patients with colorectal carcinoma (CRC) and present across >22 cancer types. This is the site of a unique hyper-modified base, 1-methyl-3-α-amino-α-carboxyl-propyl pseudouridine (m1acp3Ψ), a >1-billion-years-conserved RNA modification at the peptidyl decoding site of the ribosome. A subset of CRC tumors we call hypo-m1acp3Ψ shows sub-stoichiometric m1acp3Ψ modification, unlike normal control tissues. An m1acp3Ψ knockout model and hypo-m1acp3Ψ patient tumors share a translational signature characterized by highly abundant ribosomal proteins. Thus, m1acp3Ψ-deficient rRNA forms an uncharacterized class of "onco-ribosome" which may serve as a chemotherapeutic target for treating cancer patients.
Collapse
|
7
|
The genomic structure of a human chromosome 22 nucleolar organizer region determined by TAR cloning. Sci Rep 2021; 11:2997. [PMID: 33542373 PMCID: PMC7862453 DOI: 10.1038/s41598-021-82565-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
The rDNA clusters and flanking sequences on human chromosomes 13, 14, 15, 21 and 22 represent large gaps in the current genomic assembly. The organization and the degree of divergence of the human rDNA units within an individual nucleolar organizer region (NOR) are only partially known. To address this lacuna, we previously applied transformation-associated recombination (TAR) cloning to isolate individual rDNA units from chromosome 21. That approach revealed an unexpectedly high level of heterogeneity in human rDNA, raising the possibility of corresponding variations in ribosome dynamics. We have now applied the same strategy to analyze an entire rDNA array end-to-end from a copy of chromosome 22. Sequencing of TAR isolates provided the entire NOR sequence, including proximal and distal junctions that may be involved in nucleolar function. Comparison of the newly sequenced rDNAs to reference sequence for chromosomes 22 and 21 revealed variants that are shared in human rDNA in individuals from different ethnic groups, many of them at high frequency. Analysis infers comparable intra- and inter-individual divergence of rDNA units on the same and different chromosomes, supporting the concerted evolution of rDNA units. The results provide a route to investigate further the role of rDNA variation in nucleolar formation and in the empirical associations of nucleoli with pathology.
Collapse
|
8
|
Smirnov E, Chmúrčiaková N, Liška F, Bažantová P, Cmarko D. Variability of Human rDNA. Cells 2021; 10:cells10020196. [PMID: 33498263 PMCID: PMC7909238 DOI: 10.3390/cells10020196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
In human cells, ribosomal DNA (rDNA) is arranged in ten clusters of multiple tandem repeats. Each repeat is usually described as consisting of two parts: the 13 kb long ribosomal part, containing three genes coding for 18S, 5.8S and 28S RNAs of the ribosomal particles, and the 30 kb long intergenic spacer (IGS). However, this standard scheme is, amazingly, often altered as a result of the peculiar instability of the locus, so that the sequence of each repeat and the number of the repeats in each cluster are highly variable. In the present review, we discuss the causes and types of human rDNA instability, the methods of its detection, its distribution within the locus, the ways in which it is prevented or reversed, and its biological significance. The data of the literature suggest that the variability of the rDNA is not only a potential cause of pathology, but also an important, though still poorly understood, aspect of the normal cell physiology.
Collapse
|
9
|
Leppek K, Byeon GW, Fujii K, Barna M. VELCRO-IP RNA-seq reveals ribosome expansion segment function in translation genome-wide. Cell Rep 2021; 34:108629. [PMID: 33472078 PMCID: PMC8270675 DOI: 10.1016/j.celrep.2020.108629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/07/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023] Open
Abstract
Roles for ribosomal RNA (rRNA) in gene regulation remain largely unexplored. With hundreds of rDNA units positioned across multiple loci, it is not possible to genetically modify rRNA in mammalian cells, hindering understanding of ribosome function. It remains elusive whether expansion segments (ESs), tentacle-like rRNA extensions that vary in sequence and size across eukaryotic evolution, may have functional roles in translation control. Here, we develop variable expansion segment-ligand chimeric ribosome immunoprecipitation RNA sequencing (VELCRO-IP RNA-seq), a versatile methodology to generate species-adapted ESs and to map specific mRNA regions across the transcriptome that preferentially associate with ESs. Application of VELCRO-IP RNA-seq to a mammalian ES, ES9S, identified a large array of transcripts that are selectively recruited to ribosomes via an ES. We further characterize a set of 5′ UTRs that facilitate cap-independent translation through ES9S-mediated ribosome binding. Thus, we present a technology for studying the enigmatic ESs of the ribosome, revealing their function in gene-specific translation. Leppek et al. develop a pulldown technology employing chimeric yeast ribosomes, VELCRO-IP RNA-seq, to map interactions between ribosomal RNA (rRNA) and mRNAs genome-wide with positional precision. They find that expansion segments (ESs), the extended rRNA tentacles of the ribosome, specifically bind 5′ UTR elements to enable cap-independent translation of select mRNAs.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gun Woo Byeon
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kotaro Fujii
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Sims J, Rabanal FA, Elgert C, von Haeseler A, Schlögelhofer P. It Is Just a Matter of Time: Balancing Homologous Recombination and Non-homologous End Joining at the rDNA Locus During Meiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:773052. [PMID: 34777453 PMCID: PMC8580885 DOI: 10.3389/fpls.2021.773052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 05/17/2023]
Abstract
Ribosomal RNA genes (rDNAs) are located in large domains of hundreds of rDNA units organized in a head-to-tail manner. The proper and stable inheritance of rDNA clusters is of paramount importance for survival. Yet, these highly repetitive elements pose a potential risk to the genome since they can undergo non-allelic exchanges. Here, we review the current knowledge of the organization of the rDNA clusters in Arabidopsis thaliana and their stability during meiosis. Recent findings suggest that during meiosis, all rDNA loci are embedded within the nucleolus favoring non-homologous end joining (NHEJ) as a repair mechanism, while DNA repair via homologous recombination (HR) appears to be a rare event. We propose a model where (1) frequent meiotic NHEJ events generate abundant single nucleotide polymorphisms and insertions/deletions within the rDNA, resulting in a heterogeneous population of rDNA units and (2) rare HR events dynamically change rDNA unit numbers, only to be observed in large populations over many generations. Based on the latest efforts to delineate the entire rDNA sequence in A. thaliana, we discuss evidence supporting this model. The results compiled so far draw a surprising picture of rDNA sequence heterogeneity between individual units. Furthermore, rDNA cluster sizes have been recognized as relatively stable when observing less than 10 generations, yet emerged as major determinant of genome size variation between different A. thaliana ecotypes. The sequencing efforts also revealed that transcripts from the diverse rDNA units yield heterogenous ribosome populations with potential functional implications. These findings strongly motivate further research to understand the mechanisms that maintain the metastable state of rDNA loci.
Collapse
Affiliation(s)
- Jason Sims
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- *Correspondence: Jason Sims,
| | - Fernando A. Rabanal
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christiane Elgert
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Peter Schlögelhofer,
| |
Collapse
|
11
|
Leppek K, Fujii K, Quade N, Susanto TT, Boehringer D, Lenarčič T, Xue S, Genuth NR, Ban N, Barna M. Gene- and Species-Specific Hox mRNA Translation by Ribosome Expansion Segments. Mol Cell 2020; 80:980-995.e13. [PMID: 33202249 PMCID: PMC7769145 DOI: 10.1016/j.molcel.2020.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Ribosomes have been suggested to directly control gene regulation, but regulatory roles for ribosomal RNA (rRNA) remain largely unexplored. Expansion segments (ESs) consist of multitudes of tentacle-like rRNA structures extending from the core ribosome in eukaryotes. ESs are remarkably variable in sequence and size across eukaryotic evolution with largely unknown functions. In characterizing ribosome binding to a regulatory element within a Homeobox (Hox) 5' UTR, we identify a modular stem-loop within this element that binds to a single ES, ES9S. Engineering chimeric, "humanized" yeast ribosomes for ES9S reveals that an evolutionary change in the sequence of ES9S endows species-specific binding of Hoxa9 mRNA to the ribosome. Genome editing to site-specifically disrupt the Hoxa9-ES9S interaction demonstrates the functional importance for such selective mRNA-rRNA binding in translation control. Together, these studies unravel unexpected gene regulation directly mediated by rRNA and how ribosome evolution drives translation of critical developmental regulators.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kotaro Fujii
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nick Quade
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Teodorus Theo Susanto
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland
| | - Shifeng Xue
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Genuth
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zürich, Zürich 8093, Switzerland.
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Genuth NR, Barna M. Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat Rev Genet 2019; 19:431-452. [PMID: 29725087 DOI: 10.1038/s41576-018-0008-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of mRNA translation offers the opportunity to diversify the expression and abundance of proteins made from individual gene products in cells, tissues and organisms. Emerging evidence has highlighted variation in the composition and activity of several large, highly conserved translation complexes as a means to differentially control gene expression. Heterogeneity and specialized functions of individual components of the ribosome and of the translation initiation factor complexes eIF3 and eIF4F, which are required for recruitment of the ribosome to the mRNA 5' untranslated region, have been identified. In this Review, we summarize the evidence for selective mRNA translation by components of these macromolecular complexes as a means to dynamically control the translation of the proteome in time and space. We further discuss the implications of this form of gene expression regulation for a growing number of human genetic disorders associated with mutations in the translation machinery.
Collapse
Affiliation(s)
- Naomi R Genuth
- Departments of Genetics and Developmental Biology, Stanford University, Stanford, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Maria Barna
- Departments of Genetics and Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Fujii K, Susanto TT, Saurabh S, Barna M. Decoding the Function of Expansion Segments in Ribosomes. Mol Cell 2019; 72:1013-1020.e6. [PMID: 30576652 DOI: 10.1016/j.molcel.2018.11.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Expansion segments (ESs) are enigmatic insertions within the eukaryotic ribosome, the longest of which resemble tentacle-like extensions that vary in length and sequence across evolution, with a largely unknown function. By selectively engineering rRNA in yeast, we find that one of the largest ESs, ES27L, has an unexpected function in translation fidelity. Ribosomes harboring a deletion in the distal portion of ES27L have increased amino acid misincorporation, as well as readthrough and frameshifting errors. By employing quantitative mass spectrometry, we further find that ES27L acts as an RNA scaffold to facilitate binding of a conserved enzyme, methionine amino peptidase (MetAP). We show that MetAP unexpectedly controls the accuracy of ribosome decoding, which is coupled to an increase in its enzymatic function through its interaction with ES27L. These findings reveal that variable ESs of the ribosome serve important functional roles and act as platforms for the binding of proteins that modulate translation across evolution.
Collapse
Affiliation(s)
- Kotaro Fujii
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Teodorus Theo Susanto
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Saumya Saurabh
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Ferretti MB, Karbstein K. Does functional specialization of ribosomes really exist? RNA (NEW YORK, N.Y.) 2019; 25:521-538. [PMID: 30733326 PMCID: PMC6467006 DOI: 10.1261/rna.069823.118] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It has recently become clear that ribosomes are much more heterogeneous than previously thought, with diversity arising from rRNA sequence and modifications, ribosomal protein (RP) content and posttranslational modifications (PTMs), as well as bound nonribosomal proteins. In some cases, the existence of these diverse ribosome populations has been verified by biochemical or structural methods. Furthermore, knockout or knockdown of RPs can diversify ribosome populations, while also affecting the translation of some mRNAs (but not others) with biological consequences. However, the effects on translation arising from depletion of diverse proteins can be highly similar, suggesting that there may be a more general defect in ribosome function or stability, perhaps arising from reduced ribosome numbers. Consistently, overall reduced ribosome numbers can differentially affect subclasses of mRNAs, necessitating controls for specificity. Moreover, in order to study the functional consequences of ribosome diversity, perturbations including affinity tags and knockouts are introduced, which can also affect the outcome of the experiment. Here we review the available literature to carefully evaluate whether the published data support functional diversification, defined as diverse ribosome populations differentially affecting translation of distinct mRNA (classes). Based on these observations and the commonly observed cellular responses to perturbations in the system, we suggest a set of important controls to validate functional diversity, which should include gain-of-function assays and the demonstration of inducibility under physiological conditions.
Collapse
Affiliation(s)
- Max B Ferretti
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
15
|
Ribosomal flavours: an acquired taste for specific mRNAs? Biochem Soc Trans 2018; 46:1529-1539. [PMID: 30420413 DOI: 10.1042/bst20180160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
The regulation of translation is critical in almost every aspect of gene expression. Nonetheless, the ribosome is historically viewed as a passive player in this process. However, evidence is accumulating to suggest that variations in the ribosome can have an important influence on which mRNAs are translated. Scope for variation is provided via multiple avenues, including heterogeneity at the level of both ribosomal proteins and ribosomal RNAs and their covalent modifications. Together, these variations provide the potential for hundreds, if not thousands, of flavours of ribosome, each of which could have idiosyncratic preferences for the translation of certain messenger RNAs. Indeed, perturbations to this heterogeneity appear to affect specific subsets of transcripts and manifest as cell-type-specific diseases. This review provides a historical perspective of the ribosomal code hypothesis, before outlining the various sources of heterogeneity, their regulation and functional consequences for the cell.
Collapse
|
16
|
Learning-induced ribosomal RNA is required for memory consolidation in mice-Evidence of differentially expressed rRNA variants in learning and memory. PLoS One 2018; 13:e0203374. [PMID: 30281601 PMCID: PMC6169870 DOI: 10.1371/journal.pone.0203374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 08/20/2018] [Indexed: 12/01/2022] Open
Abstract
The transition from short-term to long-term forms of synaptic plasticity requires protein synthesis and new gene expression. Most efforts to understand experience-induced changes in neuronal gene expression have focused on the transcription products of RNA polymerase II—primarily mRNAs and the proteins they encode. We recently showed that nucleolar integrity and activity-dependent ribosomal RNA (rRNA) synthesis are essential for the maintenance of hippocampal long-term potentiation (LTP). Consequently, the synaptic plasticity and memory hypothesis predicts that nucleolar integrity and activity dependent rRNA synthesis would be required for Long-term memory (LTM). We tested this prediction using the hippocampus-dependent, Active Place Avoidance (APA) spatial memory task and found that training induces de novo rRNA synthesis in mouse dorsal hippocampus. This learning-induced increase in nucleolar activity and rRNA synthesis persists at least 24 h after training. In addition, intra-hippocampal injection of the Pol I specific inhibitor, CX-5461 prior to training, revealed that de novo rRNA synthesis is required for 24 h memory, but not for learning. Using qPCR to assess activity-dependent changes in gene expression, we found that of seven known rRNA expression variants (v-rRNAs), only one, v-rRNA IV, is significantly upregulated right after training. These data indicate that learning induced v-rRNAs are crucial for LTM, and constitute the first evidence that differential rRNA gene expression plays a role in memory.
Collapse
|
17
|
Kim JH, Dilthey AT, Nagaraja R, Lee HS, Koren S, Dudekula D, Wood Iii WH, Piao Y, Ogurtsov AY, Utani K, Noskov VN, Shabalina SA, Schlessinger D, Phillippy AM, Larionov V. Variation in human chromosome 21 ribosomal RNA genes characterized by TAR cloning and long-read sequencing. Nucleic Acids Res 2018; 46:6712-6725. [PMID: 29788454 PMCID: PMC6061828 DOI: 10.1093/nar/gky442] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Despite the key role of the human ribosome in protein biosynthesis, little is known about the extent of sequence variation in ribosomal DNA (rDNA) or its pre-rRNA and rRNA products. We recovered ribosomal DNA segments from a single human chromosome 21 using transformation-associated recombination (TAR) cloning in yeast. Accurate long-read sequencing of 13 isolates covering ∼0.82 Mb of the chromosome 21 rDNA complement revealed substantial variation among tandem repeat rDNA copies, several palindromic structures and potential errors in the previous reference sequence. These clones revealed 101 variant positions in the 45S transcription unit and 235 in the intergenic spacer sequence. Approximately 60% of the 45S variants were confirmed in independent whole-genome or RNA-seq data, with 47 of these further observed in mature 18S/28S rRNA sequences. TAR cloning and long-read sequencing enabled the accurate reconstruction of multiple rDNA units and a new, high-quality 44 838 bp rDNA reference sequence, which we have annotated with variants detected from chromosome 21 of a single individual. The large number of variants observed reveal heterogeneity in human rDNA, opening up the possibility of corresponding variations in ribosome dynamics.
Collapse
MESH Headings
- Animals
- Cell Line
- Chromosomes, Human, Pair 21
- Cloning, Molecular
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- DNA, Ribosomal Spacer/chemistry
- Genes, rRNA
- Genetic Variation
- Humans
- Mice
- Nucleic Acid Conformation
- Nucleolus Organizer Region/chemistry
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Jung-Hyun Kim
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD 20892, USA
| | - Alexander T Dilthey
- National Human Genome Research Institute, Computational and Statistical Genomics Branch, Bethesda, MD 20892, USA
| | - Ramaiah Nagaraja
- National Institute on Aging, Laboratory of Genetics and Genomics, Baltimore, MD 21224, USA
| | - Hee-Sheung Lee
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD 20892, USA
| | - Sergey Koren
- National Human Genome Research Institute, Computational and Statistical Genomics Branch, Bethesda, MD 20892, USA
| | - Dawood Dudekula
- National Institute on Aging, Laboratory of Genetics and Genomics, Baltimore, MD 21224, USA
| | - William H Wood Iii
- National Institute on Aging, Laboratory of Genetics and Genomics, Baltimore, MD 21224, USA
| | - Yulan Piao
- National Institute on Aging, Laboratory of Genetics and Genomics, Baltimore, MD 21224, USA
| | - Aleksey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20892, USA
| | - Koichi Utani
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD 20892, USA
| | - Vladimir N Noskov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20892, USA
| | - David Schlessinger
- National Institute on Aging, Laboratory of Genetics and Genomics, Baltimore, MD 21224, USA
| | - Adam M Phillippy
- National Human Genome Research Institute, Computational and Statistical Genomics Branch, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Ludwig N, Fehlmann T, Galata V, Franke A, Backes C, Meese E, Keller A. Small ncRNA-Seq Results of Human Tissues: Variations Depending on Sample Integrity. Clin Chem 2018; 64:1074-1084. [PMID: 29691221 DOI: 10.1373/clinchem.2017.285767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although mature miRNAs are relatively stable in vivo, RNA degradation can have a substantial influence on small noncoding RNA (sncRNA) profiles. METHODS Using different tissue storage conditions and RNA isolation procedures, we analyzed the integrity and quality of RNA isolates from human lung and heart tissues. We sequenced a total of 64 RNA samples and quantified the effect of RNA degradation, DNA contamination, and other confounding factors on the sncRNA-seq data. Besides microRNAs, other noncoding RNA species (piRNAs, tRNAs, snoRNAs, rRNAs) were investigated. RESULTS Consistent with previous results, we found that the tissue specificity of microRNAs is generally well preserved. The distribution of microRNA isoforms was similar to the distribution of canonical forms. New miRNAs were more frequently discovered in degraded samples. sncRNA Reads generated from degraded samples mapped frequently to piRNAs, tRNAs, snoRNAs, or scaRNAs. Sequencing reads that were depleted of sncRNAs showed an increased mapping frequency to bacterial species. CONCLUSIONS Our data emphasize the importance of sample integrity, especially for next-generation sequencing (NGS)-based high-throughput sncRNA profiles. For the prediction of novel miRNAs in particular, only samples with the highest RNA integrity should be used in order to avoid identification of false "miRNAs."
Collapse
Affiliation(s)
- Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Tobias Fehlmann
- Department of Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Valentina Galata
- Department of Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Andre Franke
- Institute for Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Christina Backes
- Department of Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Andreas Keller
- Department of Clinical Bioinformatics, Saarland University, Saarbrücken, Germany;
| |
Collapse
|
19
|
Parks MM, Kurylo CM, Dass RA, Bojmar L, Lyden D, Vincent CT, Blanchard SC. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. SCIENCE ADVANCES 2018; 4:eaao0665. [PMID: 29503865 PMCID: PMC5829973 DOI: 10.1126/sciadv.aao0665] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/08/2018] [Indexed: 05/25/2023]
Abstract
The ribosome, the integration point for protein synthesis in the cell, is conventionally considered a homogeneous molecular assembly that only passively contributes to gene expression. Yet, epigenetic features of the ribosomal DNA (rDNA) operon and changes in the ribosome's molecular composition have been associated with disease phenotypes, suggesting that the ribosome itself may possess inherent regulatory capacity. Analyzing whole-genome sequencing data from the 1000 Genomes Project and the Mouse Genomes Project, we find that rDNA copy number varies widely across individuals, and we identify pervasive intra- and interindividual nucleotide variation in the 5S, 5.8S, 18S, and 28S ribosomal RNA (rRNA) genes of both human and mouse. Conserved rRNA sequence heterogeneities map to functional centers of the assembled ribosome, variant rRNA alleles exhibit tissue-specific expression, and ribosomes bearing variant rRNA alleles are present in the actively translating ribosome pool. These findings provide a critical framework for exploring the possibility that the expression of genomically encoded variant rRNA alleles gives rise to physically and functionally heterogeneous ribosomes that contribute to mammalian physiology and human disease.
Collapse
Affiliation(s)
- Matthew M. Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chad M. Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Randall A. Dass
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Linda Bojmar
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - C. Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Scott C. Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
20
|
Locati MD, Pagano JFB, Girard G, Ensink WA, van Olst M, van Leeuwen S, Nehrdich U, Spaink HP, Rauwerda H, Jonker MJ, Dekker RJ, Breit TM. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. RNA (NEW YORK, N.Y.) 2017; 23:1188-1199. [PMID: 28500251 PMCID: PMC5513064 DOI: 10.1261/rna.061515.117] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/09/2017] [Indexed: 05/27/2023]
Abstract
There is mounting evidence that the ribosome is not a static translation machinery, but a cell-specific, adaptive system. Ribosomal variations have mostly been studied at the protein level, even though the essential transcriptional functions are primarily performed by rRNAs. At the RNA level, oocyte-specific 5S rRNAs are long known for Xenopus. Recently, we described for zebrafish a similar system in which the sole maternal-type 5S rRNA present in eggs is replaced completely during embryonic development by a somatic-type. Here, we report the discovery of an analogous system for the 45S rDNA elements: 5.8S, 18S, and 28S. The maternal-type 5.8S, 18S, and 28S rRNA sequences differ substantially from those of the somatic-type, plus the maternal-type rRNAs are also replaced by the somatic-type rRNAs during embryogenesis. We discuss the structural and functional implications of the observed sequence differences with respect to the translational functions of the 5.8S, 18S, and 28S rRNA elements. Finally, in silico evidence suggests that expansion segments (ES) in 18S rRNA, previously implicated in ribosome-mRNA interaction, may have a preference for interacting with specific mRNA genes. Taken together, our findings indicate that two distinct types of ribosomes exist in zebrafish during development, each likely conducting the translation machinery in a unique way.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- DNA, Ribosomal/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Ribosomes/metabolism
- Sequence Alignment
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Mauro D Locati
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Johanna F B Pagano
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Geneviève Girard
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Wim A Ensink
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Marina van Olst
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Selina van Leeuwen
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Ulrike Nehrdich
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories-Cell Observatorium, Leiden 2333 CE, the Netherlands
| | - Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories-Cell Observatorium, Leiden 2333 CE, the Netherlands
| | - Han Rauwerda
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Martijs J Jonker
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Rob J Dekker
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Timo M Breit
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| |
Collapse
|
21
|
Rabanal FA, Mandáková T, Soto-Jiménez LM, Greenhalgh R, Parrott DL, Lutzmayer S, Steffen JG, Nizhynska V, Mott R, Lysak MA, Clark RM, Nordborg M. Epistatic and allelic interactions control expression of ribosomal RNA gene clusters in Arabidopsis thaliana. Genome Biol 2017; 18:75. [PMID: 28464948 PMCID: PMC5414317 DOI: 10.1186/s13059-017-1209-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/06/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ribosomal RNA (rRNA) accounts for the majority of the RNA in eukaryotic cells, and is encoded by hundreds to thousands of nearly identical gene copies, only a subset of which are active at any given time. In Arabidopsis thaliana, 45S rRNA genes are found in two large ribosomal DNA (rDNA) clusters and little is known about the contribution of each to the overall transcription pattern in the species. RESULTS By taking advantage of genome sequencing data from the 1001 Genomes Consortium, we characterize rRNA gene sequence variation within and among accessions. Notably, variation is not restricted to the pre-rRNA sequences removed during processing, but it is also present within the highly conserved ribosomal subunits. Through linkage mapping we assign these variants to a particular rDNA cluster unambiguously and use them as reporters of rDNA cluster-specific expression. We demonstrate that rDNA cluster-usage varies greatly among accessions and that rDNA cluster-specific expression and silencing is controlled via genetic interactions between entire rDNA cluster haplotypes (alleles). CONCLUSIONS We show that rRNA gene cluster expression is controlled via complex epistatic and allelic interactions between rDNA haplotypes that apparently regulate the entire rRNA gene cluster. Furthermore, the sequence polymorphism we discovered implies that the pool of rRNA in a cell may be heterogeneous, which could have functional consequences.
Collapse
Affiliation(s)
- Fernando A Rabanal
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Luz M Soto-Jiménez
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | | | - David L Parrott
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Stefan Lutzmayer
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Joshua G Steffen
- Department of Natural Sciences, Colby-Sawyer College, New London, NH, USA
| | - Viktoria Nizhynska
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Richard Mott
- Genetics Institute, University College London (UCL), Gower Street, London, WC1E 6BT, UK
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Richard M Clark
- Department of Biology, University of Utah, Salt Lake City, UT, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| | - Magnus Nordborg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
22
|
Neben CL, Lay FD, Mao X, Tuzon CT, Merrill AE. Ribosome biogenesis is dynamically regulated during osteoblast differentiation. Gene 2016; 612:29-35. [PMID: 27847259 DOI: 10.1016/j.gene.2016.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 01/19/2023]
Abstract
Changes in ribosome biogenesis are tightly linked to cell growth, proliferation, and differentiation. The rate of ribosome biogenesis is established by RNA Pol I-mediated transcription of ribosomal RNA (rRNA). Thus, rRNA gene transcription is a key determinant of cell behavior. Here, we show that ribosome biogenesis is dynamically regulated during osteoblast differentiation. Upon osteoinduction, osteoprogenitor cells transiently silence a subset of rRNA genes through a reversible mechanism that is initiated through biphasic nucleolar depletion of UBF1 and then RNA Pol I. Nucleolar depletion of UBF1 is coincident with an increase in the number of silent but transcriptionally permissible rRNA genes. This increase in the number of silent rRNA genes reduces levels of ribosome biogenesis and subsequently, protein synthesis. Together these findings demonstrate that fluctuations in rRNA gene transcription are determined by nucleolar occupancy of UBF1 and closely coordinated with the early events necessary for acquisition of the osteoblast cell fate.
Collapse
Affiliation(s)
- Cynthia L Neben
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Fides D Lay
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Xiaojing Mao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
23
|
Hernández AI, Alarcon JM, Allen KD. New ribosomes for new memories? Commun Integr Biol 2015; 8:e1017163. [PMID: 26479998 PMCID: PMC4594611 DOI: 10.1080/19420889.2015.1017163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/13/2023] Open
Abstract
Widely thought to be a housekeeping process, the regulation and synthesis of rRNA emerges as a potentially central mechanism for the maintenance of synaptic plasticity and memory. We have recently shown that an essential component of late-phase synaptic plasticity is rRNA biosynthesis — the rate-limiting step in the production of new ribosomes. We hypothesize that a particular population of ribosomes is generated upon learning-associated neural activity to alter the rate of synthesis of plasticity factors at tagged synapses that will support the maintenance of synaptic plasticity and memory.
Collapse
Affiliation(s)
- A Iván Hernández
- Department of Pathology; State University of New York; Downstate Medical Center ; Brooklyn, New York ; The Robert F. Furchgott Center for Neural and Behavioral Science; State University of New York; Downstate Medical Center ; Brooklyn, New York
| | - Juan M Alarcon
- Department of Pathology; State University of New York; Downstate Medical Center ; Brooklyn, New York ; The Robert F. Furchgott Center for Neural and Behavioral Science; State University of New York; Downstate Medical Center ; Brooklyn, New York
| | - Kim D Allen
- Department of Pathology; State University of New York; Downstate Medical Center ; Brooklyn, New York
| |
Collapse
|
24
|
Németh A, Längst G. Genome organization in and around the nucleolus. Trends Genet 2011; 27:149-56. [DOI: 10.1016/j.tig.2011.01.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
25
|
Shiao YH, Lupascu ST, Gu YD, Kasprzak W, Hwang CJ, Fields JR, Leighty RM, Quiñones O, Shapiro BA, Alvord WG, Anderson LM. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells. PLoS One 2009; 4:e7505. [PMID: 19838300 PMCID: PMC2759515 DOI: 10.1371/journal.pone.0007505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 09/30/2009] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Ribosomal RNA (rRNA) is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA) upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. METHODOLOGY/PRINCIPAL FINDINGS Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1) and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014). During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs) in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C) in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014). Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. CONCLUSIONS/SIGNIFICANCE The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.
Collapse
Affiliation(s)
- Yih-Horng Shiao
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun X, Dobra K, Björnstedt M, Hjerpe A. Upregulation of 9 genes, including that for thioredoxin, during epithelial differentiation of mesothelioma cells. Differentiation 2008. [DOI: 10.1111/j.1432-0436.2000.660404.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Tseng H, Chou W, Wang J, Zhang X, Zhang S, Schultz RM. Mouse ribosomal RNA genes contain multiple differentially regulated variants. PLoS One 2008; 3:e1843. [PMID: 18365001 PMCID: PMC2266999 DOI: 10.1371/journal.pone.0001843] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/12/2008] [Indexed: 11/22/2022] Open
Abstract
Previous cytogenetic studies suggest that various rDNA chromosomal loci are not equally active in different cell types. Consistent with this variability, rDNA polymorphism is well documented in human and mouse. However, attempts to identify molecularly rDNA variant types, which are regulated individually (i.e., independent of other rDNA variants) and tissue-specifically, have not been successful. We report here the molecular cloning and characterization of seven mouse rDNA variants (v-rDNA). The identification of these v-rDNAs was based on restriction fragment length polymorphisms (RFLPs), which are conserved among individuals and mouse strains. The total copy number of the identified variants is less than 100 and the copy number of each individual variant ranges from 4 to 15. Sequence analysis of the cloned v-rDNA identified variant-specific single nucleotide polymorphisms (SNPs) in the transcribed region. These SNPs were used to develop a set of variant-specific PCR assays, which permitted analysis of the v-rDNAs' expression profiles in various tissues. These profiles show that three v-rDNAs are expressed in all tissues (constitutively active), two are expressed in some tissues (selectively active), and two are not expressed (silent). These expression profiles were observed in six individuals from three mouse strains, suggesting the pattern is not randomly determined. Thus, the mouse rDNA array likely consists of genetically distinct variants, and some are regulated tissue-specifically. Our results provide the first molecular evidence for cell-type-specific regulation of a subset of rDNA.
Collapse
Affiliation(s)
- Hung Tseng
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Ribosomal RNA transcription was one of the first model systems for molecular characterization of a transcription regulatory mechanism and certainly one of the best studied in the widest range of organisms. In multicellular organisms, however, the issue of cell-type-specific regulation of rRNA transcription has not been well addressed. Here I propose that a systematic study of cell-type-specific regulation of rRNA transcription may reveal new regulatory mechanisms that have not been previously realized. Specifically, issues concerning the cell-type-specific requirement for rRNA production, the universality of Pol I transcription complex and the division of rDNA into regulatory subdomains are discussed.
Collapse
Affiliation(s)
- Hung Tseng
- Department of Dermatology, Department of Cell and Developmental Biology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, CRB Room 242B, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Caburet S, Conti C, Schurra C, Lebofsky R, Edelstein SJ, Bensimon A. Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res 2005; 15:1079-85. [PMID: 16024823 PMCID: PMC1182220 DOI: 10.1101/gr.3970105] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The standard model of eukaryotic ribosomal RNA (rRNA) genes involves tandem arrays with hundreds of units in clusters, the nucleolus organizer regions (NORs). A first genomic overview for human cells is reported here for these regions, which have never been sequenced in their totality, by using molecular combing. The rRNA-coding regions are examined by fluorescence on single molecules of DNA with two specific probes that cover their entire length. The standard organization assumed for rDNA units is a transcribed region followed by a nontranscribed spacer. While we confirmed this arrangement in many cases, unorthodox patterns were also observed in normal individuals, with one-third of the rDNA units rearranged to form apparently palindromic structures (noncanonical units) independent of the age of the donors. In cells from individuals with a deficiency in the WRN RecQ helicase (Werner syndrome), the proportion of palindromes increased to one-half. These findings, supported by Southern blot analyses, show that rRNA genes are a mosaic of canonical and (presumably nonfunctional) palindromic units that may be altered by factors associated with genomic instability and pathology.
Collapse
Affiliation(s)
- Sandrine Caburet
- Unité de Stabilité des Génomes, Institut Pasteur, 75724 Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Mishra NK. Intragenomic variation in ribosomal RNA gene of the sea urchin Lytechinus variegatus. Mol Biol Rep 2005; 32:61-5. [PMID: 15865212 DOI: 10.1007/s11033-004-1402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The first series of studies on the rDNA satellite of the sea urchin, Lytechinus variegatus, based on saturation hybridization of rRNA-rDNA and renaturation kinetics, showed that repeat length of rRNA gene was of about 8 kb in which there was no provision for NTS. The EM denaturation mapping, however, revealed (1) that the gene was 75% larger (longer) than 8 kb, within which there was a NTS whose length varied in repeating units, (3) and there was a region of high GC almost in the middle of the transcribed part. The suggestion of length and sequential heterogeneity in the gene copies coming from the first denaturation mapping prompted further studies with techniques so that the conclusions of the previous results could be stated with finality. The results that emanated from further studies established that the rDNA repeat length of L. variegatus was of about 12 kb and that the NTS ranged from 3.8 to 6.4 kb. Earlier demonstration of a moderately high-GC segment within the transcribed part was also confirmed by sequence analysis. However, the stipulations on the NTS regarding sequential and length heterogeneity, still awaits elucidation by sequence analysis.
Collapse
|
31
|
Tsuji T, Sun Y, Kishimoto K, Olson KA, Liu S, Hirukawa S, Hu GF. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res 2005; 65:1352-60. [PMID: 15735021 DOI: 10.1158/0008-5472.can-04-2058] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenin is an angiogenic protein known to play a role in rRNA transcription in endothelial cells. Nuclear translocation of angiogenin in endothelial cells decreases as cell density increases and ceases when cells are confluent. Here we report that angiogenin is constantly translocated to the nucleus of HeLa cells in a cell density-independent manner. Down-regulation of angiogenin expression by antisense and RNA interference results in a decrease in rRNA transcription, ribosome biogenesis, proliferation, and tumorigenesis both in vitro and in vivo. Exogenous angiogenin rescues the cells from antisense and RNA interference inhibition. The results showed that angiogenin is constitutively translocated into the nucleus of HeLa cells where it stimulates rRNA transcription. Thus, besides its angiogenic activity, angiogenin also plays a role in cancer cell proliferation.
Collapse
MESH Headings
- Animals
- Cell Growth Processes/physiology
- Cell Nucleus/metabolism
- Cells, Cultured
- DNA, Antisense/genetics
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- HeLa Cells
- Humans
- Mice
- Mice, Nude
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA Interference
- RNA, Ribosomal/genetics
- Ribonuclease, Pancreatic/antagonists & inhibitors
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Ribonuclease, Pancreatic/physiology
- Ribosomes/genetics
- Ribosomes/metabolism
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Takanori Tsuji
- Center for Biochemical and Biophysical Sciences and Medicine, Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
A variety of posttranscriptional mechanisms affects the processing, subcellular localization, and translation of messenger RNAs (mRNAs). Translational control appears to occur primarily at the initiation rather than the elongation stage. It has been suggested that translation is mediated largely by means of a cap-binding/scanning mechanism. On the basis of recent findings, we propose here that differential binding of particular mRNAs to eukaryotic 40S ribosomal subunits before translation may also selectively affect rates of polypeptide chain production. In this view, ribosomal subunits themselves are considered to be regulatory elements or filters that mediate interactions between particular mRNAs and components of the translation machinery. Differences in these interactions affect how efficiently individual mRNAs compete for ribosomal subunits. These competitive interactions would depend in part on the complementarity between sequences in mRNA and rRNA, as well as on structural differences among ribosomes in different cell types. By these means, translation may either be enhanced through increased recruitment of ribosomes or inhibited through strong interactions that sequester mRNAs. We propose that ribosomal filters may be important in cell differentiation and describe experimental tests for the filter hypothesis.
Collapse
Affiliation(s)
- Vincent P Mauro
- Department of Neurobiology, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
33
|
Xu ZP, Tsuji T, Riordan JF, Hu GF. The nuclear function of angiogenin in endothelial cells is related to rRNA production. Biochem Biophys Res Commun 2002; 294:287-92. [PMID: 12051708 DOI: 10.1016/s0006-291x(02)00479-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Angiogenin is a potent angiogenic protein whose inhibition is known to prevent human tumor growth in athymic mice. It is secreted by both tumor and normal cells; and interacts with endothelial and smooth muscle cells to induce a wide range of cellular responses including cell migration and invasion, proliferation, and formation of tubular structures. Angiogenin is rapidly endocytosed and translocated to the cell nucleus where it accumulates in the nucleolus and binds to DNA. Although nuclear translocation is necessary for its angiogenic activity, the nuclear function of angiogenin is unclear. Here we report that exogenous angiogenin enhances the production of 45S rRNA in endothelial cells, and reduction of endogenous angiogenin inhibits its transcription. In a nuclear run-on assay, angiogenin stimulates RNA synthesis including that containing the initiation site sequences of 45S rRNA. This suggests that the nuclear function of angiogenin relates to its capacity to induce rRNA synthesis. Because rRNA transcription is essential for the synthesis of new ribosomes that are necessary for protein translation and cell growth, inhibition of angiogenin-stimulated transcription of rRNA may inhibit angiogenesis and therefore, would serve as a molecular target for therapeutic intervention.
Collapse
MESH Headings
- Amanitins/pharmacology
- Cell Line
- Cell Nucleus/chemistry
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Neovascularization, Physiologic/physiology
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oligonucleotides, Antisense/pharmacology
- RNA, Ribosomal/biosynthesis
- Ribonuclease, Pancreatic/antagonists & inhibitors
- Ribonuclease, Pancreatic/genetics
- Ribonuclease, Pancreatic/metabolism
- Ribonuclease, Pancreatic/pharmacology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Zheng-ping Xu
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, One Kendall Square, Building 600, 3rd Floor, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
34
|
Abstract
In a recent paper, we have put forward the hypothesis that there exist smart purposive mechanisms - tandem repeat length managers - which regulate the length of some tandem repeat, or cause rearrangements, and are almost always driven by some variable number tandem repeat. We have called the framework in which such mechanisms act 'dynamical genetics'. The purpose of this paper is to contribute to lay the foundations of a molecular study of the above mechanisms, by proposing a hypothesis, based on various kinds of supporting evidence and plausibility arguments, about the special importance of DNA quadruplexes for dynamical genetics, and by considering the involved enzymes. This hypothesis states that a tandem repeat length manager acts almost always by monitoring a DNA tract that has the characteristics of being a variable number tandem repeat and/or forming a DNA quadruplex, and that it is almost always driven by at least one of them.
Collapse
Affiliation(s)
- V D Fonzo
- EuroBioPark c/o Parco Scientifico, Università di Roma 'Tor Vergata', Rome, Italy
| | | | | | | |
Collapse
|
35
|
Som I, Azam A, Bhattacharya A, Bhattacharya S. Inter- and intra-strain variation in the 5.8S ribosomal RNA and internal transcribed spacer sequences of Entamoeba histolytica and comparison with Entamoeba dispar, Entamoeba moshkovskii and Entamoeba invadens. Int J Parasitol 2000; 30:723-8. [PMID: 10856506 DOI: 10.1016/s0020-7519(00)00050-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ribosomal RNA genes in Entamoeba histolytica are located on circular DNA molecules in about 200 copies per genome equivalent. Nucleotide sequence analysis of the 5.8S rRNA gene and the flanking internal transcribed spacers was carried out to determine the degree of sequence divergence in the multiple rRNA gene copies of a given strain; amongst three different E. histolytica strains (HM-1:IMSS, Rahman and HK-9); and amongst four species of Entamoeba (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii and Entamoeba invadens). The results show that all rRNA gene copies of a given strain are identical. Few nucleotide positions varied between strains of a species but the differences were very pronounced amongst species. In general, the internal transcribed spacer 2 sequence was more variable and may be useful for strain- and species-identification. The 5.8S rRNA gene and the internal transcribed spacer 2 of E. invadens were unusually small in size.
Collapse
Affiliation(s)
- I Som
- School of Environmental Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
| | | | | | | |
Collapse
|
36
|
Melen GJ, Pesce CG, Rossi MS, Kornblihtt AR. Novel processing in a mammalian nuclear 28S pre-rRNA: tissue-specific elimination of an 'intron' bearing a hidden break site. EMBO J 1999; 18:3107-18. [PMID: 10357822 PMCID: PMC1171392 DOI: 10.1093/emboj/18.11.3107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Splitting and apparent splicing of ribosomal RNA, both previously unknown in vertebrates, were found in rodents of the genus Ctenomys. Instead of being formed by a single molecule of 4.4 kb, 28S rRNA is split in two molecules of 2.6 and 1.8 kb. A hidden break, mapping within a 106 bp 'intron' located in the D6 divergent region, is expressed in mature ribosomes of liver, lung, heart and spleen, as well as in primary fibroblast cultures. Testis-specific processing eliminates the intron and concomitantly the break site, producing non-split 28S rRNA molecules exclusively in this organ. The intron is flanked by two 9 bp direct repeats, revealing the acquisition by insertion of a novel rRNA processing strategy in the evolution of higher organisms.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Cells, Cultured
- Electrophoresis, Polyacrylamide Gel
- Evolution, Molecular
- Introns/genetics
- Male
- Mice
- Models, Genetic
- Molecular Sequence Data
- Molecular Weight
- Nucleic Acid Conformation
- Organ Specificity
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Splicing/genetics
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- Rats
- Repetitive Sequences, Nucleic Acid
- Rodentia/genetics
- Testis/cytology
- Testis/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- G J Melen
- Laboratorio de Fisiología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, (1428) Buenos Aires, Argentina
| | | | | | | |
Collapse
|
37
|
|